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Abstract: - Applying parameter design to a system that has a binary-type performance, an efficient metric is to 
employ the operating window (OW) which is the range between two performance limit thresholds. Paper feeder 
design is a typical problem of the OW method. The wider OW, the higher performance of the system is. This study 
uses an approach based on artificial neural networks (ANN) and desirability functions to optimizing the OW design 
of a paper feeder. The approach employs an ANN to construct the response function model (RFM) of the OW 
system. A novel performance measure (PM) is developed to evaluate the OW responses. Through evaluating the 
PM of the predicted OW responses, the best control factor combination can be obtained from the full control factor 
combinations. A simulated example of a paper feeder design is analyzed. Performing the approach to parameter 
design problems, engineers do not require much background in statistics but instead rely on their knowledge of 
engineering. 
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1 Introduction 
While performing parameter design, engineers often 
encounter the situation that a system has a binary-type 
performance (i.e. good or bad, 0 or 1). A common way 
to quantify the system’s performance is to compute the 
ratio of bad results to total results (i.e., a percentage of 
defective results) then transfer the percentage into 
Taguchi’s SN ratio of STB [10, 16]. This method may 
need a large number of experiments when the rate of 
failure is low; besides, the information of experiments 
data cannot be exploited to the analysis. A more 
efficient metric is to employ the operating window 
(OW) which is the range between two performance 
limit thresholds. The wider OW, the higher 
performance of the system is [3].  

The concept of the OW was developed by 
Clausing [2]. He used an OW response for the design 
of a friction-retard paper feeder in a copier machine. 
The function of a paper-feeding mechanism in a 

copier machine to feed exactly one sheet of paper each 
time the mechanism receives an input signal. When 
the mechanism does not feed any paper, it is called 
“misfeed.” When two or more sheets of paper are fed 
into the copier machine at the same time, it is called 
“multifeed.” As shown in Figure 1, this mechanism 
applies friction between the feeder roller and the paper, 
and the torque of the feed roller feeds the paper into 
the printer [3, 8]. 

The friction force between the feed roller and the 
paper is determined by the spring force applied below 
the paper tray. When the spring force is too small, no 
paper will be sent out of the paper tray (misfeed). 
When the spring force is properly set, one sheet of 
paper will be sent out. When the spring force is set too 
large, two or more sheets might be sent out of the tray 
(mulitfeed). The objective the paper feeder design is to 
minimize the rate of both failure modes, i.e., misfeed 
and mulitfeed. Herein, spring force is a critical 
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parameter of the paper feeder and is easy to measure. 
Let the threshold value of the spring force for sending 
one sheet of paper be x (gram-force). Let the threshold 
value of the spring force for multifeeding two or more 
sheets be y (gram-force). We can find two threshold 
values of the force at which the misfeed stops (x) and 
at which the multifeed starts (y). Then, (x, y) forms the 
OW [16].  

 
 

 
Fig.1 Paper feeder mechanism  

 
 
Thus, the objective of the paper feeder design 

becomes to minimize x to decrease number of 
misfeeds, and to maximize y to decrease number of 
multifeeds. Figure 2 shows two situations of an 
operating window. The operating window of situation 
B is wider and has a greater robustness than the 
window for situation A [17]. 
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Fig.2 Operating window. 

 
 
The two failure modes can be eliminated if x is 

reduces to zero and y is increase to infinity. Therefore, 
x is a small-the-better (STB) characteristic and y is a 
larger-the-better (LTB) characteristic. The 

optimization of the OW can be treated as to optimize 
simultaneously the responses of both STB and LTB in 
a system. 

The response function methodology (RSM) is an 
efficient approach to for the modeling and analysis of 
problems in which one or more response of interest 
are influenced by several control factors. Using the 
RSM, one can find the relationship between the 
responses and control factors, and then to optimize the 
responses [11]. Accordingly, this study uses the RSM 
to model the paper feeder’s OW responses. The 
response function model (RFM) is built by training an 
artificial neural network (ANN). The well-trained 
ANN can be applied to predict all possible OW 
responses by inputting full control factor combinations. 
To optimize simultaneously the responses of x and y, 
exponential desirability functions are used to 
integrated the two response into a single measure. 
Finally, the best control factor combination can be 
obtained by maximize the single measure. 
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The rest of this paper is organized as follows. 
Section 2 introduces the ANN approach. Section 3 
applies the exponential desirability functions to 
measure the STB and LTB response. Section 4 
proposes the resolving approach for paper feeder 
design. Section 5 implements the approach to a paper 
feeder design. Conclusions are provided in Section 6. 
 
 
2 ANN 
ANN has been successfully applied to determine the 
optimal parameter design of a process [6, 7]. Applying 
the method, the ANN is trained by the results of a 
fractional factorial design, and is then used to estimate 
the response values for the full factorial design. 
Among the successful implementations of an ANN, 
the backpropagation (BP) training method is most 
reliable. The most used non-linearity for the BP 
algorithm is a sigmoid logistic function [12, 15]. 

The best structure of an ANN is identified through 
comparing the root of mean-square-error (RMSE) of 
each structure. This error-calculation method is used 
to determine the amount of variance between the 
expected and actual outputs of an ANN. The lower the 
RMSE, the better the ANN predicts. Several structures 
of neural networks with different numbers of hidden 
layers and neurons in each hidden layer are tested to 
find the best structure with the lowest RMSE. The 
processes of training a well network are as follows: 
Step 1. Determine the artificial neural networks 

structure, initial connection weights, and 
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offsets. 
Step 2. Present inputs and desired outputs. 
Step 3. Calculate the actual output. 
Step 4. Calculate the RMSE. 
Step 5. Adjust the weights of the networks. 
Step 6. Repeat steps 2—5 for each training pair until 

the RMSE of the entire set is acceptably low. 
Several structures of neural networks with 

different numbers of hidden layers and neurons in 
each hidden layer are selected and are tested to find 
the best structure with the lowest RMSE. Then the 
weights of all the links of the networks are decided. 
 
 
3 Exponential Desirability Functions 
The exponential desirability function approach was 
introduced by Harrington [5] and further modified by 
Kim and Lin [9] and Chang [1]. The exponential 
desirability function transforms an estimated response 
(e.g. the  estimated response) to a scale-free value 
d

ĵr

j, called desirability. It is a value between 0 and 1, 
and increases as the desirability of the corresponding 
response increases. Goik et al. [4] firstly applied 
desirability functions to operating windows design. To 
evaluate different types of quality characteristics, the 
desirability functions are employed here and are 
slightly modified.  

For the LTB type with lower specification limit 
(LSL), the desirability function of the d value 
(denoted by ) is formulated as Equations (1) and 
(2). 

LTBd

 
exp( (exp( )))LTB LTBd = − −Z                (1) 

 
where 

min

min

ˆ
,LTB r rZ

r
−

=                          (2) 

minr  represents the LSL of response r. 
 

For the STB type with upper specification limit 
(USL), the desirability function of the d value 
(denoted by ) is formulated as Equations (3) and 
(4). 

STBd

 

exp( (1 ))STB STBd = − + Z                    (3) 

where 

max

max

ˆ
,STB r rZ

r
−

=                          (4) 

maxr  represents the USL of response r. 
 
 
4 The Approach 
The proposed approach for analyzing the OW 
response problem comprises three phases. The first 
phase involves collecting experimental data for 
training an ANN to represent the RFM of the system, 
which is capable of predicting the corresponding OW 
responses by giving a specific factor combination. In 
the second phase, two novel performance measures 
derived from exponential desirability functions are 
developed for evaluating the OW responses. The third 
and final phase provides the integration of 
performance measures and the optimization processes 
which maximize the OW responses by using the RFM 
and the measures. Figure 3 shows the flowchart of the 
approach. The details of the three phases are described 
in Sections 4.1–4.3. 

Calculate the performance measures

Conduct the experiment and collect the data 

Identify the problems: OW responses,
control factors, and noise factors

Identify the training and testing patterns

Train several ANNs and 
select the best one as the RFM

Predict the OW response of full factor combination

Calculate all performance measures

Obtain the best OW responses and 
the corresponding factor combination

 
 

Fig. 3 The flowchart of the approach 
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 Response Function Model 
This phase uses an ANN to model the response 
function. The input and output data are assigned as the 
level values for the control factor and the OW 
responses, respectively. A well-trained ANN 
represents the system’s RFM. For detailed discussion 
on how an ANN applied to parameter design, readers 
can refer to Rowlands et al. [13]. The process of the 
response function modeling consists of four steps, 
which are as follows: 
Step 1. Randomly select the training and testing 

patterns from the experimental data. 
Step 2. Select several ANN structures including input 

nodes, hidden layers, hidden nodes and 
output nodes. 

Step 3. Set learning rate, momentum coefficient and 
executions iterations for each ANN structure. 

Step 4. Train and choose a well-trained ANN as the 
RFM, which establishes the relationship 
function between control factors and OW 
responses of the system. 

 
 
 Performance Measures 
For the paper feeder design, two OW responses (i.e., x 
and y) are simultaneously determined by of the 
system’s control factor combinations. To measure the 
performance of the response x and y, the exponential 
desirability functions are employed here. For the 
response x, the desirability can be formulated as 
Equation (5). 

max

max

ˆ
exp 1x x xd

x
⎛ ⎞⎛ −

= − +⎜ ⎜⎜ ⎝ ⎠⎝ ⎠

⎞
⎟⎟⎟

,                 (5) 

where maxx  represents the USL of the OW response 
x, which is determined by the designer. 
 
For the response y, the desirability can be formulated 
as Equation (6). 

min

min

ˆ
exp expy y yd

y

⎛ ⎞⎛ ⎞⎛ −
= − −⎜ ⎜ ⎜⎜⎜ ⎝ ⎠⎝ ⎠⎝ ⎠

⎞
⎟⎟⎟⎟⎟

,             (6) 

where  represents the LSL of the OW response 
y, which is determined by the designer. 

miny

 
 
 Optimum obtaining 
To measure the overall performance of the paper 

feeder system, two OW responses need to be 
integrated into a single performance measure (denoted 
by PM). To enhance the overall performance PM, the 
optimizing of the OW response problem can be stated 
as: 

Maxminize x yPM d d= ⋅                 (7) 
 

The optimization processes for obtaining optimal 
control factor combination are as follows: 
Step 1. Predict all possible OW responses of the 

system by presenting full control factor 
combinations to the RFM. 

Step 2. Calculate the overall performance (i.e., PM 
value) of each response at each combination. 

Step 3. Compare the overall performance and obtain 
the best one and the corresponding control 
factor combination. 

 
 
5 Implementation 
A simulated example of paper feeder design is 
executed for obtaining the experimental data. Six 
control factors, A, B, C, D, E and F, are selected and 
are allocated in the L18 orthogonal array (OA) for the 
experiments [13]. Table 1 lists the control factor levels 
and their allocations. The simulated experimental data 
including misfeed threshold (x) and multifeed 
threshold (y) are listed in Table 2. The USL and LSL 
for the thresholds x and y are set as 500 and 400 grams, 
respectively. 
 

 
Table 1 The control factors and their allocations 

Levels Label Factors Column 
in L18 1 2 3 

A Pad coefficient 
of friction 1 Low High - 

B Retard pad 
force 4 Low Nominal High

C Retard angle 
(degree) 5 19 21 23 

D Feed roll to pad 
lateral offset 6 -2mm Centered +2mm

E Width of feed 
belt (mm) 7 10 20 30 

F Roll velocity 8 Low Nominal high 
 

 
The RFM can be built through training an ANN 

model. The ANN is trained by assigning the levels of 

 

WSEAS TRANSACTIONS on SYSTEMS Hsu-Hwa Chang, Chih-Hsien Chen

ISSN: 1109-2777 20 Issue 1, Volume 7, January 2008



control factors and the values of thresholds (i.e., x and 
y) as the inputs and outputs of the network. Eight 
patterns are randomly selected for testing and 64 
patterns are selected for training. The learning rate is 
set as auto-adjusting between 0.01 and 0.3. The 

momentum coefficient is set as 0.80. The number of 
iterations is set as 15,000. Table 3 lists several options 
of the network architecture; furthermore, the structure 
6-8-2 with the lowest testing RMSE, 0.1468, is chosen 
to obtain a better performance. 

 
 

Table 2 The allocations of the control factors and the experimental data 
Control factor array Experiment 

No. A B C D E F 
x value (gram) y value (gram) 

1 1 1 1 1 1 1 335 340 298 326 633  680 816 720 
2 1 2 2 2 2 2 309 321 282 279 635  595 735 637 
3 1 3 3 3 3 3 335 286 373 228 664  677 774 756 
4 1 1 2 2 3 3 286 429 414 300 660  682 594 729 
5 1 2 3 3 1 1 463 309 352 314 586  788 613 604 
6 1 3 1 1 2 2 267 323 339 259 754  745 702 678 
7 1 2 1 3 2 3 331 290 335 249 586  709 685 533 
8 1 3 2 1 3 1 302 272 395 269 798  691 712 778 
9 1 1 3 2 1 2 250 337 335 368 613  669 591 665 

10 2 3 3 2 2 1 390 370 384 202 531  508 805 758 
11 2 1 1 3 3 2 255 282 277 326 702  666 704 654 
12 2 2 2 1 1 3 245 381 329 325 631  698 592 609 
13 2 2 3 1 3 2 323 247 326 321 680  655 605 727 
14 2 3 1 2 1 3 273 247 340 354 698  755 691 724 
15 2 1 2 3 2 1 360 153 282 292 648  700 782 696 
16 2 3 2 3 1 2 231 226 335 221 529  698 640 539 
17 2 1 3 1 2 3 173 273 377 223 560  587 797 714 
18 2 2 1 2 3 1 199 307 323 285 613  621 806 753 

 
 
 

Table 3 The candidate ANN models 
RMSE 

Architecture 
Training Testing 

6-4-2 0.1329 0.1478 
6-5-2 0.1325 0.1474 
6-6-2 0.1316 0.1476 
6-7-2 0.1319 0.1477 
6-8-2 0.1313 0.1468 
6-9-2 0.1324 0.1473 

6-10-2 0.1315 0.1469 
6-11-2 0.1314 0.1473 
6-12-2 0.1317 0.1471 
6-13-2 0.1315 0.1475 

 

 
Through the RFM, the responses x and y under 

any possible combinations of control factors can be 
accurately predicted. Then, the PM value of the 
responses x and y can be calculated easily by applying 
Equations (5) — (7). Table 4 lists six factor 
combinations that have larger PM values. Paper feeder 
designers can freely choose appropriate control factor 
combinations from Table 5 under the considerations of 
cost, time, and material. Moreover, the control factor 
combinations (A2, B3, C1, D3, E3, F2) is the best one in 
terms of PM value.  
 
 
6 Conclusion 
In this study, an ANN-based approach is proposed to 

 

WSEAS TRANSACTIONS on SYSTEMS Hsu-Hwa Chang, Chih-Hsien Chen

ISSN: 1109-2777 21 Issue 1, Volume 7, January 2008



resolving the operating window design of a paper 
feeder. The approach consists of three phases. First, an 
ANN is trained to represent the RFM of the system. 
Second, the PMs of the predicted OW responses are 
evaluated by presenting full combinations of control 
factors into the RFM. Finally, the best control factor 
combination can be obtained by maximizing the PM 
value. The implementation of the paper feeder design 
reveals the approach’s effectiveness. Performing the 
approach, engineers do not require much background 
in statistics but instead rely on their knowledge of 
engineering. Besides, no costly statistical software 

package is needed when engineers employ the 
approach. Engineers can gain a software package of 
ANN at a relatively low cost, thereby increasing their 
desire to adopt the approach. The proposed approach 
can be also applied to other industrial systems that 
have binary-type performance such as wave soldering 
and resistance welding. Furthermore, in future 
research, some meta-heuristics techniques such 
genetic algorithm and simulated annealing can be 
considered introducing to the optimization process for 
improving the effectiveness of the approach. 

 
 

Table 4 Six factor combinations that have larger PM values 

No. Control factor settings x̂  ŷ  xd  yd  PM value

1 A2 BB3 C1 D3 E3 F2 216 691 0.6498 0.6166 0.6330 
2 A2 BB3 C1 D3 E2 F3 215 687 0.6502 0.6136 0.6316 
3 A2 BB3 C1 D3 E3 F1 230 709 0.6317 0.6302 0.6309 
4 A2 BB3 C1 D3 E2 F2 219 689 0.6459 0.6154 0.6305 
5 A2 BB3 C1 D3 E3 F3 217 683 0.6478 0.6106 0.6289 
6 A2 BB1 C1 D3 E1 F2 235 704 0.625 0.6264 0.6258 
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