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Abstract: This paper presents a new approach for the determination of3 − RPR planar parallel robot assembly
modes. In this approach, the parallel robot is considered as a multi robot system. The segments are then regarded
as serial robots moving a common load. The proposed approach is based on a parallel robot Jacobian matrix
factorization. This factorization is an extension of global formalism developed by Fijany. This approach allows
to determine several parallel robot Jacobian matrices, which are used for the assembly mode determination of a
3 − RPR planar parallel robot. Effectiveness of the proposed method is demonstrated by the simulation.
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1 Introduction

During past years parallel robot concept [1], [2], [3],
[4], [5], proved to be an efficient solution to the accu-
racy problem in the end effector positioning, met on
the serial manipulators. Parallel robots are primarily
used in the applications where high accuracy, rigid-
ity, and heavy load carrying capabilities are of fun-
damental importance. The teleoperation [6], machin-
ing tools [7], [8], and various other medical applica-
tions [9], [10] constitute some of the many possible
applications of parallel robots. Kinematic modeling
is an important problem of the robotics and particu-
lary for the manipulator study. In the parallel robot
case, the inverse kinematic model is usually straight-
forward for any parallel manipulator [2], [11]. On the
other hand, the forward kinematics computation for
a parallel robot is a complex problem. This forward
kinematic model consists in finding the possible pose
of the mobile paltform parallel robot for given active
joint coordinates. Merlet proposed an algorithm based
on interval analysis, which allows to solve the forward
kinematic problem [12]. For control or simulation un-
der the real time constraint, many authors have pro-
posed the use of the Newton-Raphson algorithm [2],
based on the Jacobian matrix computation. In paral-
lel robot research area, the problem of Jacobian ma-
trix determination is an open and interesting problem.
Indeed, the computation of inverse Jacobian matrix
is currently known and mastered [2], [13], [14], but
its analytical expression still remains relatively com-

plex. Thus analytical formulation of the Jacobian ma-
trix, by symbolic inversion or even by using some for-
mal computing tools, is difficult [2]. Its expression is
generally obtained by a numerical method using any
classical algorithm of matrix inversion or by a method
based on an iterative scheme.
In the present paper, a Jacobian matrix factorization
of a 3 − RPR planar robot [13], [14], [15], [16] is
presented. This approach is a generalization of the
approach proposed by Fijany et al. [17][18][19] for
serial robot. Thus we consider the parallel robot as a
multi robot system withk serial robots (the segments)
moving a common load (the mobile platform) [20].
The basic idea is to compute the Jacobian matrix as-
sociated with each parallel robot segment considered
as a serial robot and then to compute the Jacobian ma-
trix of the parallel robot by considering the kinematic
chain closing constraint. The proposed approach al-
lows the computation of several Jacobian matrices
due to the multiple solutions of the forward kinematic
model. These matrices are used to determine the as-
sembly modes of theRPR planar parallel robot.
This paper is organized as follows. In the following
section we describe the nomenclature and the used no-
tation. In section3, theRPR planar parallel robot ar-
chitecure is described. The computation of the inverse
kinematic model and the inverse Jacobian matrix are
given in sections4 and5. The Jacobian matrix factor-
ization is presented in section6. The determination of
assembly modes is finally proposed in section7.
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2 Preliminaries

We consider a parallel robot as a multi-robot sys-
tem with k serial robots (segments) moving a com-
mon load (mobile platform). Figure (1) shows the
links, the frames and position vectors for the segment
i (i = 1, . . . , k).

Figure 1: Links, frames and position vectors for the
segmenti

2.1 Nomenclature

2.1.1 Joint and link parameters

• iPj+1,j: position vector fromiOj to iOj+1

• k: number of segments

• iM : DOF-number of segmenti

• iN : joint number of segmenti

• θa
i , θ̇a

i : position and velocity of active joint of the
segmenti

• iθ
p
j , iθ̇

p
j : position and velocity of passive jointj

of the segmenti

• iωj, ivj ∈ ℜ3: angular and linear velocity of link
j for the segmenti

2.1.2 Spatial quantities

• iHj: spatial-axis (map matrix) of jointj for the
segmenti. For instance, for a joint with2-DOF

(rotation aboutz-axis and translation aboutx-
axis), the matrixiHj ∈ ℜ6×2 is given by:

1st 2nd

iHj =












0 0
0 0
1 0
0 1
0 0
0 0












−DOF

x-axis rotation
y-axis rotation
z-axis rotation
x-axis translation
y-axis translation
z-axis translation

• iVj =

[
iωj
ivj

]

∈ ℜ6: spatial velocity of the

link j for the segmenti

• VN+1 =

[

ωN+1

vN+1

]

∈ ℜ6: spatial velocity of

the end effector

2.1.3 Global quantities

The following global quantities are defined forj =
iN to 1 or j = iM to 1 andi = k to 1

• Q̇i = Col
(

iθ̇j

)

∈ ℜ
iM : global vector of ar-

ticular coordinate velocity of the segmenti, tak-
ing into account passive and active joints

• Q̇ = Col
(

θ̇a
i

)

∈ ℜk: vector of generalized
coordinate velocity of the system

• Vi = Col
(

iVj

)

∈ ℜ6 iN : global vector of
spatial velocities for the segmenti

• Hi = Diag
(

iHj

)

∈ ℜ6 iN× iM : global ma-
trix of spatial-axis for the legi

2.2 General notation

With any vectorV =
[

Vx Vy Vz

]t
, a tensorṼ

can be associated whose representation in any frame
is a skew symmetrical matrix:

Ṽ =






0 −Vz Vy

Vz 0 −Vx

−Vy Vx 0






The tensorṼ has the properties that̃V = −Ṽ t and
Ṽ1V2 = V1 ∧ V2 i.e., it is the vector cross-product.
A matrix V̂ associated to the vectorV is defined as:
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V̂ =

[

U Ṽ

0 U

]

and

V̂ t =

[

U 0

−Ṽ U

]

whereU and 0 stand for unit and zero matrices of
appropriate size.
In our derivation, we also make use of global matrices
and vectors which lead to a compact representation
of various factorizations. A bidiagonal block matrix
Pi ∈ ℜ6 iN×6 iN is defined as:

Pi =














U

−iP̂N−1 U 0

0 −iP̂N−2 U

0 0
...

...
0 0 0 −iP̂1 U














Note that according to our notation,iPj+1,j =
iPj.
The inverse ofPi is a lower triangular block matrix
given by:

P−1

i =











U
iP̂N,N−1 U 0
iP̂N,N−2

iP̂N−1,N−2 U
...

...
iP̂N,1

iP̂N−1,1 . . . iP̂2,1 U











3 Planar parallel robot description

The robot considered in this study is symmetric and
composed of three identical legs connecting the fixed
base to the end effector triangle as shown in Fig. 2
3−RPR planar robot [13], [14], [15], [16]. Each leg
is of RPR design, with two passive swivel joints and
an active primatic joint. These three linear links are
used in order to move the mobile triangle defined by
the tripletB1, B2, B3.

The used notation to describe the planar parallel
robot is defined as following.

• Rb is the absolute frame, tied to the fixed base.
Rb = (0, x, y).

• Rp is the mobile frame, tied to the mobile part.
Rp = (C, xp, yp).

Figure 2: Planar parallel manipulator

• Let O be the origin of the absolute coordinate
system

• Let C (or ON+1) be the origin of the mobile co-
ordinate system, whose coordinates are in the ab-
solute frame:

OC/Rb
=

[

xc yc

]t

• Ai (or iO1)is the center of the joint between the
segmenti and the fixed base:

OAi/Rb
=

[

ax
i a

y
i

]t

• Bi (or iON ) is the center of the joint between
the segmenti and the mobile part:

CBi/Rp
=

[

bx
i b

y
i

]t

• [R] is the rotation matrix ofrij elements (in the
RPY formalism), expressing the orientation of
the Rp coordinate system withrespect to theRb

coordinate system. The expression for this ma-
trix is given by:

[R] =

[

cos γ − sin γ

sin γ cos γ

]

(1)

• X is the task coordinate vector.

X =
[

γ xc yc

]t

• Rbi
is the frame tied to the segmenti. Rbi

=
(Ai, xbi

, ybi
).

• γbi
is the angle, in theRPY formalism, describ-

ing frame Rbi
rotation with respect to the ab-

solute frameRb.
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•
[
bRbi

]

is the rotation matrix ofbrbijk
elements

(in the RPY formalism), expressing the orien-
tation of theRbi

coordinate system withrespect
to theRb coordinate system. The expression for
this matrix is given by:

[
bRbi

]

=

[

cos γbi
− sin γbi

sin γbi
cos γbi

]

(2)

• γpi
is the angle, in theRPY formalism, describ-

ing frameRpi
rotation with respect to the frame

Rbi
.

•
[
biRpi

]

is the rotation matrix ofbirpijk
elements

(in the RPY formalism), expressing the orien-
tation of theRpi

coordinate system with respect
to theRbi

coordinate system. The expression for
this matrix is given by:

[
biRpi

]

=

[

cos γpi
− sin γpi

sin γpi
cos γpi

]

(3)

• iPN =
[

xi yi zi

]t
is the propagation vec-

tor fromBi to C in Rbi
the frame tied to the seg-

menti:

iPN = BiC/Rbi
=

[
bRbi

]t
[R] BiC/Rp

(4)

4 Inverse kinematics

The inverse geometric model relates the active joint
variables (Q) to the operational variables which de-
fine the position and the orientation of the end effector
(X). This relation is given by the following equation
[2], [13]:

θa
i = ‖AiBi‖ = ‖AiO/Rb

+OC/Rb
+[R]CBi/Rp

‖
(5)

Thus:
θa
i =

√

X2
i + Y 2

i (6)

where:

Xi = xc − ax
i + r11b

x
i + r12b

y
i

Yi = yc − a
y
i + r21b

x
i + r22b

y
i

(7)

The intermediate passive joint anglesγbi
andγpi

are:

γbi
= arctan

(
Yi

Xi

)

(8)

γpi
= γ − γbi

+
π

6
(9)

5 Determination of the inverse Jaco-
bian matrix

For parallel robots, the inverse Jacobian matrix com-
putation(J −1) stays in principle relatively easy.J −1

matrix is obtained by the determination of pointBi

velocity [2][21]:

˙OBi = vN+1 + BiC ∧ ωN+1 (10)

The following relationship is verified:

θ̇a
i = ˙OBi ni (11)

Inserting equation (10) into (11), we also obtain:

θ̇a
i = nivN+1 + ωN+1 (ni ∧ BiC) (12)

The inverse Jacobian matrix is written as:

J −1 =






(n3 ∧ B3C)t
nt

3

(n2 ∧ B2C)t
nt

2

(n1 ∧ B1C)t nt
1




 (13)

Thus, the inverse Jacobian matrix for the mobile tri-
angle case is given by:

J−1 =






sin γ′
b3

bx
3 − cos γ′

b3
b
y
3 cos γb3 sin γb3

sin γ′
b2

bx
2 − cos γ′

b2
b
y
2 cos γb2 sin γb2

sin γ′
b1

bx
1 − cos γ′

b1
b
y
1 cos γb1 sin γb1






(14)
Whereγ′

bi
= γbi

− γ with i = 1, 2 or 3

6 Factorized expression of the Jaco-
bian matrix

The differential kinematic model of a manipulator
can be defined by the relationship between the
spatial velocity of the end effector and the vector
of generalized coordinate velocities of the robot:
VN+1 = J Q̇, whereJ is the Jacobian matrix.
In the proposed approach, the parallel robot is con-
sidered as a multi robot system, composed of serial
robots (the segments) moving a common load (the
mobile platform). A relationship linking the Jacobian
matrix of the parallel robot (J ) to the Jacobian matrix
of each segment (Ji) is presented.
The principle of this approach consists of first com-
puting the Jacobian matrix for each leg considered as
an open serial chain. Secondly, the closing constraint
is determined, allowing the computation of the
parallel robot Jacobian matrix.

WSEAS TRANSACTIONS on SYSTEMS Georges Fried, Karim Djouani, Diane Borojeni, Sohail Iqbal

ISSN: 1109-2777 44 Issue 2, Volume 7, February 2008



6.1 Ji matrix determination

Velocity propagation for a serial chain of intercon-
nected bodies is given by the following intrinsic
equation[17][18][19]:

iVj −
iP̂ t

j−1
iVj−1 = iHj

iθ̇j (15)

By using the matrixP, equation (15) can be expressed
in a global form by:

Pt
i Vi = HiQ̇i (16)

thus:
Vi =

(

Pt
i

)−1

HiQ̇i (17)

The end effector spatial velocityVN+1 is obtained by
the following relation:

VN+1 − iP̂ t
N

iVN = 0 (18)

thus:
VN+1 = iP̂ t

N
iVN (19)

Let βi ∈ ℜ6× iN be the matrix defined by:

βi =
[

iP̂ t
N 0 · · · 0

]

(20)

Equation (19) becomes:

VN+1 = βiVi (21)

Thus, inserting the expression ofVi from equation
(17), we obtain:

VN+1 = βi

(

Pt
i

)−1

HiQ̇i (22)

Thus:
Ji = βi

(

Pt
i

)−1

Hi (23)

For the3−RPR planar robot case this matrix is given
by:

Ji =






1 0 1
− sin γi xi cos γpi

− sin γi xi − sin γbi
θa
i

cos γi xi sin γpi
cos γi xi + cos γbi

θa
i






(24)
Whereγi = γpi

+ γbi

6.2 Jacobian matrix J of the parallel robot
determination

6.2.1 Forward kinematic problem

The Jacobian matrixJ of the parallel robot is ob-
tained by the closing constraint determination of the
kinematic chain. This determination can be obtained

by expressing vectorṡQi associated to each segment
i in function of the actuated joint velocitẏQ of the
parallel robot. Let the matrixΠi be characterized by:

Q̇i = Πi Q̇ (25)

Inserting equation (25) into (22), we obtain:

VN+1 = βi

(

Pt
i

)−1

HiΠiQ̇ (26)

Therefore, a factorized expression of the parallel robot
Jacobian matrix is given by:

J = βi

(

Pt
i

)−1

HiΠi (27)

The matricesJ andJi are linked by the following
relationship:

J = Ji Πi (28)

6.2.2 Πi matrix determination

The matrixΠi is obtained by expressing vectorṡQi

associated to each segmenti in function of the actu-
ated joint velocityQ̇ of the parallel robot:






γ̇pi

θ̇a
i

γ̇bi




 =






πi11 πi12 πi13

πi21 πi22 πi23

πi31 πi32 πi33











θ̇a
3

θ̇a
2

θ̇a
1




 (29)

where:

• γ̇pi
, θ̇a

i , γ̇bi
are the elements of the joint velocity

vector of the legi:

Q̇i =
[

γ̇pi
θ̇a
i γ̇bi

]t
(30)

• θ̇a
3 , θ̇a

2 , θ̇a
1 are the elements of the generalized

coordinate velocity vector of the system:

Q̇ =
[

θ̇a
3 θ̇a

2 θ̇a
1

]t
(31)

• πijk
are the elements of the matrixΠi

From the inverse kinematic model given in Eq. (14),
we obtain forj = 1 to 3:

θ̇a
j =

(

sin
(

γbj
− γ

)

bx
j − cos

(

γbj
− γ

)

b
y
j

)

γ̇+

cos γbj
V x

N+1
+ sin γbj

V
y
N+1

(32)
In inserting the relation given in Eq. (24) in Eq. (32),
we obtain:

θ̇a
j = Aj,i γ̇pi

+ Bj,i γ̇bi
+ Cj,i θ̇a

i (33)
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Thus:

θ̇a
j − Cj,i θ̇a

i = Aj,i γ̇pi
+ Bj,i γ̇bi

(34)

where:

Aj,i = sin
(

γbj
− γ

)

bx
j − cos

(

γbj
− γ

)

b
y
j+

xi sin
(

γpi
+ γbi

− γbj

)

(35)
Bj,i = Aj,i + θa

i sin
(

γbi
− γbj

)

(36)

Cj,i = cos
(

γbj
− γpi

)

(37)

Π1 matrix computation The matrixΠ1 is obtained
by:

Π1 =






π111
π112

π113

0 0 1
π131

π132
π133




 (38)

The equation (34) is written fori = 1 andj = 1
to 3 in a matrix form as:





0 0 1 − C1,1

0 1 −C2,1

1 0 −C3,1






︸ ︷︷ ︸

E1

Q̇ =






A1,1 B1,1

A2,1 B2,1

A3,1 B3,1






︸ ︷︷ ︸

D1

[

γ̇p1

γ̇b1

]

(39)
Two solutions with the calculation of this matrixΠ1

can then be considered:

1. [

π111
π112

π113

π131
π132

π133

]

= D+
1 E1 (40)

2.
[

π111
π112

π113

π131
π132

π133

]

=
(

E−1
1 D1

)+

(41)

whereX+ is the Moore-Penrose inverse matrix ofX.
The compute of this pseudo inverse matrix is obtained
by using the Greville algorithm [22].

Π2 matrix computation The matrixΠ2 is obtained
by:

Π2 =






π211
π212

π213

0 1 0
π231

π232
π233




 (42)

The equation (34) is written fori = 2 andj = 1
to 3 in a matrix form as:





0 −C1,2 1
0 1 − C2,2 0
1 −C3,2 0






︸ ︷︷ ︸

E2

Q̇ =






A1,2 B1,2

A2,2 B2,2

A3,2 B3,2






︸ ︷︷ ︸

D2

[

γ̇p2

γ̇b2

]

(43)

Two solutions with the calculation of this matrixΠ2

can then be considered:

1. [

π211
π212

π213

π231
π232

π233

]

= D+
2 E2 (44)

2.
[

π211
π212

π213

π231
π232

π233

]

=
(

E−1
2 D2

)+

(45)

Π3 matrix computation The matrixΠ3 is obtained
by:

Π3 =






π311
π312

π313

1 0 0
π331

π332
π333




 (46)

The equation (34) is written fori = 3 andj = 1
to 3 in a matrix form as:





−C1,3 0 1
1 C2,3 0

1 − C3,3 0 0






︸ ︷︷ ︸

E3

Q̇ =






A1,3 B1,3

A2,3 B2,3

A3,3 B3,3






︸ ︷︷ ︸

D3

[

γ̇p3

γ̇b3

]

(47)
Two solutions with the calculation of this matrixΠ3

can then be considered:

1. [

π311
π312

π313

π331
π332

π333

]

= D+
3 E3 (48)

2.
[

π311
π312

π313

π331
π332

π333

]

=
(

E−1
3 D3

)+

(49)

7 Forward kinematics

The Forward Kinematic Problem (FKP) may be stated
as: given the current active joint:

Q =
[

θa
3 θa

2 θa
1

]t

calculate the Cartesian pose:

X =
[

γ xc yc

]t

FKP for parallel manipulators is a classical problem in
robotics and it has been and continue to be addressed
by several authors. Thus Merlet [12] proposes an ap-
proach based on interval analysis for solving the for-
ward kinematics of a Gough-Stewart platform, after
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an analysis of the traditional approaches proposed in
the literature. As stated by Merlet [12], the forward
kinematics problem (FKP) has been largely addressed
in the literature, but it has never been fully solved.
As known the FKP exhibits numerous solutions. Gen-
erally the following problem is addressed first:
given the current active joint vectorQ, find all possi-
ble poses of the platform.
Then, a second problem is considered and which
caters with finding the right solution corresponding to
the real pose of the platform.
Regarding the FKP, solving methods may be classified
as [12]:

• the elimination method

• the continuation method

• the Gröebner basis method

• and the interval analysis proposed by Merlet.

Main drawback of the first proposed methods,
concerns computational efficiency and have been
analysed by Merlet [12].
Based on the factrorization form of the jacobian ma-
trix, we propose a numerical algorithm for solving the
FKP:

• One setsX0

• We computeQ0 with de inverse kinematic model
given by Eq. (6)

• We compute the error :ǫ = Q − Q0

• We computeX = X0 + Ji Πi ǫ

Depending on the right solutions for the matrixΠi,
the expressionJi Πi may have 6 solutions at least
(see Eq. (40), Eq. (41), Eq. (44), Eq. (45), Eq. (48),
Eq. (49)).

Our algorithm has been implemented on Matlab
and a simulation example is given figure (3) where
the four solutions found for the platform’s pose, cor-

responding to the active jointsQ =
[

2 1.5 1
]t

,
are given.

8 Conclusion

This paper introduces an approach to determine the
assembly modes for a planar parallel robot. The pro-
posed approach is based on a global formalism which
allows the determination of a Jacobian matrix factor-
ized expression. This factorization is used in previous
work to find the singular configurations of a spatialC5

Figure 3: Solutions of the forward kinematics pose

parallel robot [23]. Another interest of our approach
is within parallel robot simulation, design and oper-
ational space control. The dynamic modeling, based
on this formalism is under investigation for the factor-
ization of the inertia matrices (joint and operational
spaces) and their inverses, leading to the modeling al-
gebra for robot modeling and control [24].
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