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Abstract- A new algorithm based on Modified Particle Swarm Optimization (MPSO） in order to control autonomous vehicles 
for solving odor source localization in dynamic advection-diffusion environment have been developed.  Furthermore an 
improvements of the MPSO for odor source localization, which follows a local gradient of the chemical concentration within a plume 
is investigated. Another popular biomimetic approach in odor source localization problem is anemotaxis. An anemotaxis-driven 
agent measures the direction of the fluid’s velocity and navigates “upstream” within the plume. In this paper, the combination of 
chemotaxis “MPSO”-based algorithm and anemotaxis will be described. This method is well known in the animal kingdom as odor-
gated rheotaxis (OGR). On the other hand, in real world, the odor distribution is multi peaks especially in obstacle environments. 
For that reason, a new environment with obstacle will be developed. The purpose of developing the environment is to bridge the gap 
between very complex, hard-to-understand real world problems (odor dispersion model) and overly simplistic-toy-problem 
(dynamic bit matching or moving parabola). Simulations illustrate that the new approach can solve Advection-Diffusion odor model 
problems in such a dynamic odor with obstacle-filled environments. 
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I. INTRODUCTION  
 
Most work on chemical sensing with mobile robots assume an 

experimental setup that minimizes the influence of turbulent transport 
by either minimizing the source-to-sensor distance in trail following 
[1][2] or by assuming a strong unidirectional air stream in the 
environment [3-6], including our previous work [7]. However, not 
much attention has been paid to the natural environment problem. 

To the best of our knowledge, there is no real implementation on a 
mobile robot that works in the natural environment. The main problem 
in implementing odor source localization using gas sensor in natural 
environments is that the distribution of the odorant molecules is 
usually dominated by turbulence rather than diffusion, the latter of 
which is known to be a considerably slower transport mechanism for 
gases in general. The other problem is the influence of unstable wind. 
When odor distribution is very complex and the wind direction is not 
stable, the robot will be haphazard and desultory [1-7]. 

This paper focuses on our new approach that exploits particle 
swarm optimization with multiple robots to solve odor source 
localization in natural environments where the odor distribution may 
change over time [8-10]. Furthermore some improvement is 
investigated. The improvement is conducted not only to combine 
chemotaxis “MPSO”-based with anemotaxis becoming odor-gated 
rheotaxis (OGR) but also to develop the Advection-Diffusion odor 
model with obstacle. 

 
 

II. PARTICLE SWARM OPTIMIZATION FRAMEWORK 
 

Many complex real-word optimization problems are dynamic, and 
change stochastically over time.  These problems require 
measurements that account for the uncertainty present in the real 
world.  Evolutionary algorithms (EAs), especially Particle Swarm 
Optimization (PSO), have proven successful in a number of static 
applications as well as dynamic and stochastic optimization problems.  
They are particularly successful because they draw their inspiration 
from the principles of natural evolution, which is a stochastic and 
dynamic process. 

The interaction of the robot with the PSO algorithm is described 
as follows:  Suppose that a population of robots is initialized with 
certain positions and velocities; let )(tix and )(tiV denote the 
position and the velocity vector of the i-th robot at the iteration time t 
(t=1,2...).  In addition, let pi and pg be defined as the best local and the 
best global position found in plume distribution that is under 
evaluation by the robot at position )(tix . The position and the 
velocity are updated to improve the fitness function at each time step.  
When a robot discovers a pattern that is better than any previously 
found, the positional coordinates are stored in the vector pi, the best 
position found by robot i so far.  The difference between pi and the 
current position )(tix is stochastically appended to the current 

velocity )(tiV .  This causes a change to the trajectory the robot 
would take at that position. The stochastically weighted difference 
between the population’s best position pg and the individual’s current 
position xi is also added to the velocity, in order to adjust for the next 
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time step.  These adjustments to the robot behavior direct the search 
around two best positions. 

The value of pg (the best global position for concentration of the 
gas) is determined by comparing the best performances of all the 
members of the population.  The performances are defined by indices 
from each population member; and the best performer’s index is 
assigned as the variable g.  Thus, pg represents the best position found 
by all members of the population.   

Each robot is equipped with an ad-hoc wireless network and global 
positioning system (GPS).  Through the ad-hoc network, each robot 
transmits and collects the information about the gas concentration, 
while the position of the robot is determined by the GPS. 

A. Standard Particle Swarm 
The concept of standard PSO is described in eq. (1) and (2).  
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After finding the two best values, the particle velocity and position is 
updated with eq.(1) and (2).  The functions Rand() and rand() are 
random functions returning a value between (0,1).  Coefficient χ is 
constriction factor, which is less than 1.  The coefficient c1 and c2 are 
learning parameters, where c1 = c2 = 2.  

The main problem with standard PSO applications in dynamic 
optimization problems is that the PSO will eventually converge to an 
optimum; it thereby looses the diversity necessary for efficient 
exploration of the search space.  

 
B. Charged PSO 
Applying Coulomb’s law, a charged swarm robot is introduced in 

order to maintain diversity of the positional distribution of the robots 
and to prevent them from being trapped in a local maximum.  This 
enhances adaptability to the changes of the environment.  Figure 4 
shows the repulsion function for charged swarm robots.  Suppose that 
robot i can observe the present position of the other robots 
( ip xx ≠ ) and has a constant charge Qi  in order to keep a mutual 

distance away and maintain positional diversity.  Two types of swarm 
robots are defined: neutral and charged robots.  For all neutral robots 
Qi = 0 ; hence, no repulsive force is applied to the neutral robots.  
For charged robots, the mutual repulsive force between robots i and p 
is defined according to the relative distance, x i − x p  as follows; 
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where, )( pi ≠ ,rcore denotes the diameter inside which a constant, 
strong repulsion force is applied and rperc denotes the recognition 
range of robot.  Hence, if the mutual distance is beyond rperc, there 
exists no repulsion force between the robots.  In the case 
of perccore rrr ≤≤ , the repulsion force is dependent on the mutual 

distance.  Then, taking the summation of the mutual repulsion force, 
robot i defines collective repulsion force by: 
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where N is number of the robots. The charged swarm robot is 
described in equations (5) and (6) 
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where, the first part of eq.(5) is responsible for finding and 
convergence to the optimal solution, while the second part maintains 
diversity of the swarm distribution and prevents robots from being 
trapped in a local maximum.  Also, if all robots are set to the neutral, 
Charged PSO (CPSO) is reduced to the standard PSO, as described in 

 
Fig. 1. Interaction of the charged swarm robots. 
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Fig. 2. Modified particle swarm optimization with wind utilization concept. 
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eq. (1) and (2).  The conceptual idea of Charged PSO is shown in Fig 
1. 

III. EXTENSION WITH WIND UTILIZATION 
In this section, the integration of chemotaxis and anemotaxis 

properties to the PSO is introduced.  Again, chemotaxis causes the 
Modified PSO robots to follow a local gradient of the chemical 
concentration, while an anemotaxis-driven PSO measures the 
direction of the fluid’s velocity and navigates “upstream” in the plume 
to find the odor source.  This methodology is well known as odor-
gated rheotaxis (OGR) since it is employed by animals to find food. 

The logic of OGR is clear. If an agent senses a plume, the mean 
flow of that plume must be bearing chemicals from the source of the 
plume toward the agent; and, therefore, a movement against the mean 
flow will reduce the agent’s distance from the source.  If the agent 
looses contact with a previously detected plume during its navigation 
upstream, the agent may overshoot the source.  If he has lost contact 
with the plume, the agent moves back and forth across the path on 
which he knew the flow was located to re-contact the plume.  This 
back and forth movement is termed casting and is a typical behavior 
of individualistic animals such as the American Lobster.  In Particle 
Swarm Optimization, the algorithm not only shares individualistic 
information but also shares social information.  This following section 
details the adaptation and implementation of OGR into the MPSO. 

A. Conceptual Idea 
As explained in Eq. (1) and (2) earlier, unless the position and 

velocity  are updated in the PSO algorithm, there is no guarantee the 
robot direction will follow the plume upstream to the source.  To 
combat this issue we utilized wind information. 

Assume the velocity from the basic PSO becomes an intermediate 

velocity ( )(* tiV ) from which the robots can know the direction of 

the wind ( W (t)) at every step in time.  Gas is emitted from the 

source of a coordinate system (x, y) as in Fig. 2, where the x-axis is 
taken as the downwind direction.  The movement of the robot can be 
controlled by analyzing the angle (θ) between the intermediate 
velocity vector of the robot and the wind direction vector.  Note that 
the angle is a relative direction, its mean depends on the direction of 
the wind at this time step.  (In Figure 15, the angle between x-axis and 
wind direction is zero).  With this concept, the robot movement not 
only will follow the gradient of the chemical concentration but also 
will follow the direction “upstream” of the wind.  As a more detailed 

explanation, let us reformulate )(* tiV  and W (t) as vectors defined 
as follows: 
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The angle of the two vectors )(* tiV  and W (t) in two-dimensional 
space becomes an inner product and is defined as: 
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From Fig. 2 and Eq. 7 – 9, we have many variables to control the 

velocity )(tiV of the robot. We will explain two implementations of 
using the wind direction in the MPSO. 
 

B. Implementation I: Used Forbidden Area 

In wind utilization implementation I, we let the angle θ in Eq. 9 
describe a forbidden area.  The forbidden area represents an area 
where the robots have high likelihood of going the wrong direction 
(i.e. the robot direction will not follow the upstream to the source 
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(a). °≤ 90forbiddenθ                (b). °≤ 45forbiddenθ  
Fig. 3. Conceptual idea wind utilization with forbidden area (note x-axis is taken as the downwind direction) 
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within this area).  If the angle (θ) is inside the forbidden area, there 
must be some action taken to avoid this area.  In this simulation, for  
simplicity reasons, the action taken is to terminate the robot (i.e. let 

)(tiV = 0).  Otherwise, the intermediate velocity of robot ( )(* tiV ) 

will become the velocity of the robots ( )(tiV ).  The conceptual idea 
of this implementation, with a different forbidden area is shown in Fig. 
3.   

The modified PSO with Wind Utilization I (WUI) concept is 
described from Eq. 10 -11.  (Other parameters still follow the basic 
PSO concept parameters.) 
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In Fig. 3, the angle between the x-axis and the downwind direction 

is zero. If there is any angle between the x-axis and the downwind 
direction, the algorithm adapts automatically by comparing the 

relative angle between vectors )(* tiV  and W (t). 

C. Implementation II: Using the( θχ ) Parameter 

The weakness of implementation of Wind Utilization I is that it 
needs tuning of the forbidden area parameter.  For implementation, we 
use the controlling parameter θχ  to decide the velocity of the  

robot.  After getting the intermediate velocity of the robot , )(* tiV , 
the Wind Utilization II (WUII) algorithm will calculate the angle (θ) 
as mentioned in Eq. 9. Then the controlling parameter, θχ , is 
calculated.  The continuation function for the controlling parameter 

θχ  is described as follows: 

( )))(),((1
2
1))(),(( ** tttt ii VWVW −=θχ       (12) 

where the relation of the angle θ and the controlling parameter θχ  
are shown in Fig. 4. 

The modified PSO with Wind Utilization II (WUII) concept is 
described from eq. (13) to eq. (14): 

 
Fig. 4. Continues the function for controlling  

the velocity of the robots 
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(a) The angle between x-axis and downwind direction is zero 

 
 

 

(0,0) x

y

)( tW

)(* tiV

°= 90θ

(0,0) x

y

)( tW

)(5.0)( * tt ii VV =

°= 90θ

 
(b) Any Angle between x-axis and downwind direction 

 

Fig. 5. Conceptual idea wind utilization with ( θχ ) parameter. 
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)()( * tt ii VV θχ=             (13) 

)()1()( ttt iii Vxx +−=                                (14) 

IV. IMPLEMENTATION FRAMEWORK 
The odor source localization problem in dynamic environments is 

related to several issues from biology, physical chemistry, engineering 
and robotics.  This paper proposes a comprehensive approach to offer 
a sound technical basis for odor source localization in a dynamic 
environment. 

A. Environment 
In this paper, we adopted an extended Advection-Diffusion odor 

model by Farrell et al. [11] because of its efficiency.  It represents 
time-averaged results for measurement of the actual plume, including 
chemical diffusion and advective transportation.  In addition, the 
Advection-Diffusion odor model has a key factor to approximate the 
meandering nature of the plume, in that the model is sinuous. 

The Advection-Diffusion model is composed of a large number of 
advected and dispersed filaments.  Given a large number of filaments, 
the overall instantaneous concentration at ),( yxo =x  is the sum of 
the concentrations at that location contributed by each filament: 
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where C is the concentration of the plume (molecules/cm3), to is the 
number of iterations, and M is the number of filaments currently being 
simulated. 

The Advection-Diffusion gas concentration at the location ox due 
to the i-th filaments is expressed by: 
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where q is the amount of odor released, Ri is the parameter controlling 
the size of the i-th filament; and Pi is changing positions of the i-th 
filament.  (For further explanation on this model, see [11], section two 
and three.) 

This model generates plumes that meander; in addition, the meander 
is coherent with the flow fields in the sense that downwind odor 
distribution from the source is the result of advection by the flow.  
Therefore, we extend the original equations from [11] to incorporate 

the obstacles in the environment.  As a result, the environment 
becomes more realistic and complicated. 

B. Robot Behavior 
The gas source localization algorithm used in this work can be 

divided into three subtasks: plume finding, plume traversal and source 
declaration.  Random search is employed until one robot encounters 
the plume.  After finding the plume, the second task of the plume 
traversal proceeds.  Particle Swarm concept will be applied to 
following the cues determined from the sensed gas distribution toward 
the source.  The last task is the source declaration based on the 
certainty that the gas source has been found.  If a robot senses the gas 
density that is beyond a certain threshold value, it means that the gas 
source location is specified; and hence, the searching behavior is 
terminated.  Moreover, the search is terminated if the swarm robots 
fail to localize the odor source by the maximum iteration time step. 

To ensure that the performance of proposed strategies is 
applicable to the hardware experiments, the simulation must contain 
the key features of the hardware setup.  Firstly, the robot has a 
maximum velocity at which it can move.  Hence, the value of velocity 

vector can be restricted to the range [-Vmax, Vmax].  In this 
simulation, the maximum velocity is set to 0.05 (m/s), by following 
definition: 
 

( )max),(min)( VVV tt ii =                                (18) 

 
Secondly, in order to incorporate a collision avoidance 

mechanism, which is not considered in the standard PSO algorithm, 
we assume that infrared sensors are equipped on each robot.  Then the 
parameters of sensor noise and threshold value are added to model 
sensor responses.  Assume that iteration time t of the robot in eq. (1) 
to (6) and iteration time to in eq. (15) to (17) is different time step 

 Finding the Plume Tracing the Plume Source Declaration

  
 

Fig. 6. Sample of visualization of proposed approaches for odor source localization in Advection-Diffusion odor model with ten obstacles. 

 

 
Fig. 7. Average convergence time in an obstacle environment,  
given the algorithm Wind Utilization I with 90°forbiden area. 
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resolution.  Time correlation between time step t and time step to is 
explained as follow: The time scale of t has higher resolution than that 
of time step to and count up is represented as: 

 

ttt oo ∆+=+1                                      (19) 

 
△t is the interval time step to in terms of time step t. Hence; to is 
represented with t by:   
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where [X] is the Gauss’s symbol. The sensor response is defined by:  
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is the sensor’s response, C is the gas concentration, e is the random 
sensor noise with e << C, and τ is sensors threshold. 

Finally, the basic concept of PSO algorithm uses a common 
assumption, that all robots have accurate GPS that give the robot its 
global location and no error model is used for the position.  These 
errors should be modeled as well to provide a more realistic situation.  
For this reason, a random position error sensor was added, as defined 
by: 
 

 erroriii ttt DVxx ++−= ))()1(()(                                     (22) 
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where RE is the range of error, and errorerror yx ≠ is an error 
position. 

V. EXPERIMENTAL EXAMPLE 
To demonstrate capability our new comprehensive approach we run 

the simulation in different scenarios. Four scenario environments, 
one without obstacle and three with obstacles, are used for all the 
experiments. Figure 6 shows a sample of visualization a new 
algorithm to solve odor source localization with obstacle. 

All experiments were run 25 times; the results reported are the 
averages. Then from the averages of convergence time in dynamical 
change of environment was plotted, as shows in Fig. 7. From Fig. 7, 
there is any intersection result, for free obstacle and simple obstacles 
(two obstacles) the CPSO is superior compare WUI-90, but for 
complex obstacles environment (five and ten obstacles) the WUI-90 
is superior compare CPSO. It is therefore not surprising result, 
probably because the stopping behavior of the robot or the large of 
forbidden area as we mention in previous section. 

The result the of the algorithm using the forbidden area 

function °≤ 45forbiddenθ compared to the results of using CPSO 

are shown in Fig. 8.  In Fig. 8, the results intersect.  This is partly due 
to a difference the gap space between obstacles, which depends on the 
number of obstacles in the environment.  For an environment with 
only two obstacles, the results for the CPSO and WUI algorithms were 
very similar.  However, for and environment with five to ten obstacles 
(a complex environment), the WUI-45 is obviously superior compared 
to the CPSO algorithm. 

The weakness of implementing Wind Utilization I, is the need for 
tuning the forbidden area parameter (i.e. tuning from 

°≤ 30forbiddenθ , °≤ 45forbiddenθ , °≤ 60forbiddenθ ).  If the 

robot stays in the area °≤ 45forbiddenθ  the results are promising.  

For implementation, we use the controlling parameter θχ  to decide 
the velocity of the robot.  Then we compared the results with the 
CPSO algorithm, as shown in Fig. 9.  In Fig. 9, the results again 
intersect.  For an environment with only two obstacles, the results for 
the CPSO and WUI algorithms were very similar.  However, for and 
environment with five to ten obstacles (a complex environment), the 
WUII is superior compared to the CPSO. 

For more representative analysis the effect of error of position and 
error of odor sensor was investigated. Table 5.1 shows typical time 
development of global best coping with dynamical change of 
environment used WUII algorithm with employed uncertain sensor 
parameters with various odor sensor and position errors. Fourteen 
robots with two obstacles employed in this result. From Table 1, it can 
be concluded; adding the positioning error will slightly decrease the 
performance. The positioning error of 50 (cm) is a realistic 
assumption, considering the dimension of the robot (10 cm). 

 
 

 
Fig. 8. Average convergence time in an obstacle environment,  
given the algorithm Wind Utilization I with 45°forbiden area. 

 
Fig. 9. Average convergence time in an obstacle-filled-environment, 

given the algorithm Wind Utilization II 
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Table 1.  Average of convergence time in obstacle environment used WUII 
with employed uncertain sensor parameters. (Repeated 25 times) 

Odor Sensor Error (ppm) Position Error 
(cm) 0 0.2 1 

0 664 ± 179 794 ± 297 894 ± 199 

50 984 ± 511 1071 ± 814 1100 ± 714 

100 1150 ± 514 1210 ± 712 1325 ± 613 

 

VI. CONCLUSIONS AND PROSPECT 
The PSO was implemented for controlling autonomous robots to 

search for an odor source in dynamic, obstacle-filled environments .  
When comparing CPSO and DR PSO results, the CPSO gave better 
results for the convergence time to find an odor source location.  A 
wind-utilization function for OGR was also implanted with the CPSO 
algorithm and compared in the  WUI-45 and WU-II analyses.  Both 
these analyses WUI-45 and WUII showed promising results.  
Furthermore, the WUII algorithm, which uses the  parameter θχ for 
controlling the velocity of the robot, had success even without a 
tuning parameter for noise and variable sensor parameters. 

These proposed approaches can solve such dynamic environment 
problems but in practical, for real natural environment, the robot will 
find various situations related with multi study from biology, physical 
chemistry, engineering and robotic. Unresolved problem still find in 
implementation phase. Most of those could be grouped into one of the 
following categories: 

 
1. Environments  

The previous report used Advection-Diffusion equation to model the 
environment. Since the Gaussian and Advection-Diffusion equation 
does have only one optimum, it means, as long as such model is used for 
the environment, no matter which algorithm is used, the agents will 
eventually find the odor source. How to cope with some issues like two 
or more different locations having the similar optimum? We also try to 
solve such kind of multiple location of odor in future work. 

 
2. Performance Measurement in Dynamic Environment  

Some researches argue that the performance measure for static 
problem, such as with MEAN statistic, cannot directly be applied to 
dynamic environment. These measures are used either to report the 
performance of an algorithm after a fixed number of iterations (or 
function evaluations in our case the odor distribution functions), or to 
produce a performance profile over all iterations. In the first case, if 
applied to the dynamic environment, the final performance will not be 
an accurate account of performance under all the environment 
changes. The ability to recover from environment changes is not 
reflected. Morrison provides a summary of performance measures for 
dynamic environments with respect to evolutionary algorithms. We 
also try to analyze the feasibility conjectures referred to above, in 
future work. 

 
3. Algorithm Optimization  
The common problem using PSO lies in the parameter tuning to find 
the optimal solution. Most of the researchers use the cross validation 
or try and error methods to tune parameters. Further algorithm 
development in simulation will include online learning, which system 
can learn parameters from environment. 

 
4. Real Hardware Implementation: 

An important stage will be on porting the simulation to actual 
robots in a laboratory experiment. Multiple autonomous mobile robots 
will use for actual robot experiment. This robot can move 
autonomously, additionally a robot can communicate each other by 
wireless LAN. The robot used TGS-822 gas sensor for alcohol and 
volatile vapor detection from Figaro Inc. The sensing element of TGS-
822 gas sensors is a tin dioxide (SnO2) semiconductor that has low 
conductivity in clean air. In the presence of a detectable gas, the 
sensor's conductivity increases depending on the gas concentration in 
the air. A simple electrical circuit can convert the change in 
conductivity to an output signal which corresponds to the gas 
concentration. The TGS-822 has high sensitivity to the vapors of 
organic solvents as well as other volatile vapors. It also has sensitivity 
to a variety of combustible gases such as carbon monoxide, making it 
a good general purpose sensor. Via the ad-hoc wireless LAN, each 
robot can collect the gas concentration value and choose the best one. 
Then the position of the robot can be determined covering camera. 

The final goal of the research is construct a whole system, software 
and hardware implementation, for solving distributed odor source 
localization in real environment through a newly proposed Modified 
Particle Swarm Optimization algorithm (MPSO). 
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