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Abstract: In this paper a new formulation of the inverse dynamic model of the Gough-Stewart platform is proposed.
This approach is based on the methodology developped by Khalil. The platform is considered as a multi robot
system moving a common load. Using a global formalism, the Jacobian and inertia matrices of each segment
are computed in a factorized form. This paper provides a basis for parallel algorithm development for a dynamic
control under the real time consraint. The proposed sheme is validated by the simulation results.
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1 Introduction

The parallel architecture manipulators [1], [2], [3],
[4], [5] have some significant advantages in compar-
ison with serial robots, in particular, a greater com-
pactness and accuracy in the end effector position-
ing. These parallel robots are primarly used in the
fields where the considered processes require a high
degree of accuracy, high speeds or accelerations. Air-
craft simulator [1], teleoperation [6], machining tools
[7][8], and various other medical applications [9], [10]
constitute some of the many possible applications of
parallel robots.

The inverse dynamic model is essential for an effec-
tive robot control. In the field of parallel robots, many
approaches have been developped. The formalism of
d’Alembert has been used to obtain an analytical ex-
pression of the dynamics model [11] [12]. The princi-
ple of virtual works has been applied in [13] for solv-
ing the inverse dynamics of the Gough-Stewart plat-
form. Lagrangian formalism is applied in [10] for the
dynamics modeling of a parallel robot used like a hap-
tic interface for a surgical simulator. These various
approaches do not seem effective for a robot dynamic
control under the real time constraint. The computa-
tion time reduction can be acquired by the develop-
ment of approaches using recursive schemes, in par-
ticular, based on the Newton-Euler formulation. Thus
Gosselin [14] proposed the inverse dynamic model
of planar and spatial parallel robot, in which all the
masses and inertias are taken into account. This pro-
posed method is difficult to generalize for all the par-
allel architectures. Dasgupda et al [15] applied this
method to several parallel manipulators. Khan [16]
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has developped a recursive algorithm for the inverse
dynamics. This method is applied t@& planar par-
allel robot. Bietal [17] use the Newton-Euler iterative
scheme for the articular force computation of a tripod
system. Khalil et al [18] proposed a general method
for the inverse and direct dynamic model computation
of parallel robots, wich is applied to several parallel
manipulators [19].

In the present paper, the inverse dynamic modeling of
the Gough-Stewart platform is presented. The paral-
lel robot is considered as a multi robot system with
k serial robots (theé: parallel robot segments) mov-
ing a common load (the mobile platform). The pro-
posed approach use the methodology developped by
Khalil et al [18]. The purpose consists, using a global
formalism, in highlighting explicitly inertia matrices
expressed in articular and operational spaces. These
matrices are obtained in factorized form, with the aim
of parallel algorithm developement. The objective be-
ing the implementaton of a dynamic control under the
real time constraint.

This paper is organized as follows. In the following
section we describe the nomenclature and the used
notation. In sectior, the Gough-Stewart platform
architecure is described. Development of the inverse
kinematic model and the inverse Jacobian matrix are
briefly described in sections and5. The kinematic
model of the segment is given in secti®nin section

7, the inverse dynamic model of the Gough-Stewart
platform is developed. A simulation of this inverse
dynamic model is provided in secti@walidating the
proposed approach.
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2 Preliminaries

In this section we define the required notation and pre-
liminaries are presented. The parallel robot is con-
sidered as a multi-robot system withserial robots
(segments) moving a common load (mobile platform).
Fig. 1 shows the links, the frames and position vectors
for the segment (: = 1,. .., k).

Figure 1: Links, frames and position vectors for the
segment

2.1 Nomenclature

2.1.1 Joint and link parameters
e “Pj., j: position vector fronfO; to 0,4
e k. number of segments

e ‘)M degrees of freedom (DOF)-number of seg-
ment;

e N joint number of segmenit
e S: active joint number by link

o 07, ég: position and velocity of active joint of the

segment

o 0P, ié;’ . position and velocity of passive joint
of7 the segment

e ‘w;, w; € N3 angular and linear velocity of link
4 for the segment

2.1.2 Spatial quantities

e 'H;: spatial-axis (map matrix) of joint for the
segment. For instance, for a joint witB-DOF
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(rotation aboutz-axis and translation about-
axis), the matrix H; € R%*? is given by:

1t 2nd - _DOF

[0 07 x-axis rotation

0 0 y-axis rotation

i 10 z-axis rotation
71001 X-axis translation
0 0 y-axis translation
| 0 0 | z-axis translation

i

e V; = | ;7 | € RS spatial velocity of the
J
link j for the segment

WN41
UN+1
the end effector

e VN1 = € R0: spatial velocity of

2.1.3 Global quantities

The following global quantities are defined fpr=
‘Ntolorj="'Mtolandi=ktol

e Q; = Col( i9; ) € R'M: global vector of ar-
ticular coordinate velocity of the segmeintak-
ing into account passive and active joints

e Q= Col( 62 ) € R*: vector of generalized
coordinate velocity of the system

o V; = Col( W ) e R6°N: global vector of
spatial velocities for the segmeit

o H; = Dz’ag( 'H; ) € RO'NX'M: global ma-
trix of spatial axis for the leg

2.2 General notation

t ~
With any vectorV = [ Ve Vi V2 } , a tensorV/
can be associated whose representation in any frame
is a skew symmetrical matrix:

) 0 -V,
V=| V. 0 -V
-V, Vi 0

This tensorV has the properties thaf = —V* and
ViV = V3 AV, i.e,, is the vector cross-product of
Vi andV;.

A matrix V associated to the vectdf is defined as:
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- U v
V = N
l 0 U ] Mabile platform
and il
Spherical joint {
Vt _ U~ 0 Motorized prismatic joint ——» .
-V U _— f
Universal joint | L
where U and 0 stand for unit and zero matrices of redvase QO )
A,

appropriate size.

In our derivation, we also make use of global matrices
and vectors which lead to a compact representation
of various factorizations. A bidiagonal block matrix

P, € RE'NX6'N is defined as: Figure 2: Parallel robot representation.

- - e Let O be the origin of the absolute coordinate

U system
‘Pn_1 U 0
0 —iPy_y U e Let C (or On41) be the origin of the mobile
Pi = 0 0 frame R, whose coordinates are in the absolute
frame Ry:
: : A .
0 0 0 —iP U OCip, = | we v 7 |

~ Note _that, according to our notation,
‘Pjt1;="Fj. _ _
The inverse ofP; is a lower triangular block matrix
given by:

A; (or*0y)is the center of the joint between the
segment and the fixed base:

0Ayp, =[af o ai]

U B; (or “Oy) is the center of the joint between

"PnN_1 U 0 the segment and the mobile part:
Prl=| " 'Pnn-2 '‘Pnoino U

t
: : CByg, = | b b b |
iPN,l iPN—l,l . ipg’l U

e [R] is the rotation matrix of-;; elements (in the
RPY formalism), expressing the orientation of
3 Parallel robot description the R, mobile frame withrespect to th&; ab-
solute frame. The expression for this matrix is
The robot considered in this paper is of fully parallel given by:

type. This robot consists 6fsegments linking a fixed

base to a mobile platform. The extremities of each leg i Tiz 713

are fitted with &-DOF universal joint at the base and [B] = | ra1 T2 723 (1)
a3-DOF spherical joint at the platform (Fig. 2). r31 T32 133

The universal joint center and the spherical joint cen- where:

ter are denoted byl; andB; (: = 1,---,6), respec- 711 = cos Bcosy

tive_ly. T_he Ier)ght_of each legis actuated using an r19 = — cos G sin~y

active prismatic joint. 713 = sin 3

The used notations to describe the parallel robot

- . . 791 = sin -y cos a + cosy sin Jsin «
are defined in the following. 21 7 ysin g

roo = COS (¥ COS 7y — sin arsin (Fsin 7y

e R, is the absolute frame, tied to the fixed base r23 = —cos fsina )
(see Fig. 2).R, = (0, 2,7y, 2). r31 = sin-ysin a — cos 7y sin (3 cos &
T3 = sin avcosy + cos asin Fsiny
e R, is the mobile frame, tied to the mobile part. r33 = €os 3 cos «

R, = (C,zp,Yp, 2p)-
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e «, # and~y are the Bryan angles [24], describing
the rotation of the mobile platform with respect
to the fixed base.

e X is the task coordinate vector.

t
X:{aﬁvﬂlc Ye Zc

e Ry, is the frame tied to the segmeit R;,, =
(Ai7 Lh; s Yb, zbi)-

e oy, B, b, are the angles, in thBPY formal-
ism, describing frameg,, rotation with respect
to the absolute frame;,.

o [bRbZ} is the rotation matrix ofr;, _ elements
J

(in the RPY formalism), expressing the orienta-
tion of the R, frame withrespect to thé, ab-
solute frame. The expression for this matrix is
given by:

B cVo;  —CB; 5V P,
[bRbJ = $Yb; b, 0
=SB0 SBb; 5V, Db,
(2)

wherec represents the functiaros ands the function
sin

4 Inverse kinematic model

The inverse geometric model relates the active joint
variables () to the operational variables which de-
fine the position and the orientation of the end effector
(X). This relation is given by the following equation:

0! = |4iBil| = | 4i0/r, +OC), +([R| CByyp |

(3)
Thus:
0f =\ X2+ Y2+ 22 (4)
where:
Xi =z — af + r11bf + rigb! + r13b?
Y; = ye — al + ro1b + roob! + 12307 (5)

Z;i = zc — af +r31bF + r3ab! + r3sb?

5 Determination of the inverse Jaco-
bian matrix

For parallel robots, the inverse Jacobian matrix com-
putation (7 1) stays, in principle, relatively easy.
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J ! matrix is obtained by the determination of point
B; velocity [2][23]:

OB; = vny1 + BiC Awni1 (6)

The following relationship is verified:
0¢ = OB;n; )

Inserting (6) into (7), we obtain:
0f = niony1 +wnia (ni AB;C)  (8)
The inverse Jacobian matrix is written as:

(ng A BeC)' n

J = : 9)

(’I’ll AN BlC)t TL%

6 Kinematic Model of the segment

In this section, the segments considered as a serial
robot. The pointB; is the robot terminal tool. This
serial robot have joints:

e A passive joint’d; with 2 degrees of freedom
(alongyy, etz,, axis)

e An active joint ‘g, with 1 degree of freedom
(alongzy, axis)

We define the following vectors:

e (;, the articular coordinate vector of the seg-
menti:
a t
[ 02 B w, |

Qi = (10)

e Q;, the articular velocity vector of the segment
i

. . t
Q=60 B | (11)
e (), the articular acceleration vector of the seg-
menti:
Q=8 B | (12)
The velocity propagation for a serial chain of in-
terconnected bodies is given by the following intrinsic
equation [20][21][22]:
By using the matrixP;, (13) can be expressed in a
global form by:
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PV =H:Q; (14)
thus:
A .
vi=(P) HQ, (15)

The end effector spatial velocitys, is obtained by
the following relation:

Vi, — 'PLVN =0 (16)
thus:
Ve, = Py Vi (17)
Let 3; € R6*'N be the matrix defined by
gi=| Pt 0 0]
The equation (17) becomes:
VB, = BiVi (18)

Thus, inserting the expression ¥f; from (15), we
obtain:

" -1 .
Ve, =06 (P)  HiQ (19)
The spatial velocity of poin3; is defined by the
following relation:

Ve, = Js, Qs

Where 75, € R6%C is the Jacobian matrix of the
segment expressed in the base fraRe
Thus we deduce, considering (19), a factorized ex-
pression of the Jacobian mati&s, :

(20)

Ip: = Bi P; ' Hi (21)
with:
ﬁi:[ ZPQ O}Emﬁxm
—+_ | U ipf 12x12
Pt = [ 0 U eR
[0 0 0]
0 0 O
0 0 0
1 00 (22)
0 0 0
1000 12x3
H; = 00 0 eR
010
0 0 1
0 0 0
0 0 0
10 0 0]
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By using (22) in (21), a new Jacobian matrix formula-
tion is obtained:

0 0 O
0 1 0
b
| "Ry, O 0 0 1
0o 0 6
L0 —6F 0 ]
This expression can be rewritten as:
[ 000] |
"Ry, | 0 1 0
L IB | 0 01
Ip: = l T, ] - 1 0 0
"Ry, | O 0 69
0 -6 0
) (24)

The forward kinematic model of the segmeéns de-
fined as the relation linking the linear velocity of the
segment terminal tool (pointB;) to articular velocity
vectorQ;:

_ 1 0 0]
B, = T4 Qi = "Ry | 0 0 60 | Qi (25)
0 —-64 0

1
The inverse Jacobian matr(ngi) is directly ob-

tained by:
. 1 0 0
- 1
(78) =10 0 —a [ 'R, (26)
0 7 O
Thus:
oS By, COSYp, siny,, —— cosy, sin By,
v -1 sin By, cos By,
(J Bi) = T e 0 e
cos ,Bbz- siny, COS Vb, sin v, sin ,Bbz-
- o 0 0
(27)

The second-order inverse kinematic model of the seg-
mentsi is given by:

oL . d o\ 1
()" o+ 5 () ) vm 9

Qi
Thus:

. —1 . .
Qi=(78) (B - Jb, @)
The linear velocity of the poin3; can be expressed
as a function of linear and angular velocities of the
mobile platform as:

(29)

vB, = UN+1 + BiC Awni1 (30)
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Thus, in a matrical form:

vB, = [ B.C U } VN1 (31)

The linear acceleration of the poift; is then given
by the following relation:

o= | BiC U | Vnpi+ [ BiC 0] Vivn

(32)
Inserting (32) in (29), the second-order inverse kine-
matic model is finally obtained as:

(jﬁi)_l (Bi Vi1 + Bi Vgl — jﬁz Qz)
(33)

Qi
WhereB; = [ B.C U }

6.1 Computation of 73, Q;

Considering the relation given in (25), we obtain:

_ J 1 0 0
T =3 "Ry, | O 0 67 (34)
0 —6% 0

Thus:
1 0 0 0 0 0
T8 ="Ry |0 0 62 |+'Ry [0 0 4
0 -7 0 0 —6¢ 0
(35)

We define the following vectors:

e Translation velocity vector along,, axis:
o . t
b; =60 0 0]
¢ Rotation velocity vector along,, axis:
. . t
Bo=[0 B 0]
¢ Rotation velocity vector along,, axis:
t
o= 0 0 A, |

and their associated skew symmetrical matrices:

. 00 0
;=10 0 —6¢
0 6% 0
[ 0o 0 By,
B,=]1 0 0 0 (36)
By, 0 0
0 i, O
;sz - ;sz' 0 0
0 0 0
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Taking into account theses vectors and matrices,
(35) becomes:

Jh ="R,, |0 0 62| —"Ry6; (37)
0 —67 0

bRy, have been defined as the rotation matrix express-
ing the orientation of the R,; frame withrespect to
the R, absolute frame. This rotation matrix can be
decomposed into product of two matrices as:

bRbi = Rﬁbi R'Ybi (38)

Thus, we deduce:

b . . . ~ ~
Ry, = Rﬁbi R’Ybi_‘_Rﬁbi Ry, = b; Rﬁbi R’sz- +Rﬁbi7bi R“{bi
—_———

bRb,L-
(39)
Inserting the relation given by (39) in (37), we deduce

a new expression of the matrix; as:

- 1 0 0 R
j§L = </Bbz bRbi + Rﬁbi Vb, R%i) o 0 o —bRbiGi
0 —6¢ 0
(40)

Considering (25) and (31) following relation can be
deduced:

Qi = (jﬁi)_l { B,C U } VN+1 (41)

Thus by inserting (26) :

1 0 0

. 1 =

Q; = 0 (1) o bRgi {BZC U} VN1
0 = O

o (42)
The expression of/;. Q; is determined from (40) and
(42) as:

Jb, Qi = (5 b "o+ R, b, Rw) "R, B; Vi1
+bRbi ﬁg‘ let)i Bi VN+1
L (43)
Thus: .
Jg, Qi =V; B; VN11 (44)
Where:
; s t b Oi b
i = By, + Rp,, s, Rﬁbi + "Ry, Ry, (45)

(62)°

(2
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6.2 Computation ofBTC

The rotation matrixR expressing the orientation of
the R, mobile frame withrespect to th&, absolute
framee can be defined by the following matrical prod-
uct:

R=R, Rg R,

We define the following vectors:

(46)

e Rotation velocity vector along axis:
G&=|da 00 }t

e Rotation velocity vector along axis:
p=lo o]

e Rotation velocity vector along axis:
v=[0 0 4]

And their associated skew symmetrical matrices:

3 0 0 O
a=]10 0 —«
0 o O
. 0 0 f
0= 0. 0 0 47
-5 0 0
CTo =50
F=1% 0 o0
0 0 0
B;C can be also defined by:
B.C = (RBiCjg,) = RB,C /5, R'  (48)
Or:
Bzfz' = (Ra Rg Rv) Bzfz'/Rp (Ra Rg Rv)t (49)

Thus:
B,C = Rag, RB,Cjg, R+ RB,C, R Rl
(50)
With:
Ragy = &+ Ro B RL + Ro Ry 4 RS RL, - (51)
We finally obtain:
BiC = Rap, B.C+ BiC Rl (52)
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The second-order inverse kinematic model can be ex-
pressed by inserting (44) and (52) in (33):

Qi = (jﬁi)_l (Bi VNt + A; VN+1) (53)
Where:
Ai = | (Rapy —9;) BIC+ BiCRLy, —V; |
(54)

7 Inverse dynamic model

The equation describing the dynamic behaviour of a
closed loop system, in the articular space, is given by
the following equation:

Mi Qi+ Ci+Gi+ (75) ¢i=T:  (5)
Or:

M;Q; = *Fr (56)

Where
iEr — Col {ZFTJ} — 1“1-—(sz + G+ (Jﬁi)t ¢i)

iFTj represents the acceleration-dependent compo-
nent of the control force at the level of joirtfor the
segment

7.1 Computation of the matrix M;

The propagation of accelerations and forces among
the links of serial chain are given by:

Fj= Vi + P (58)
Equations (57)-(58) represent the simplified N-E al-
gorithm (with nonlinear terms being excluded) for the
serial chain.
Using the global notation (57) and (58) can be written
by the following equation system:

PLV; =H; Q; (59)

P Fi=1L;V; (60)

The determination of the matri¥1; expression is
based on arather unconventional decomposition of in-
ter body force of the form:

‘Fj = "H; "Fr; + ‘W, 'Fg, (61)

Where"st represents the constraint force.
Contrary to degrees of freedomof) we introduce
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degrees of constrainti¢c) notion (doc = 6 — dof). 7.2 Computation of vectorsC; et G;

For a joint withn; dof, *W; € R 6x(6=ni) _ _

In the Gough-Stewart platform case, these priection Ci 1+ G is computed by using the Newton-Euler re-

matrices in the constraint space are defined by: cursive algonthm con_slderl_ng fthe angular acceleratlon
to be zero. This algorithm is given by each segment

1st 2nd 3rd 4th doc

1 0 0 0 1. We determine the linear and angular velocities
0 0 0 0 and accelerations of segméinks, starting link
W, = 0 0 0 0 (62) j=1tolinkj =N
0 1 0 0 o Initialization : ‘wy = W = 0 and
0 0 1 0 “po = —g (g represents the gravity vector)
L0 0 0 L e Angular velocities :
1t gnd o grd gth pth goc twj = TR (fwja + foy 'y ;)
1 0 0 0 0 (74)
0 1 0 0 0 Where:
W = 0 0 1 0 0 — ig; = 1if the joint j of the segment
0 0 0 0 0 is a rotation, elsés; = 0.
0 0 0 1 0 — 17, represents rotation part of the pro-
. 0 0 0 0 1 ' ' ipr
‘ ‘ (63) jection matrix' H;: 'H; = l ihg, ]
The projection matrices?; and'W; are taken to sat- J
isfy the following orthogonality conditions: — JR;_, is the matrix expressing the ori-
P entation of thej — 1 frame withrespect
W;'Hj =0 (64) to thej frame.
ij ijt 4 sz iW; —U (65) e Angular accelerations:
Lyt e _ st e _ P . i 7. i i~ LT 1))
Hy Hy = "W W, =U (66) g =T Ry (Yoja + oy @y 'H 6
Orin a global form: (75)
WEH: — 0 (67) e Linear accelerations:
HiHL+ W, WE =T (68) Hoj = IRy Moy 1 + (1— Toy) 270, 1 ThY 10|
HEH = WEW, =U (69) + (Zw] + '@ "azj) ‘P;
; (76)
With W; = Diag {ij} = Wy i 0 € RIx12 . . .
0 Wy 2. We determine torques and forces of interaction
By multiplying (61) byiH]t-, and considering the rela- with the following recursive scheme, starting of
tions given by (64) and (66), we deduce the following link j =Ntolinkj =1
relationship: o _ _
L - zH]t iF; (70) e Initialization :*nxy1 = *fNn41 =0
J
Or in a global form: e Computation of the linkj center of mass
, linear acceleration belonging to the seg-
‘Fr=H.F (71) menti: ‘dc;:

Considering (71), (59) and (60), we also obtain: i i it i~ i~ \ i
g (71), (59) (60) vc; = 'vj+(wj+ w; wj) S; (77)
Fr=H,P; 'LV, =H,P; 'L, P H: Q; (72)
) ) ] e Computation of applied force at center of
A factorized expression of the matrix(; can be also mass of the linkj belonging to the segment
deduced from (56) and (72) as: i ifo
' J

M; =H! P T, U H; (73) ‘fe; = 'my Yo, (78)
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e Computation of applied torque at center of
mass of the linkj belonging to the segment
7 ""I’Lcj

incj = i[cj i(.:)j + i(fjj i[cj iwj (79)

e Computation of the vector giving the exer-
cised force by linkj — 1 to link j belonging
to the segment * f;

“fi=Rjt1 fjp1+ z'fcj (80)

e Computation of the vector giving the exer-
cised torque by link—1to link j belonging
to the segment *n;

"nj = Ripi'ngat P fittne +'5)" f,
(81)
e Computation ofC; + ‘G
’LC] + 'I'GJ = iO’j ""I’L; jRj_H Zh;

+ (1 - iO‘j) "'f; jRj_H Zhg

(82)

7.3 Computation of the contact forcesp;
The contact forces are computed from (55):

-t o —t
¢i=—(78) (MiQi+Ci+Gi)+(T3,) T
(83)

—t
Considering (27), the terr(ljgi) I'; of the previ-
ous equation can be expressed as:

—t iFZ
(Jﬁi) ri,=¢C¢ | 0 (84)
0
Where:
cos By, coS Y,  — Sir;fbi -2 ﬁbg_f 0
C;= sin vy, 0 COZ;} !
. cos By, sinyp, sin B,
—Ccos Y, sin By, — 7 ra—
(85)
Only the joint2 is active (linear joint). Thus:
v\t i
(«732-) ; =n;'Ty (86)

Equation (83) can be rewritten as:

¢ =— (jﬁi)_t (Mz Qi+ C; + Gi) +n; Ty

D;

(87)
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7.4 Dynamic behaviour of the mobile plat-
form

The dynamic behavior of the mobile platform is given
by the following relation:

Fni1=AcVni1 — (Go+Cc)  (88)
Where:

e Fn4 is the spatial force applied to the point
C, representing the contribution of the contact
forces¢; propagated in the poirt'

6 — 1
_ B;C _
x| % e

(89)

nN+1

Frvgr = g1

o Ao € R6%6 is the spatial inertia matrix of the
mobile platform:

Ic mc GC

AC = —
—-mc GC  mcU

1 (90)

— mg is the platform mass

— Ic € ®3*3 is the inertia tensor of the mo-
bile platform expressed in the mobile plat-
form center of mass, and projected ine the
fixed frameRy:

Ic=RIc, R (91)

— C¢ € RS is the vector of Coriolis and cen-
trigugal forces:
—& I
Cc = w~N+1 gvch+1 (92)
me wn+1 GC WN+1

— G¢ € RS is the vector of gravitational
forces:

Gc:[mcGC]g ©3)
mo U

g being the acceleration vector of gravity

7.5 Computation of active articular force
vector I

Substituting (87) in (89), we obtain:

Frni1 :26: ([ B?t ] (— ()" Di+niil“2)>

i=1
(94)

96 Issue 2, Volume 7, February 2008



WSEAS TRANSACTIONS on SYSTEMS

With:

(1% )<

Or by highlighting the vector

— ¢ .
% | BC n; Ty
Z?:l n; Ty

t
r:[6r2 5Py ATy 3Ty 2D 1r2}

and considering the inverse Jacobian matrix expres-
sion of the parallel robot:

6 —~ 1
Z(lB;JC ]nﬂl})zj‘tI‘ (96)

i=1
with:
— —
j_t — BﬁC Ng BlC st
Neg e ni

The inverse dynamic model of the parallel robot
is determined by inserting (96) into (94):

o (%) (002}

i=1
(97)

r=J ¢

8 Simulation of the inverse dynamic
model

To validate our inverse dynamic model of the Gough-
Stewart platform, a simulation under Matlab environ-
ment is presented.

The trajectory profile used for this study is the follow-
ing one:

e Fig. 3 shows the terminal tool Cartesian trajec-
tory for a constant orientatior(= 15°, § = 10°
andy = 5°)

e Fig. 4 and 5 show respectively the end effec-
tor cartesian velocity profile and the end effector
cartesian acceleration profile

e The used dynamic parameter for this simulation
are summarized in Table 1 (these parameters are
identical for all segments).

e The active joint positions are computed using in-
verse kinematic model given by the equation (3).
Fig. 6 shows the active joint position variation
along the trajectory.
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Figure 4: Cartesian velocity profile
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Figure 5: Cartesian acceleration profile.

e The active joint velocities are computed using

(9). Fig. 7 shows the active joint velocity evo-
lution along the trajectory.

e The active joint accelerations are computed using

(53). Fig. 8 shows the active joint acceleration
evolution along the trajectory.

e The active joint forces are computed using in-
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Table 1: Gough-Stewart platform dynamic parame-
ters.

Georges Fried, Karim Djouani, Diane Borojeni, Sohail Igbal
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Figure 8: Active joint accelerations along the trajec-

| Link | Mass | Inertia \
0.0002 0 0
1 0.5kg | Io, = 0  0.0038 0
0 0  0.0038
13 0 0
2 1 kg Ie,=107%| 0 a 0
0 0 a
with a = 6.25 + 830 (/% — 0.83)?
0375 0 0
Mobile | 3kg | Ie=| 0 01875 0
0 0  0.1875
platform

fory

60

5 10 15 20 25 30 35 40
trajectory

Figure 6: Active joint positions along the trajectory

de/dt (m sy

e I
] 5 10 15 20 25 30 3 40
trajectory

Figure 7: Active joint velocities along the trajectory

verse dynamic model given by (97). Fig. 9 shows

the active joint force evolution along the trajec-
tory.
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Figure 9: Active joint forced’; along the trajectory.

9 Conclusion

In this paper an inverse dynamic model of the Gough
Stewart platform has been presented. Parallel robot
is considered as a multi robot system moving a com-
mon load. The proposed approach, based on a global
formalism, highlights the inertia matrices!; of each
robot segment, expressed in the articular space, in a
factorized form. These factorizations allow to provide
a basis for the development of a parallel algorithm, to
minimize the computation time, for a dynamic control
under the real time constraint.
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