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Abstract: This work solves a practical decentralized track fusion problem where the global fusion center can 
not receive the real-time covariance information from local systems because of the limited communication 
bandwidth. The algorithms of track-to-track fusion were revisited, especially the recent new researching results, 
and the proper algorithms for the linear systems with incomplete covariance information were analyzed. The 
approximate optimal track fusion (AOTF) algorithm was proposed for steady or “slowly varying” system based 
on the optimal decentralized track fusion algorithm (OTF). This new designed algorithm has preferable 
performance than the maximum-likelihood-based fusion methods either in tracking error or in computational 
load, at the same time, the communication bandwidth needed is very small. Simulation results confirm its 
effectiveness. 
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1 Introduction 
The use of multiple sensors for state estimation can 
lead to better quality estimates than when a single 
sensor is used, such as reported by [1], [2] and [3] 
etc. Taking into consideration the computational 
load sharing and the survivability and flexibility of 
the system, the distributed architecture becomes an 
attractive alternative. The problem of track-to-track 
association and track fusion has been considered in 
the literature where the fusion center has access to 
multiple track estimates and the associated 
estimation error covariance from local sensors, as 
well as their cross covariance. Due primarily to the 
communication constraints in real systems, some 
legacy trackers may only provide the local track 
estimates to the fusion center without any 
covariance information. In some cases, the local 
(sensor-level) trackers operate with fixed filter gain 
and do not have any self assessment of their 
estimation errors. In other cases, the network 
conveys a coarsely quantized root mean square 
(RMS) estimation error of each local tracker. Thus 
the fusion center needs to solve the track association 
and fusion problem with incomplete data from 
legacy local trackers.  

From [4] we can see that if there is no covariance 
information than the optimal fusion result can not be 
gotten. Literature [5] first considered the 
approximation of the covariance of the estimation 
error from a legacy tracker with a fixed filter gain, 
and handled the cross covariance information by 
approximating this information through a modified 
Lyapunov equation. The fusion rule used is the Bar-
Shalom/Campo combination (BC) fusion algorithm 
which is proved to be the maximum-likelihood 
(ML) estimator by [6] and [7]. 

In our work, we also meet the problem just like 
[5]. In order to save the bandwidth of wireless 
communication, no other or little information was 
transmitted to the center by local systems except for 
state estimates (tracks). We studied the track fusion 
algorithms up to now (assume the association has 
been completed), and proposed an approximate 
optimal track fusion (AOTF) algorithm based on the 
optimal track fusion (OTF) algorithm for steady or 
“slowly varying” system. Here “slowly varying” 
mainly means the asymptotical stability or very 
small variety of the tracking error covariance. 

The rest of the paper is organized as follows. 
Section 2 revisits the track fusion problem. Section 
3 presents general algorithms for fusing N  tracks. 
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The comparison of Kalman filter (KF) and three 
distributed estimators with four sensors for a 
simulated target tracking is presented in Section 4. 
Concluding remarks are provided in Section 5. 
 
 
2 Track-to-Track Fusion Algorithms 
with Local Tracks 
Consider a linear dynamical system, such as a 
moving target,  
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where  is the system state at time k ,  is the 
state transition matrix,  is the measurement 
matrix,  is the measurement,  is the process 
noise matrix,  and  are process noise and 
measurement noise, the covariance are  and , 
respectively. 
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Assume we have N  local tracks and the state 
estimates at time k  from the local centers i  and  

are the n -vectors  and , respectively. For 
steady state analysis, the time index may be dropped 
in the sequel. Without loss of generality, we denote 
the state estimates as  and 
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iX̂ jX̂ , with covariance 
iiP , jjP , and cross-covariance ijP , respectively. 

Denote the true state of the target as X  and assume 
the estimates from all tracks are purely target 
originated (no misassociations at any level). As 
summarized and discussed in [7], under Gaussian 
assumption, the simple convex combination (CC) 
fusion algorithm and the Bar-Shalom/Campo (BC) 
state vector combination are the two main state 
vector fusion algorithms. Track fusion algorithms 
are also compared using an analytical method in [8], 
and based of [8] we also enumerated the recent new 
researching results of the track fusion algorithms. 
 
 
2.1 Simple Convex Combination Algorithm 
(CC) 
The simple convex combination algorithm is one of 
the simplest state vector fusion algorithms as it is 
very simple to implement. This method assumes that 
the cross covariance between two state estimates, 

 and iX̂ jX̂ , can be ignored and also that each 
individual tracks are independent. The combined 
state X̂  and its covariance P  are given by: 
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The (state estimation), (estimated 
covariance) should be transferred to the fusion 
center of this algorithm. 
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2.2 Bar-Shalom/Campo Algorithm (BC) 
The individual tracks are not totally independent in 
the real world. The Bar-Shalom/Campo state vector 
combination algorithm was developed based on the 
track correlation on the same process noise [9]. This 
method is proved to be the maximum likelihood 
(ML) estimator by [6] and [7], not MMSE meaning 
because no prior information is used here. The 
combined state X̂  and its covariance P  of the 
multiple tracks are given by: 
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where , the 
superscript  denotes the transpose of the vector or 
matrix, 
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The (state estimation), (estimated 

covariance) and (filter gain) should be 
transferred to the fusion center of this algorithm. 
And also the accuracy information of each local 
system, i.e. state transition matrix , process noise 
item  and , measurement matrix , should 
also be known by the fusion center. 
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2.3 Covariance Intersection Algorithm (CI) 
The paper [10] addressed the problem of estimation 
when the cross-correlation in the errors between 
different random variables are unknown and 
proposed the covariance intersection algorithm. The 
CI algorithm can be treated as a weighted form of 
the simple convex combination in a state estimation. 
This method is suitable for state vector fusion when 
there is unknown correlation among the tracks. The 
combined state X̂  and its covariance P  are given 
by ( 2=N  in [10]): 
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where each  is a number that lies between 0 and 
1. Usually, the  is determined by minimizing the 
determinant or trace of the combined state 
covariance 

iω
iω

P . Note that this method cannot be 
applied to the case when individual tracks have the 
same error covariance P  as the minimized 
functions are independent of the  shown in (5). 
The CI algorithm requires  to be optimized at 
every step by minimizing the trace or the 
determinant of 

iω
iω

P . 
[11] considered the case of five spacecraft with a 

decentralized estimation scheme where each 
spacecraft shares its own estimates with the rest of 
the fleet using a ring-type communication 
architecture.  It is proved by [12] that the global 
optimal solution is actually given by the CI 
algorithm, which conducts the search only along a 
one-dimensional curve in the n-squared-dimensional 
space of combination gains. 

In our opinion to say strictly, the CI algorithm is 
not the global optimal solution but only the 
estimator in approximate ML meaning. From [10], 
[11] and [12] we can see that: i) the consistent 
estimate of fusion covariance is the upper boundary 
of the true covariance, ii) even when the cross 
covariance is known, the CI estimates are equal to 
the BC estimates, iii) no prior information is used 
here also. 

The CI algorithm requires  to be optimized at 
every step, for more than two local tracks, the 
complexity of this algorithm will be increased 
obviously. The 

iω
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ˆ (state estimation) and 

(estimated covariance) should be transferred to 
the fusion center of this algorithm. A comparison 
between CC, BC and CI algorithms was described 
in [13]. 

ii
kkP |

 
 
2.4 General Fusion Algorithm for 
Asynchronous Tracks (GF) 
[14] solves a practical sensor to sensor track fusion 
problem when the sensors used are asynchronous, 
and tracks may arrive out-of-sequence. A new 

general fusion algorithm was proposed which is also 
suitable for sequence tracks. Using the new solution, 
sensor to sensor track fusion can be performed 
without the additional computational cost of track 
synchronization. In addition, the user can include 
latent and out-of-sequence data in the fusion process 
without filter reinitialization or backtracking. But 
the optimality of minimize mean square error 
(MMSE) meaning is not global because no prior 
information is used. It is shown from the special 
case of Bar-Shalom/Campo fusion rule which is 
proved to be the maximum likelihood (ML) 
estimator by [6] and [7]. We omit the complex 
fusion formula in order to saving space. The i

kkX |
ˆ , 

 and  should be transferred to the fusion 
center of the algorithm of [14]. And also the 
accuracy information of each local system, i.e. state 
transition matrix , process noise item  and 

, measurement matrix  and noise item , 
should also be known by the fusion center. 

ii
kkP |

i
kK

i
kF i

kG
i
kQ i

kH i
kR

 
 
2.5 Optimal Track Fusion Algorithm (OTF) 
From the optimal centralized measurements fusion 
algorithm, the optimal decentralized track fusion 
algorithm can be derived with sensor noises 
uncorrelated. The combined state X̂  and its 
covariance P  are given by: 
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(6) 
The cross covariance and the prior information 

are all considered in this algorithm. It is actually 
global optimal. The proof can be found in many 
books such as [7]. The , ,  and  
should be transferred to the fusion center of the 
algorithm. 
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The new paper [15] presented a distributed 
Kalman filtering fusion formula for linear dynamic 
systems with sensor noises cross-correlated, and 
proved that under a mild condition the fused state 
estimate is equivalent to the centralized Kalman 
filtering using all sensor measurements, therefore, it 
achieves the best performance. 
 
 
3 Track Fusion with Incomplete 
Covariance Information 
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There are always many kinds of data sources in 
tracking of air or space targets, such as ground radar 
datum, space satellite measurements and inertial 
measurements of the target itself, etc. The 
information is transferred to the center processor or 
between each other by wireless communication 
generally. In order to save the bandwidth of wireless 
communication the error information especially 
covariance and cross covariance are always ignored. 
We studied this problem distinguishing four 
situations. 
 
 
3.1 Without Any Information 
In this situation no information can be used except 
for local tracks, no any prior information also. The 
fusion is very simple. 
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3.2 With Prior Error Information 
When the local tracking variance , e.g. of the 
position error, is known by prior statistical result, 
then the weighted form of the simple convex 
combination can be 
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3.3 For Steady System without 
Covariance Received 
We know that many systems can reach steady state 
or at least approximate steady state. This 
characteristic can be used in the fusion center. As 
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We can solve the equation by recursive method 

off line. So the covariance of each sensor can be 
computed. Of course, the local models should be 
known or simulated by the center and it is preferable 
for the local systems to choice the same linear time-
invariant models. 

From the second equation of (6) the covariance 
recursive equation of the fusion center is 
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So the steady global covariance can be calculated 
also. 

When the global covariance is gotten, we can 
estimate the global states vector by the first equation 
of (6), which is 
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3.4 With Intermittent Covariance 
Information Update 
If the local system is “slowly varying” and the 
covariance varies obviously from the last one, the 
local center can transfer the new covariance to the 
fusion center intermittently. When received a new 
covariance, the fusion center should update its 
global covariance with (12) correspondingly, and 
then continue to estimate the states using (13). 

A threshold such as the variable quantity of 
 can be defined to determine whether to 

retransfer the local covariance by the local systems, 
where 

Ti
kkP ee |=δ

n]111[ ,,,e = . 
 
 

We call the last two algorithms for steady system 
and “slowly varying” system as the approximate 
optimal track fusion (AOTF) algorithms.  They are 
all based on the OTF algorithm with sensor noises 
uncorrelated. 

In this section we studied the problem of track 
fusion with incomplete real-time input information 
distinguishing four situations. Using the AOTF 
algorithms we can get approximate global optimal 
performance and the communication bandwidth is 
saved obviously. Furthermore survivability and 
flexibility of the fusion center is stronger. When one 
local track was lacked the fusion center only need to 
update the global covariance and continue to 
estimate omitting the corresponding track. 

The complexity of the proposed AOTF algorithm 
is reduced than the BC, CI and GF algorithms. The 
later three algorithms need to calculate the cross 
covariance or weights in every fusing step, but the 
former only need to update the covariance 
occasionally. 

If the system is unsteady or “quickly varying”, 
then the AOTF algorithm may not work well. We 
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can consider the methods of 3.1 and 3.2 if the 
communication bandwidth is still limited. 
 
 
4 Simulation 
As the performance of CC, BC and CI has been 
compared in [13], and GF algorithm is near to BC, 
we only compare KF, BC, OTF with AOTF in this 
section. The method for steady system without 
covariance received is used here (method 3.3 in 
section 3), which means the fusing covariance is 
fixed. 

The sensor measurements use the Cartesian 
coordinate-system (CS). There are four sensors in 
this simulation. In order to make the comparison 
easily, coordinate conversion is omitted. The 
stationary Kalman Filter (KF) was used to track the 
position of a particular stationary space target by the 
sensors. Hence, the experimental results are based 
on 3D simulation. The simulation results show the 
mean position errors of fused tracks over a number 
of Monte Carlos runs. The tracking model of 
approximate “current” model which we proposed in 
[16] was used here (a time-invariant system, no use 
of the adaptive rule). The single coordinate dynamic 
system is 

kkkk wa
T

T
T

X
T

TT
TTT

X +
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

=+

α
α
α

α
α
α

2
6

100
210

621
2

3

2

32

1 /
/

/
//

 

(14) 
In this simulation, the three coordinates are 

tracking simultaneously. The state vector is 
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The state transition matrix is 
)diag( CCC

i FFFFF ,,==                          (16) 
The process noise matrix of single coordinate 

dynamic system is 
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where 10.=α , interval s, 1=T 3=σ m/s2. 
The measurement matrix is 
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4.1 Scenario Generation 
The scenario of one target moving in the 3D spaces 
tracked by four sensors was simulated. The target 
moves in x-y plane with strong maneuvering mode 
and in z direction with uniform motion 
(nonmaneuvering mode). The trajectory in x-y plane 
is shown in Fig.1 which simulates from 0-400s. 50-
70s, 180-198s and 330-398s constantly turns right 
with 9º/s angle velocity, 100-125s and 250-272s 
constantly turns left with 7º/s angle velocity, other 
time moves in straight line with constant velocity 
(uniform motion). The initial state is 
[ ]T0 30,- 20000, 0, 250, 10000, 0, 200, 10000, . 

The standard deviations (square root of variance) 
of measurement noise of the four sensors are shown 
in Table 1. 
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Fig.1: Target trajectory in x-y plane 

 

Table 1. The standard deviation of measurement 
noise of the four sensors (m) 

 Sensor 1 Sensor 2 Sensor 3 Sensor 4
x 100 100 200 200 
y 100 100 300 300 
z 100 100 300 300 

 
 
4.2 Simulation Results 
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The root mean square (RMS) of x, y and z position 
error of 100 Monte Carlo runs is shown in Fig. 2, 
Fig. 3 and Fig. 4 respectively. The RMS of BC is 
plotted with dot line, of OTF with dash-dot line, and 
of AOTF with solid line. Table 2 gives the means of 
the RMS over all simulation time. Table 3 gives the 
computational load of each algorithm with 100 
Monte Carlo runs. In the two tables we also give the 
performance of Kalman filter tracking by the sensor 
1, but not plot in the figure because of the obvious 
difference between KF and the other three. We can 
compare the performance of BC, OTF and AOTF 
more clearly from the figures. 

From the three figures and Table 2 we can see 
that: i) the performance of OTF is true optimal and 
the fusion algorithms are better than the single 
Kalman filter, ii) in x and y direction AOTF is better 
than BC, in z direction the two algorithms are near 
to each other, iii) when the target maneuvering or 
the model being not proper the tracking error and 
fusing error will increase. The difference between 
different directions is due to the maneuverability 
and the matching performance of the model used 
with the system motion mode. 

From Table 3 we can see that the computational 
load of the new AOTF algorithm is the smallest, 
even lower than Kalman filter. It is obvious that the 
main inverse matrix calculating needs only once 
with the method of 3.3 in section 3. If we take the 
method of 3.4 in section 3, the computational load 
will increase, which lies on the covariance updating 
rate. 
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Fig.3: RMS of y position 
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Fig.4: RMS of z position 
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Fig.2: RMS of x position 

 
 

Table 2. The means of RMS of the position over all 
time (m) 

 KF1 BC OTF AOTF 
x 81.0256 69.7688 62.2479 65.9214 
y 80.2867 67.6485 63.5436 66.5729 
z 67.9831 57.1964 56.1520 57.4630 

 
In this section we use the method of 3.3 in 

section 3 which means the fusing covariance is 
steady here. It is not difficult to believe that the 

Table 3. Computational load (s) 
 KF1 BC OTF AOTF 

time 4.234 27.814 6.092 2.231 
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method of 3.4 in section 3 can fuse better than that 
of 3.3, but the computational load will also increase. 
Considering the ultimate situation of 3.4, when the 
local covariance can transmit to the center in real 
time the AOTF is equivalent to the OTF. 
 
 
5 Conclusion 
The decentralized track-to-track fusion algorithms 
were reviewed in this paper, and the performance is 
analyzed. The new proposed AOTF algorithm is 
effective for “slowly varying” system and superior 
to the ML methods, and can be used in aerospace 
targets tracking. Different from the CI algorithm this 
new algorithm needs to use the system state 
transition matrix, so the performance is relative to 
the dynamic model. There is no need for 
consistency of global model and local model, but it 
is preferable if possible. If the system is unsteady or 
“quickly varying”, then the AOTF algorithm may 
not work well. We can consider the methods of 3.1 
and 3.2 in section 3 if the communication bandwidth 
is still limited. 
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