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Abstract: - This paper presents a Principal Component Analysis (PCA) study for neuronal modelling of a 
complex system. The PCA transforms a set of correlated variables into a smaller set of uncorrelated variables 
without lose the original information. Thanks to this first stage it is possible to design a simplified structure of 
the model. The right choice of the architecture is crucial for the application of neural nets in process 
identification.  
The proposed study allows to validate the association of the PCA with neuronal model for a real multivariable 
process modelling: an experimental greenhouse. The object is to estimate the internal climate (temperature and 
hygrometry) by reducing the number of the input variables. Thus, we compare two different structures of neural 
networks. Several tests and results are presented and discussed.  
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1 Introduction 
The identification of multivariable systems is 
uneasy assignment, especially when the system is 
non-linear, non-stationary and strongly disturbed. In 
this case, it is often difficult to define a knowledge 
model (White Box model) which is the perfect 
representation of the system. The design of the 
models includes an important stage of selection and 
analyze of the set of the variables. Indeed, 
determining the relevance of the inputs is of great 
importance in practical modelling problems [5]. In 
these conditions, the reduction of the number of 
variables (size of the input vector) and the 
synthesized data representation turn out to be 
important elements in the modelling of these 
systems.  
This paper presents a Principal Component Analysis 
(PCA) study associated to a neuronal approach 
(Black Box model) for the modelling of a 
multivariable system. In the literature, the PCA is 
used to create a set of new uncorrelated variables 
(principal components) [7], [11]. In this paper, 
contrary to the classical uses, the PCA is used to 
select the relevant input variables (physical sensors). 
To validate this approach, we achieved an 
application on a real system (an experimental 
greenhouse). Successive studies about this 
application area allowed us to get a proficient 
knowledge of this system. The reactions of this 
system are now known and some data evolutions 

can intuitively be foreseen. The PCA allows to give 
mathematical explanations of intuitive facts [10].  
The following paragraphs detail all components 
required for our study. At first, we introduce the 
PCA, for the variables selection. The second part 
describes the principle of the neuronal modelling 
and presents the type of used neural networks. 
Section 4, we detail our experimental process: a 
greenhouse. In the last section, we present some 
results. 
 
 
2 Principal Component Analysis 
The PCA is a statistical method, which is included 
in the more general context of the factorial analysis. 
The PCA allows to reduce a complex correlation 
system into a smaller number of dimensions [6], [7]. 
When there are correlations between the m 
descriptive variables of a data distribution, the m 
dimensions of the data space exceeds the n number 
of characteristic variables necessary to describe 
these data. The higher the correlations between data 
descriptive variables, the smaller the number of 
useful characteristic variables for their 
representation. 
In this paper, the PCA is used to choose into the set 
of correlated variables given by the greenhouse 
sensors, a reduced set of uncorrelated variables 
(sensors). The set of the initial data is represented by 
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the matrix X. The size of this matrix is p × r (p 
variables and r samples). 
The variables of our system have different scales 
and units. However, we wish that each variable to 
have the same weight in the system analysis. The 
data of each variable are centred and reduced. The 
PCA is said normed. A new matrix of data normX  is 
defined by: 

( )
i

ii
norm S

XX
iX

−
=  (1)

in which Xi is the ith row vector of the matrix X, iX  
is the mean of this vector with ∀i ∈ [1, p] and Si is 
the standard deviation of the considered variable i. 
The identification of the PCA model parameters (i.e. 
principal components) is achieved by the estimation 
of the eigenvalues λ1,…,λp and eigenvectors u1,…,up 
of the correlation matrix R×. The principal 
components Yi are a new set of data estimated by: 

inormi uXY =  (2)
in which ui is the ith eigenvectors of the correlation 
matrix R×. 
The eigenvalues correspond to the variance part of 
each component. We can explain the percentage of 
variability of each Principal Component (PC) by: 

( ) 100×=
∑ λ
λi

PC iW  (3)

These percentages allow to select the number of 
representative PC of the system. 
The study of the correlation of the initial variables is 
based on the correlations of PC with each initial 
variable. The coefficients of correlation Ci are 
obtained by the multiplication between each 
eigenvector and the square root of the eigenvalue 
associated (they vary between -1 and 1): 

iii uC λ=  (4)
The PCA allows to achieve a graphic representation 
of the information by using the coefficients of 
correlation. The new space of visualization is a 
circle axes of which are two of selected PC. This 
circle is called the “factorial space” or “correlation 
circle”.  
Two correlated variables can be identified by 
studying the projections of their coefficients of 
correlation. Indeed, two variables are correlated if 
the projections of their vector are close both to the 
circle and to themselves. The angle between two 
variables projected on the correlation circle is equal 
to the coefficient of correlation between these 
variables. This angle (α) is measured by its cosine: 

( )ji C,Canglecos =α  (5)

with i and j ∈ [1, p]. Thus, if the projection of two 
variables are both closed to themselves (α little 
different of πk2 ), so the variables Xi and Xj are 
correlated. By opposition, if α is equal to 90°, the 
variables Xi and Xj are not correlated. 
Therefore, this analysis enables to define a 
simplified and efficient model of our system. This 
new reduced system is used to modelling our system 
with a multilayer neural network.  
 
 
3 Modelling by neural networks  
Neural networks are considered to be useful for this 
purpose due to their ability to approximate a wide 
class of continuous functions. In this case, the 
identification is based exclusively on measured data. 
The identification process is called “black box” 
modelling. The number of input and output nodes is 
determined according to the nature of the modelling 
problem being tackled, the input data representation 
and the form of the network output required.  
For these reasons, to define a neuronal model [5], it 
is very important to choose the input variables and 
the set of data judiciously. Generally, it is necessary 
to do a pre-processing and an analysis of data files. 
The number of samples (measures) and the number 
of the input variables (sensors) are the parameters 
which have a strong influence on the structure of 
neural networks.  
In this study, we are interested us to the reducing of 
the dimension of the inputs in order to improve their 
relevance in comparison to the system to be 
modelised. It is necessary to remember that the 
choice of the neuronal structure must take into 
account the bias/variance dilemma (apprenticeship 
capacity / generalisation capacity). 
Thus, it can be interesting to define a neural network 
with a less complex structure but with a sufficient 
number of parameters. In this way, we use the PCA 
method, and we model an experimental process with 
a neural network [1], [2].  
In this study, we use basic multilayer feedforward 
neural networks (Fig. 1) with one hidden layer. The 
neurons number of the hidden layer is related to the 
complexity of the system being modelised. The 
adjustment of the network's weights is accomplished 
by using the Levenberg-Marquardt algorithm, such 
as: 

εη TT J)IJJ(W 1−+=∆  (6)
where W is the weights matrix, J is the Jacobian 
matrix of derivatives of each error to each weight, ε 
is the error vector and η is a learning parameter.  
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For η = 0, the algorithm becomes the Gauss-Newton 
method. When η is very large (changes to ∞ ) it 
becomes the steepest descent or the Error 
Backpropagation algorithm.  
The parameter is automatically adjusted at each 
iteration in order to secure convergence [12]. The 
parameter η is initialized and it is increased when 
the error increases. The second-order convergence 
properties of the Levenberg-Marquardt method 
enabled faster training of the models. 
 
 

 
 
 

Fig. 1. Multilayer feedforward neural network 

After the learning stage, the weights are fixed and 
used in the validation stage. 
 
 
4 Greenhouse description 
Climatic management aims at simultaneously 
maintaining the sets of the climatic factors 
(temperature, hygrometry, rate of CO2) according to 
their respective references while respecting certain 
rules (absolute or conditional prohibitions, 
priorities, times of temporization) imposed by the 
user. 
In our laboratory, an experimental greenhouse is 
used to search and develop new commands [3]. Our 
objective is to develop a regulation, which takes into 
account the state of the plants. 
Our greenhouse is equipped with many sensors 
(sensors for internal and external temperature Ti and 
Te, data expressed in °C ; for internal and external 
hygrometry Hi and He, data expressed in % ; for the 
wind velocity Vv, data expressed in m.s-1 and for the 
global radiation Rg, data expressed in W.m-2) and 
with various commands (of the heating Ch, binary 
command ; the roofing Ov, command expressed in 
degrees ; the moistening Br, binary command and 
the shutter Rd, command expressed in centimetres) 
(Fig. 2). 
For this system, the definition of a knowledge 
model is difficult. The dynamic behaviour of the 
greenhouse climate [9] depends of:  

−−  an important number of variables (references, 
perturbations, commands, sensors) 

−−  the complexity of phenomena due to the 
process (biologic, weather, evolution of 
plants…). 

Thus, the process is multivariable, non-linear, non-
stationary and strongly disturbed. 

 
Fig. 2. The greenhouse model 

Moreover, the perturbations (the wind velocity and 
the global radiation, for instance) can sometimes be 
more powerful than the command (the heating, for 
instance). The modelling of the system must take 
into account these difficulties. 
 
 
5 Experimental results 
Results presented below are organized in three parts. 
The first part presents data used to validate our 
work. The second part illustrates data associations 
issued from a PCA applied on experimental 
greenhouse data. The last part concerns the neuronal 
modelling of our system with and without the 
reduction of the input variables number. 
 
 
5.1 Data presentation 
The experimentations relating to the real data were 
carried out using experimental greenhouse data of 
days in March. The scale of time is very short, about 
one minute. The size of the file for a day is 10 × 
1440 (10 variables and 1440 samples). The 10 
variables are 6 sensors and 4 actuators. The 
actuators are “actionable” independently in function 
of the part of daytime. 
A first data group used to the training stage has been 
formed with three days in March. The size of the 
apprenticeship file for three day is 10 × 4320.  

 
Fig. 3. Temperature and hygrometry of validation stage 
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The validation stage is carried out by using nine 
days on March (Fig. 3 and Fig. 4). The size of the 
validation file for ten day is 10 × 12960.  
The days used to the training stage is included in the 
validation stage. The Fig. 3 depicts temperature and 
hygrometry of validation stage. Fig. 4 presents the 
disturbances and actuators of the validation stage 
and the apprenticeship data borders [8]. 

 
Fig. 4. Disturbances and actuators of validation stage 

 
 

5.2 Reduction of the variables number 
We have applied a PCA on the 10 variables. The 
first result given by the PCA allows us to determine 
the number of PC necessary to represent the system. 
This choice depends on the percentage of variability 
of each PC (1). Fig. 5 is a plot of the eigenvalues 
versus the PC number (including the percentage of 
variability of each PC). 

 
Fig. 5. Percentage of variability for each PC 

We observe that the first four PC allow us to explain 
80% of the variability and the first two 60%. The 
first PC selected create a new space of visualization 
which allows to evaluate correlations between 
variables. 
Fig. 6 shows the projections of the variables in the 
correlation circle on plane PC1-PC2. 

 
Fig. 6. Correlation circle on plane PC1-PC2 

Three groups of two variables can be identified. By 
definition, two variables are correlated if they are 
close both to themselves and to the circle. We 
observe that Rg and Ov are two correlated variables; 
Te and Ti are correlated in the same way, just as He 
and Hi are. Supplementary information is contained 
in Fig. 6, the two groups {Rg, Ov} and {Te, Ti} are 
located on the same side of the circle and close to 
the circle. We conclude these four variables are 
correlated. These results are found in the Table 1 
which presents angles (in degrees) between two 
variables projected on the plane PC1-PC2.  
 

 
Table 1. Angle (in degrees) between two variables 

projected on the plane PC1-PC2 

The angle allows to quantify the notion of “close 
both to themselves”. Indeed, two variables are 
closed both to themselves if the angle which they 
formed is little different than πk2  (< 18°, angles 
written in thick). Moreover, we can observe that the 
two variables Vv and Br are missing because they 
are not close to the circle. We observe the same 
correlations as with the correlation circle.  
Fig. 7 presents the two correlation circles on planes 
PC1-PC3 and PC2-PC3.  
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   a           b 

Fig. 7. Correlation circles on plane PC1-PC3 (a) and on 
plane PC2-PC3 (b) 

The previous observations are verified by the 
projections of the variables on these other planes. 
Fig. 8 presents the projection of the samples on 
plane PC1-PC2. The samples are separated in four 
groups according to the global radiation:  

−−  the day samples for Rg > to 15 % 
−−  the night samples for 0 < Rg < 5 %, 
−−  the daybreak samples for 5 < Rg < 15 %, 
−−  the dusk samples for 15 > Rg > 5 %. 
 

 
Fig. 8. Samples representation on the plane PC1-PC2 

We observe that samples corresponding to night, 
daybreak and dusk are brought together and focused 
on the bottom right hand side of the plot. Moreover, 
the day samples are located on the left part and the 
greater part of them at the top of the plot. This 
samples distribution illustrates the disposition of the 
variable groups defined in Fig. 6: day area which is 
characterised by the global radiation and the 
temperature, is located in the left hand side on plane 
PC1-PC2. By contrast, the daybreak area is located 
on the right hand side on plane PC1-PC2 like group 
{He, Hi} on Fig. 6. 
The PCA applied to experimental greenhouse data 
allows to create two correlated variable groups {Te, 
Ti, Rg, Ov} and {He, Hi}. The neural network 
modelling of the system is carried out with six 
variables. 
 
 

5.3 Greenhouse modelling with Neural Networks 
The goal of this part is to construct different neural 
networks (with and without the reduction of the 
number of the input variables) and to compare the 
models quality obtained. The reduction of the 
dimension of the state inputs allows to transform 
and simplify the model structure. For each structure 
model, we keep the same number of neurons in 
hidden layer.  
The transfer function for each output neuron is 
linear with bias (Fig. 9.a) when for each hidden 
neuron is sigmoid with bias (Fig. 9.b).  
 

 
(a)       (b)  

Fig. 9. Transfer function of the neurons  
(a: Linear transfer function, b: Sigmoid transfer function) 

As explained in the previous sections, we search for 
eliminate the input variables to reduce the 
parameters number of the neuronal model. The PCA 
method allows us to group the following input 
variables: {Te, Ti, Rg, Ov} and {He, Hi}. For each 
group, we must choose one variable. This choice 
depends of the system knowledge (physical and 
experimental). In this way, for our system, we have 
selected Te for the first group and He for the second.  
So, we obtain different networks (statics or 
dynamics) in accordance with the choice of the 
inputs. The static networks realize a non-linear 
algebraic function of the inputs while the dynamic 
networks are governed by a recurrent equation. The 
model structures are depicted in Fig. 10. Like this, 
we present the simplified structure (Fig. 10.a) and 
complete structure (Fig. 10.b) which correspond 
respectively at a static and dynamic neural network.  
 

 
(a)              (b) 

Fig. 10. Neuronal models with (a) and without (b) the 
reduction 
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For the training stage, we use three days of March 
(4320 samples) and for the validation stage, we use 
nine days of March (12960 samples). The training 
parameters are: 

−−  number of iterations = 200 
−−  initial apprenticeship coefficient = 0.001 
−−  number of inputs units = 10 or 6 
−−  number of hidden units = 8 

 
In the following figures, the internal temperature 
curves (real Ti  and estimated iT̂ ) and the internal 
hygrometry curves (real Hi  and estimated iĤ ) are 
illustrated.  
We plot iT̂  and iĤ  by using the complete model 
with all the input variables (Fig. 11 and Fig. 13) and 
by using the simplified model with six input 
variables (Fig. 12 and Fig. 14).  

Fig. 11. Ti (complete model, validation data) 

Fig. 12. Ti (simplified model, validation data) 

 
Fig. 13. Hi (complete model, validation data) 

 

 
Fig. 14. Hi (simplified model, validation data) 

To compare these models, we use several criteria 
which are the Mean Error (ME), the Variance Error 
(VE) (Table 2) and the Akaike’s Information 
Criterion (AIC) [4]: 

( ) ( )( )
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=  (7)

where N is the total number of data, Ni is the number 
of inputs, Nh is the number of hidden units, and N0 is 
the number of outputs. q is the number of 
parameters used (weights and bias). 
 

 Criteria Complete 
structure 

Simplified 
structure 

ME 0.64 °C 0.99 °C Ti VE 1.0 1.16 
ME 1.32 % 3.17 % Hi 
VE 2.01 4.45 

Table 2. ME and VE for each model  
(apprenticeship data) 

The AIC criterion takes into account the model 
complexity and the mean square error (compromise 
between goodness of fit and parsimony). The best 
model is the one that has the smallest AIC. 
For the internal temperature estimation, we remark 
similar performances (see Table 3). The internal 
hygrometry modelling is more difficult because Hi 
is more sensible at the quick variations of the 
external hygrometry. For the simplified model, the 
results are less efficient. We can explain it because 
we take into account only of the external 
hygrometry (Fig. 10). 
 

 Criteria Complete 
structure 

Simplified 
structure 

ME 1.83 °C 1.72 °C 
VE 4.59 4.87 Ti 
AIC 14.9581 14.9560 
ME 4.98 % 7.44 % 
VE 28.18 50.71 Hi 
AIC 17.4380 18.0310 

Table 3. ME, VE and AIC for each model  
(validation data) 
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In conclusion, the obtained results allow to show a 
correct modelling quality for the two structures. The 
simplified model is able to give a good estimation of 
the internal climate. In the apprenticeship stage, we 
can see that the Execution Time (ET) is longer when 
we use all the input variables (Table 4). 
 

 Complete structure Simplified structure 
ET 175.5 123.2 

Table 4. Execution Time (ET) (in elapsed CPU seconds) 
for each model (apprenticeship stage) 

Therefore, it can be concluded that the proposed 
structure model represent a viable alternative to the 
experimental greenhouse modelling. 
 
 
6 Conclusion 
This paper presents a PCA applied to the complex 
system modelling. The aim is to simplify the model 
by keeping an efficient model. Thanks to the PCA 
and the knowledge of the system, we can define a 
set of uncorrelated and relevant variables (input 
sensors). Thus, we show that it is possible to obtain 
a simplify model. This first stage allows us to design 
the structure of a neuronal model.  
We evaluated this approach on a real process: an 
experimental greenhouse. Some experiments were 
carried out with different sets of data.  
The first remark is that the correlated variables 
emphasized by the PCA method reflect those sensed 
by the knowledge of the system. In addition, the 
PCA allows to explain mathematically and 
automatically the redundancy between variables.  
Secondly, the neural networks using allows to 
obtain an efficient model when we reduce the 
number of input variables. In this case, we note that 
the variables associated of the internal climate (Ti 
and Hi) are not necessary. So, we can obtain the 
evolution of the internal climate in the experimental 
greenhouse by only exploring meteorology sensors. 
Therefore, the number of sensors can be reduced by 
preserving a good quality of modelling.  
The paper presents an original approach which 
associates the expert knowledge of a system with 
the PCA. The results obtained on a real system 
(experimental greenhouse) are efficient.  
In a future work, this simulation model will be used 
to compare several types of control laws to regulate 
the greenhouse micro-climate.  
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