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Abstract:In this paper a new formulation of the inverse dynamic model of the Gough-Stewart platform is proposed.
This approach is based on the methodology developped by Khalil. The platform is considered as a multi robot
system moving a common load. Using a global formalism, the Jacobian and inertia matrices of each segment
are computed in a factorized form. This paper provides a basis for parallel algorithm development for a dynamic
control under the real time consraint. The proposed sheme is validated by the simulation results.

Key–Words:Parallel Robot, Gough-Stewart Platform, Kinematic Model, Jacobian Matrix, Inverse Dynamic Model

1 Introduction

The parallel architecture manipulators [1], [2], [3],
[4], [5] have some significant advantages in compar-
ison with serial robots, in particular, a greater com-
pactness and accuracy in the end effector position-
ing. These parallel robots are primarly used in the
fields where the considered processes require a high
degree of accuracy, high speeds or accelerations. Air-
craft simulator [1], teleoperation [6], machining tools
[7][8], and various other medical applications [9], [10]
constitute some of the many possible applications of
parallel robots.
The inverse dynamic model is essential for an effec-
tive robot control. In the field of parallel robots, many
approaches have been developped. The formalism of
d’Alembert has been used to obtain an analytical ex-
pression of the dynamics model [11] [12]. The princi-
ple of virtual works has been applied in [13] for solv-
ing the inverse dynamics of the Gough-Stewart plat-
form. Lagrangian formalism is applied in [10] for the
dynamics modeling of a parallel robot used like a hap-
tic interface for a surgical simulator. These various
approaches do not seem effective for a robot dynamic
control under the real time constraint. The computa-
tion time reduction can be acquired by the develop-
ment of approaches using recursive schemes, in par-
ticular, based on the Newton-Euler formulation. Thus
Gosselin [14] proposed the inverse dynamic model
of planar and spatial parallel robot, in which all the
masses and inertias are taken into account. This pro-
posed method is difficult to generalize for all the par-
allel architectures. Dasgupda et al [15] applied this
method to several parallel manipulators. Khan [16]

has developped a recursive algorithm for the inverse
dynamics. This method is applied to a3R planar par-
allel robot. Bi et al [17] use the Newton-Euler iterative
scheme for the articular force computation of a tripod
system. Khalil et al [18] proposed a general method
for the inverse and direct dynamic model computation
of parallel robots, wich is applied to several parallel
manipulators [19].
In the present paper, the inverse dynamic modeling of
the Gough-Stewart platform is presented. The paral-
lel robot is considered as a multi robot system with
k serial robots (thek parallel robot segments) mov-
ing a common load (the mobile platform). The pro-
posed approach use the methodology developped by
Khalil et al [18]. The purpose consists, using a global
formalism, in highlighting explicitly inertia matrices
expressed in articular and operational spaces. These
matrices are obtained in factorized form, with the aim
of parallel algorithm developement. The objective be-
ing the implementaton of a dynamic control under the
real time constraint.
This paper is organized as follows. In the following
section we describe the nomenclature and the used
notation. In section3, the Gough-Stewart platform
architecure is described. Development of the inverse
kinematic model and the inverse Jacobian matrix are
briefly described in sections4 and5. The kinematic
model of the segment is given in section6. In section
7, the inverse dynamic model of the Gough-Stewart
platform is developed. A simulation of this inverse
dynamic model is provided in section8 validating the
proposed approach.
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2 Preliminaries

In this section we define the required notation and pre-
liminaries are presented. The parallel robot is con-
sidered as a multi-robot system withk serial robots
(segments) moving a common load (mobile platform).
Fig. 1 shows the links, the frames and position vectors
for the segmenti (i = 1, . . . , k).

Figure 1: Links, frames and position vectors for the
segmenti

2.1 Nomenclature

2.1.1 Joint and link parameters

• iPj+1,j: position vector fromiOj to iOj+1

• k: number of segments

• iM : degrees of freedom (DOF)-number of seg-
menti

• iN : joint number of segmenti

• S: active joint number by link

• θa
i , θ̇a

i : position and velocity of active joint of the
segmenti

• iθ
p
j , iθ̇

p
j : position and velocity of passive jointj

of the segmenti

• iωj, ivj ∈ ℜ3: angular and linear velocity of link
j for the segmenti

2.1.2 Spatial quantities

• iHj: spatial-axis (map matrix) of jointj for the
segmenti. For instance, for a joint with2-DOF

(rotation aboutz-axis and translation aboutx-
axis), the matrixiHj ∈ ℜ6×2 is given by:

1st 2nd

iHj =




0 0
0 0
1 0
0 1
0 0
0 0




−DOF

x-axis rotation
y-axis rotation
z-axis rotation
x-axis translation
y-axis translation
z-axis translation

• iVj =

[
iωj
ivj

]
∈ ℜ6: spatial velocity of the

link j for the segmenti

• VN+1 =

[
ωN+1

vN+1

]
∈ ℜ6: spatial velocity of

the end effector

2.1.3 Global quantities

The following global quantities are defined forj =
iN to 1 or j = iM to 1 andi = k to 1

• Q̇i = Col
(

iθ̇j

)
∈ ℜ

iM : global vector of ar-
ticular coordinate velocity of the segmenti, tak-
ing into account passive and active joints

• Q̇ = Col
(

θ̇a
i

)
∈ ℜk: vector of generalized

coordinate velocity of the system

• Vi = Col
(

iVj

)
∈ ℜ6 iN : global vector of

spatial velocities for the segmenti

• Hi = Diag
(

iHj

)
∈ ℜ6 iN×

iM : global ma-
trix of spatial axis for the legi

2.2 General notation

With any vectorV =
[

Vx Vy Vz

]t
, a tensorṼ

can be associated whose representation in any frame
is a skew symmetrical matrix:

Ṽ =




0 −Vz Vy

Vz 0 −Vx

−Vy Vx 0




This tensorṼ has the properties that̃V = −Ṽ t and
Ṽ1V2 = V1 ∧ V2 i.e., is the vector cross-product of
V1 andV2.
A matrix V̂ associated to the vectorV is defined as:
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V̂ =

[
U Ṽ

0 U

]

and

V̂ t =

[
U 0

−Ṽ U

]

whereU and 0 stand for unit and zero matrices of
appropriate size.
In our derivation, we also make use of global matrices
and vectors which lead to a compact representation
of various factorizations. A bidiagonal block matrix
Pi ∈ ℜ6 iN×6 iN is defined as:

Pi =




U

−iP̂N−1 U 0

0 −iP̂N−2 U

0 0
...

...
0 0 0 −iP̂1 U




Note that, according to our notation,
iPj+1,j = iPj.
The inverse ofPi is a lower triangular block matrix
given by:

P−1
i =




U
iP̂N,N−1 U 0
iP̂N,N−2

iP̂N−1,N−2 U
...

...
iP̂N,1

iP̂N−1,1 . . . iP̂2,1 U




3 Parallel robot description

The robot considered in this paper is of fully parallel
type. This robot consists of6 segments linking a fixed
base to a mobile platform. The extremities of each leg
are fitted with a2-DOF universal joint at the base and
a3-DOF spherical joint at the platform (Fig. 2).
The universal joint center and the spherical joint cen-
ter are denoted byAi andBi (i = 1, · · · , 6), respec-
tively. The lenght of each legi is actuated using an
active prismatic joint.

The used notations to describe the parallel robot
are defined in the following.

• Rb is the absolute frame, tied to the fixed base
(see Fig. 2).Rb = (0, x, y, z).

• Rp is the mobile frame, tied to the mobile part.
Rp = (C, xp, yp, zp).

Figure 2: Parallel robot representation.

• Let O be the origin of the absolute coordinate
system

• Let C (or ON+1) be the origin of the mobile
frameRp, whose coordinates are in the absolute
frameRb:

OC/Rb
=
[

xc yc zc

]t

• Ai (or iO1)is the center of the joint between the
segmenti and the fixed base:

OAi/Rb
=
[

ax
i a

y
i az

i

]t

• Bi (or iON ) is the center of the joint between
the segmenti and the mobile part:

CBi/Rp
=
[

bx
i b

y
i bz

i

]t

• [R] is the rotation matrix ofrij elements (in the
RPY formalism), expressing the orientation of
the Rp mobile frame withrespect to theRb ab-
solute frame. The expression for this matrix is
given by:

[R] =




r11 r12 r13

r21 r22 r23

r31 r32 r33


 (1)

where:
r11 = cos β cos γ
r12 = − cos β sin γ
r13 = sin β
r21 = sin γ cos α + cos γ sin β sinα
r22 = cos α cos γ − sin α sin β sin γ
r23 = − cos β sin α
r31 = sin γ sin α − cos γ sin β cos α
r32 = sin α cos γ + cos α sin β sin γ
r33 = cos β cos α
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• α, β andγ are the Bryan angles [24], describing
the rotation of the mobile platform with respect
to the fixed base.

• X is the task coordinate vector.

X =
[

α β γ xc yc zc

]t

• Rbi
is the frame tied to the segmenti. Rbi

=
(Ai, xbi

, ybi
, zbi

).

• αbi
, βbi

, γbi
are the angles, in theRPY formal-

ism, describing frameRbi
rotation with respect

to the absolute frameRb.

•
[
bRbi

]
is the rotation matrix ofbrbijk

elements
(in theRPY formalism), expressing the orienta-
tion of theRbi

frame withrespect to theRb ab-
solute frame. The expression for this matrix is
given by:

[
bRbi

]
=




cβbi
cγbi

−cβbi
sγbi

sβbi

sγbi
cγbi

0
−cγbi

sβbi
sβbi

sγbi
cβbi




(2)

wherec represents the functioncos ands the function
sin

4 Inverse kinematic model

The inverse geometric model relates the active joint
variables (Q) to the operational variables which de-
fine the position and the orientation of the end effector
(X). This relation is given by the following equation:

θa
i = ‖AiBi‖ = ‖AiO/Rb

+OC/Rb
+[R]CBi/Rp

‖
(3)

Thus:
θa
i =

√
X2

i + Y 2
i + Z2

i (4)

where:

Xi = xc − ax
i + r11b

x
i + r12b

y
i + r13b

z
i

Yi = yc − a
y
i + r21b

x
i + r22b

y
i + r23b

z
i

Zi = zc − az
i + r31b

x
i + r32b

y
i + r33b

z
i

(5)

5 Determination of the inverse Jaco-
bian matrix

For parallel robots, the inverse Jacobian matrix com-
putation (J −1) stays, in principle, relatively easy.

J−1 matrix is obtained by the determination of point
Bi velocity [2][23]:

˙OBi = vN+1 + BiC ∧ ωN+1 (6)

The following relationship is verified:

θ̇a
i = ˙OBi ni (7)

Inserting (6) into (7), we obtain:

θ̇a
i = nivN+1 + ωN+1 (ni ∧ BiC) (8)

The inverse Jacobian matrix is written as:

J −1 =




(n6 ∧ B6C)t
nt

6

...
(n1 ∧ B1C)t

nt
1


 (9)

6 Kinematic Model of the segmenti

In this section, the segmenti is considered as a serial
robot. The pointBi is the robot terminal tool. This
serial robot have2 joints:

• A passive jointiθ1 with 2 degrees of freedom
(alongybi

etzbi
axis)

• An active joint iθ2 with 1 degree of freedom
(alongxbi

axis)

We define the following vectors:

• Qi, the articular coordinate vector of the seg-
menti:

Qi =
[

θa
i βbi

γbi

]t
(10)

• Q̇i, the articular velocity vector of the segment
i:

Q̇i =
[

θ̇a
i β̇bi γ̇bi

]t
(11)

• Q̈i, the articular acceleration vector of the seg-
menti:

Q̈i =
[

θ̈a
i β̈bi

γ̈bi

]t
(12)

The velocity propagation for a serial chain of in-
terconnected bodies is given by the following intrinsic
equation [20][21][22]:

iVj −
iP̂ t

j−1
iVj−1 = iHj

iθ̇j (13)

By using the matrixPi, (13) can be expressed in a
global form by:
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Pt
i Vi = HiQ̇i (14)

thus:
Vi =

(
Pt

i

)
−1

HiQ̇i (15)

The end effector spatial velocityVBi
is obtained by

the following relation:

VBi
− iP̂ t

N
iVN = 0 (16)

thus:
VBi

= iP̂ t
N

iVN (17)

Let βi ∈ ℜ6× iN be the matrix defined by

βi =
[

iP̂ t
N 0 · · · 0

]

The equation (17) becomes:

VBi
= βiVi (18)

Thus, inserting the expression ofVi from (15), we
obtain:

VBi
= βi

(
Pt

i

)
−1

HiQ̇i (19)

The spatial velocity of pointBi is defined by the
following relation:

VBi
= JBi Q̇i (20)

WhereJBi ∈ ℜ6×6 is the Jacobian matrix of the
segmenti expressed in the base frameRb.
Thus we deduce, considering (19), a factorized ex-
pression of the Jacobian matrixJBi :

JBi = βi P
−t
i Hi (21)

with:





βi =
[

iP̂2 0
]
∈ ℜ6×12

P−t
i =

[
U iP̂ t

1

0 U

]
∈ ℜ12×12

Hi =




0 0 0
0 0 0
0 0 0
1 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0




∈ ℜ12×3

(22)

By using (22) in (21), a new Jacobian matrix formula-
tion is obtained:

JBi =

[
bRbi

0
0 bRbi

]




0 0 0
0 1 0
0 0 1
1 0 0
0 0 θa

i

0 −θa
i 0




(23)

This expression can be rewritten as:

JBi =

[
J ω

Bi

J v
Bi

]
=




bRbi




0 0 0
0 1 0
0 0 1




bRbi




1 0 0
0 0 θa

i

0 −θa
i 0







(24)
The forward kinematic model of the segmenti is de-
fined as the relation linking the linear velocity of the
segmenti terminal tool (pointBi) to articular velocity
vectorQ̇i:

vBi
= J v

Bi
Q̇i = bRbi




1 0 0
0 0 θa

i

0 −θa
i 0


 Q̇i (25)

The inverse Jacobian matrix
(
J v

Bi

)
−1

is directly ob-
tained by:

(
J v

Bi

)
−1

=




1 0 0
0 0 − 1

θa
i

0 1
θa
i

0


 bRt

bi
(26)

Thus:

(
J v

Bi

)
−1

=




cos βbi
cos γbi

sin γbi
− cos γbi

sin βbi

−
sinβbi

θa
i

0 −
cos βbi

θa
i

−
cos βbi

sinγbi
θa
i

cos γbi
θa
i

sin γbi
sinβbi

θa
i




(27)
The second-order inverse kinematic model of the seg-
menti is given by:

Q̈i =
(
J v

Bi

)
−1

v̇Bi
+

d

dt

((
J v

Bi

)
−1
)

vBi
(28)

Thus:

Q̈i =
(
J v

Bi

)
−1 (

v̇Bi
− J̇ v

Bi
Q̇i

)
(29)

The linear velocity of the pointBi can be expressed
as a function of linear and angular velocities of the
mobile platform as:

vBi
= vN+1 + BiC ∧ ωN+1 (30)
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Thus, in a matrical form:

vBi
=
[

B̃iC U
]

VN+1 (31)

The linear acceleration of the pointBi is then given
by the following relation:

v̇Bi
=
[

B̃iC U
]

V̇N+1 +
[

˙̃
BiC 0

]
VN+1

(32)
Inserting (32) in (29), the second-order inverse kine-
matic model is finally obtained as:

Q̈i =
(
J v

Bi

)
−1 (

Bi V̇N+1 + Ḃi VN+1 − J̇ v
Bi

Q̇i

)

(33)
WhereBi =

[
B̃iC U

]

6.1 Computation of J̇ v
Bi

Q̇i

Considering the relation given in (25), we obtain:

J̇ v
Bi

=
d

dt


 bRbi




1 0 0
0 0 θa

i

0 −θa
i 0





 (34)

Thus:

J̇ v
Bi

= bṘbi




1 0 0
0 0 θa

i

0 −θa
i 0


+bRbi




0 0 0

0 0 θ̇a
i

0 −θ̇a
i 0




(35)
We define the following vectors:

• Translation velocity vector alongxbi
axis:

θ̇i =
[

θ̇a
i 0 0

]t

• Rotation velocity vector alongybi
axis:

β̇bi
=
[

0 β̇bi 0
]t

• Rotation velocity vector alongzbi
axis:

γ̇bi
=
[

0 0 γ̇bi

]t

and their associated skew symmetrical matrices:




˜̇
θi =




0 0 0

0 0 −θ̇a
i

0 θ̇a
i 0




˜̇
βbi

=




0 0 β̇bi

0 0 0

−β̇bi
0 0




˜̇γbi
=




0 −γ̇bi
0

γ̇bi
0 0

0 0 0




(36)

Taking into account theses vectors and matrices,
(35) becomes:

J̇ v
Bi

= bṘbi




1 0 0
0 0 θa

i

0 −θa
i 0


− bRbi

˜̇
θi (37)

bRbi
have been defined as the rotation matrix express-

ing the orientation of thei Rbi frame withrespect to
the Rb absolute frame. This rotation matrix can be
decomposed into product of two matrices as:

bRbi
= Rβbi

Rγbi
(38)

Thus, we deduce:

bṘbi
= Ṙβbi

Rγbi
+Rβbi

Ṙγbi
= ˜̇

βbi
Rβbi

Rγbi︸ ︷︷ ︸
bRbi

+Rβbi

˜̇γbi
Rγbi

(39)
Inserting the relation given by (39) in (37), we deduce
a new expression of the matriẋJ v

Bi
as:

J̇ v
Bi

=

(
˜̇
βbi

bRbi
+ Rβbi

˜̇γbi
Rγbi

)



1 0 0
0 0 θa

i

0 −θa
i 0


−bRbi

˜̇
θi

(40)
Considering (25) and (31) following relation can be
deduced:

Q̇i =
(
J v

Bi

)
−1 [

B̃iC U
]

VN+1 (41)

Thus by inserting (26) :

Q̇i =




1 0 0
0 0 − 1

θa
i

0 1
θa
i

0


 bRt

bi

[
B̃iC U

]
VN+1

(42)
The expression oḟJ v

Bi
Q̇i is determined from (40) and

(42) as:

J̇ v
Bi

Q̇i =

(
˜̇
βbi

bRbi
+ Rβbi

˜̇γbi
Rγbi

)
bRt

bi
Bi VN+1

+bRbi

˜̇θi

(θa
i )

2

bRt
bi

Bi VN+1

(43)
Thus:

J̇ v
Bi

Q̇i = Ψi Bi VN+1 (44)

Where:

Ψi =
˜̇
βbi

+ Rβbi

˜̇γbi
Rt

βbi
+ bRbi

˜̇
θi

(θa
i )2

bRt
bi

(45)
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6.2 Computation of ˙̃
BiC

The rotation matrixR expressing the orientation of
the Rp mobile frame withrespect to theRb absolute
framee can be defined by the following matrical prod-
uct:

R = Rα Rβ Rγ (46)

We define the following vectors:

• Rotation velocity vector alongx axis:

α̇ =
[

α̇ 0 0
]t

• Rotation velocity vector alongy axis:

β̇ =
[

0 β̇ 0
]t

• Rotation velocity vector alongz axis:

γ̇ =
[

0 0 γ̇
]t

And their associated skew symmetrical matrices:




˜̇α =




0 0 0
0 0 −α̇

0 α̇ 0




˜̇
β =




0 0 β̇

0 0 0

−β̇ 0 0




˜̇γ =




0 −γ̇ 0
γ̇ 0 0
0 0 0




(47)

B̃iC can be also defined by:

B̃iC =
˜(

R BiC/Rp

)
= R B̃iC/Rp

Rt (48)

Or:

B̃iC = (Rα Rβ Rγ) B̃iC/Rp
(Rα Rβ Rγ)t (49)

Thus:

˙̃
BiC = Rαβγ R B̃iC/Rp

Rt

︸ ︷︷ ︸
B̃iC

+ R B̃iC/Rp
Rt

︸ ︷︷ ︸
B̃iC

Rt
αβγ

(50)
With:

Rαβγ = ˜̇α + Rα
˜̇
β Rt

α + Rα Rβ
˜̇γ Rt

β Rt
α (51)

We finally obtain:

˙̃
BiC = Rαβγ B̃iC + B̃iC Rt

αβγ (52)

The second-order inverse kinematic model can be ex-
pressed by inserting (44) and (52) in (33):

Q̈i =
(
J v

Bi

)
−1 (

Bi V̇N+1 + Ai VN+1

)
(53)

Where:

Ai =
[

(Rαβγ − Ψi) B̃iC + B̃iC Rt
αβγ −Ψi

]

(54)

7 Inverse dynamic model

The equation describing the dynamic behaviour of a
closed loop system, in the articular space, is given by
the following equation:

Mi Q̈i + Ci + Gi +
(
J v

Bi

)t
φi = Γi (55)

Or:
Mi Q̈i = i

FT (56)

Where

i
FT = Col

{
iFTj

}
= Γi−

(
Ci + Gi +

(
J v

Bi

)t
φi

)

iFTj
represents the acceleration-dependent compo-

nent of the control force at the level of jointj for the
segmenti

7.1 Computation of the matrix Mi

The propagation of accelerations and forces among
the links of serial chain are given by:

iV̇j = iP̂ t
j−1

iV̇j−1 + iHj
iθ̈j (57)

iFj = iIj
iV̇j + iP̂j

iFj+1 (58)

Equations (57)-(58) represent the simplified N-E al-
gorithm (with nonlinear terms being excluded) for the
serial chain.
Using the global notation (57) and (58) can be written
by the following equation system:

Pt
i V̇i = Hi Q̈i (59)

Pi Fi = Ii V̇i (60)

The determination of the matrixMi expression is
based on a rather unconventional decomposition of in-
ter body force of the form:

iFj = iHj
iFTj

+ iWj
iFSj

(61)

WhereiFSj
represents the constraint force.

Contrary to degrees of freedom (dof ) we introduce
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degrees of constraint (doc) notion (doc = 6 − dof ).
For a joint withni dof , iWj ∈ ℜ 6×(6−ni)

In the Gough-Stewart platform case, these prjection
matrices in the constraint space are defined by:

iW1 =

1st 2nd 3rd 4th doc


1 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




(62)

iW2 =

1st 2nd 3rd 4th 5th doc


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1




(63)
The projection matricesiHj andiWj are taken to sat-
isfy the following orthogonality conditions:

iW t
j

iHj = 0 (64)

iHj
iHt

j + iWj
iW t

j = U (65)

iHt
j

iHj = iW t
j

iWj = U (66)

Or in a global form:

Wt
i Hi = 0 (67)

Hi H
t
i + Wi W

t
i = U (68)

Ht
i Hi = Wt

i Wi = U (69)

With Wi = Diag
{

iWj

}
=

[
iW2 0
0 iW1

]
∈ ℜ9×12

By multiplying (61) byiHt
j , and considering the rela-

tions given by (64) and (66), we deduce the following
relationship:

iFTj
= iHt

j
iFj (70)

Or in a global form:

i
FT = Ht

i F (71)

Considering (71), (59) and (60), we also obtain:

i
FT = Ht

i P
−1
i Ii V̇i = Ht

i P
−1
i Ii P

−t
i Hi Q̈i (72)

A factorized expression of the matrixMi can be also
deduced from (56) and (72) as:

Mi = Ht
i P

−1
i Ii P

−t
i Hi (73)

7.2 Computation of vectorsCi et Gi

Ci + Gi is computed by using the Newton-Euler re-
cursive algorithm considering the angular acceleration
to be zero. This algorithm is given by each segmenti:

1. We determine the linear and angular velocities
and accelerations of segmenti links, starting link
j = 1 to link j = N

• Initialization : iω0 = iω̇0 = 0 and
iv̇0 = −g (g represents the gravity vector)

• Angular velocities :

iωj = jRj−1

(
iωj−1 + iσj

ihr
j

iθ̇j

)

(74)
Where:

– iσj = 1 if the joint j of the segmenti
is a rotation, elseiσj = 0.

– ihr
j represents rotation part of the pro-

jection matrixiHj: iHj =

[
ihr

j
ih

p
j

]

– jRj−1 is the matrix expressing the ori-
entation of thej−1 frame withrespect
to thej frame.

• Angular accelerations:

iω̇j = jRj−1

(
iω̇j−1 + iσj

iω̃j−1
ihr

j
iθ̇j

)

(75)

• Linear accelerations:

iv̇j = jRj−1

[
iv̇j−1 +

(
1 − iσj

)
2 iω̃j−1

ih
p
j

iθ̇j

]

+
(

i ˜̇ωj + iω̃j
iω̃j

)
iPj

(76)

2. We determine torques and forces of interaction
with the following recursive scheme, starting of
link j = N to link j = 1

• Initialization : inN+1 = ifN+1 = 0

• Computation of the linkj center of mass
linear acceleration belonging to the seg-
menti: iv̇Cj

:

iv̇Cj
= iv̇j +

(
i ˜̇ωj + iω̃j

iω̃j

)
iSj (77)

• Computation of applied force at center of
mass of the linkj belonging to the segment
i: ifCj

ifCj
= imj

iv̇Cj
(78)
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• Computation of applied torque at center of
mass of the linkj belonging to the segment
i: inCj

inCj
= iICj

iω̇j + iω̃j
iICj

iωj (79)

• Computation of the vector giving the exer-
cised force by linkj−1 to link j belonging
to the segmenti: ifj

ifj = jRj+1
ifj+1 + ifCj

(80)

• Computation of the vector giving the exer-
cised torque by linkj−1 to link j belonging
to the segmenti: inj

inj = jRj+1
inj+1+iP̃j

ifj+
inCj

+iS̃j
ifCj

(81)

• Computation ofiCj + iGj

iCj + iGj = iσj
int

j
jRj+1

ihr
j

+
(
1 − iσj

)
if t

j
jRj+1

ih
p
j

(82)

7.3 Computation of the contact forcesφi

The contact forces are computed from (55):

φi = −
(
J v

Bi

)
−t (

Mi Q̈i + Ci + Gi

)
+
(
J v

Bi

)
−t

Γi

(83)

Considering (27), the term
(
J v

Bi

)
−t

Γi of the previ-
ous equation can be expressed as:

(
J v

Bi

)
−t

Γi = Ci




iΓ2

0
0


 (84)

Where:

Ci =




cos βbi
cos γbi

−
sinβbi

θa
i

−
cos βbi

sinγbi
θa
i

sin γbi
0

cos γbi
θa
i

− cos γbi
sin βbi

−
cos βbi

θa
i

sinγbi
sin βbi

θa
i




(85)
Only the joint2 is active (linear joint). Thus:

(
J v

Bi

)
−t

Γi = ni
iΓ2 (86)

Equation (83) can be rewritten as:

φi = −
(
J v

Bi

)
−t (

Mi Q̈i + Ci + Gi

)

︸ ︷︷ ︸
Di

+ni
iΓ2

(87)

7.4 Dynamic behaviour of the mobile plat-
form

The dynamic behavior of the mobile platform is given
by the following relation:

FN+1 = ΛC V̇N+1 − (GC + CC) (88)

Where:

• FN+1 is the spatial force applied to the point
C, representing the contribution of the contact
forcesφi propagated in the pointC:

FN+1 =

[
nN+1

fN+1

]
=

6∑

i=1

[
B̃iC

t

U

]
φi

(89)

• ΛC ∈ ℜ6×6 is the spatial inertia matrix of the
mobile platform:

ΛC =

[
IC mC G̃C

−mC G̃C mC U

]
(90)

– mC is the platform mass

– IC ∈ ℜ3×3 is the inertia tensor of the mo-
bile platform expressed in the mobile plat-
form center of mass, and projected ine the
fixed frameRb:

IC = R IC/Rm
Rt (91)

– CC ∈ ℜ6 is the vector of Coriolis and cen-
trigugal forces:

CC =

[
−ω̃N+1 IC ωN+1

mC ω̃N+1 G̃C ωN+1

]
(92)

– GC ∈ ℜ6 is the vector of gravitational
forces:

GC =

[
mC G̃C

mC U

]
g (93)

g being the acceleration vector of gravity

7.5 Computation of active articular force
vector Γ

Substituting (87) in (89), we obtain:

FN+1 =
6∑

i=1

([
B̃iC

t

U

] (
−
(
J v

Bi

)
−t

Di + ni
iΓ2

))

(94)
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With:

6∑

i=1

([
B̃iC

t

U

]
ni

iΓ2

)
=

[ ∑6
i=1 B̃iC

t
ni

iΓ2∑6
i=1 ni

iΓ2

]

(95)
Or by highlighting the vector

Γ =
[

6Γ2
5Γ2

4Γ2
3Γ2

2Γ2
1Γ2

]t

and considering the inverse Jacobian matrix expres-
sion of the parallel robot:

6∑

i=1

([
B̃iC

t

U

]
ni

iΓ2

)
= J−t

Γ (96)

with:

J−t =

[
B̃6C

t
n6 · · · B̃1C

t
n1

n6 · · · n1

]

The inverse dynamic model of the parallel robot
is determined by inserting (96) into (94):

Γ = J t

[
FN+1 +

6∑

i=1

([
B̃iC

t

U

] {
−
(
J v

Bi

)
−t

Di

})]

(97)

8 Simulation of the inverse dynamic
model

To validate our inverse dynamic model of the Gough-
Stewart platform, a simulation under Matlab environ-
ment is presented.
The trajectory profile used for this study is the follow-
ing one:

• Fig. 3 shows the terminal tool Cartesian trajec-
tory for a constant orientation (α = 15◦, β = 10◦

andγ = 5◦)

• Fig. 4 and 5 show respectively the end effec-
tor cartesian velocity profile and the end effector
cartesian acceleration profile

• The used dynamic parameter for this simulation
are summarized in Table 1 (these parameters are
identical for all segments).

• The active joint positions are computed using in-
verse kinematic model given by the equation (3).
Fig. 6 shows the active joint position variation
along the trajectory.

Figure 3: Cartesian trajectory of the end effector.

Figure 4: Cartesian velocity profile

Figure 5: Cartesian acceleration profile.

• The active joint velocities are computed using
(9). Fig. 7 shows the active joint velocity evo-
lution along the trajectory.

• The active joint accelerations are computed using
(53). Fig. 8 shows the active joint acceleration
evolution along the trajectory.

• The active joint forces are computed using in-
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Table 1: Gough-Stewart platform dynamic parame-
ters.

Link Mass Inertia

1 0.5 kg IC1
=




0.0002 0 0
0 0.0038 0
0 0 0.0038




2 1 kg IC2
= 10−4




13 0 0
0 a 0
0 0 a




with a = 6.25 + 830 (θa
i − 0.83)2

Mobile 3 kg IC =




0.375 0 0
0 0.1875 0
0 0 0.1875




platform

Figure 6: Active joint positions along the trajectory

Figure 7: Active joint velocities along the trajectory

verse dynamic model given by (97). Fig. 9 shows
the active joint force evolution along the trajec-
tory.

Figure 8: Active joint accelerations along the trajec-
tory

Figure 9: Active joint forcesΓi along the trajectory.

9 Conclusion

In this paper an inverse dynamic model of the Gough
Stewart platform has been presented. Parallel robot
is considered as a multi robot system moving a com-
mon load. The proposed approach, based on a global
formalism, highlights the inertia matricesMi of each
robot segment, expressed in the articular space, in a
factorized form. These factorizations allow to provide
a basis for the development of a parallel algorithm, to
minimize the computation time, for a dynamic control
under the real time constraint.
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