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Abstract: - Global convergence and overfitting are the main problem in neural network training. One of 
the new methods to overcome these problems is sampling theory that is applied in training of wavelet 
neural network. In this paper this new method is improved for training of wavelet neural network in non 
uniform and noisy data. The improvements include suggesting a method for finding the appropriate 
feedback matrix, addition of early stopping and wavelet thresholding to training procedure. Two 
experiments are conducted for one and two dimensional function. The results establish a satisfied 
performance of this algorithm in reduction of generalization error, reduction the complexity of wavelet 
neural network and mainly avoiding overfitting. 
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1 Introduction 
Neural networks are proven to be a powerful 
tool for modeling nonlinear systems using 
numerical data [19,20]. The generalization 
capability is an ultimate criterion for measuring 
the validity of identified models. Overfitting is 
one of the most important problems in neural 
network learning. Complexity of model and 
noise contents in training data are two major 
sources of this problem.  
     Wavelet neural networks which use wavelets 
as basis function are found to have various 
interesting properties including fast training and 
good generalization performance [2]. Various 
methods have been proposed for structure 
selection and training of wavelet neural 
networks [1,2]. Recently, training wavelet neural 
network based on sampling theory has been 
proposed by Zhang [1]. This new algorithm is 
based on the limited band of wavelet networks, 
in which the input weights are determined by the 
sampling period or the frequency band of the 
target function (if available). This approach has 
been shown to have global convergence and 

avoid overfitting for non-noisy equi-spaced 
samples. 
     In many practical situations, a finite number 
of samples of the target function are known and 
there is not a priori information about the 
frequency contents and frequency band of the 
target function. Without using information about 
target signal (or noise), relying on sampling 
period for finding the input weights of the neural 
network may results in a complex structure and 
serious overfitting. To overcome this problem, a 
suitable model selection approach for 
complexity control and preventing overfitting 
should be used.   
     In case of noisy data, wavelet thresholding 
and early stopping are two helpful techniques for 
suppressing the overfitting by preventing the 
noise to be trained in the wavelet neural 
network. In wavelet thresholding technique, 
various methods are presented by donoho and 
silverman for denoising of uniform data [6,7] 
and non uniform data [8,9,10,11,21] in case of 
white and colored noise. In the wavelet 
thresholding techniques, the wavelet basis 
functions with coefficients smaller than 
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specified thresholds will be eliminated because 
they essentially represent noise. This approach 
has been proven to be a powerful method in 
wavelet domain denoising. In the early stopping 
technique, which is a general approach in neural 
network modeling, the training data are divided 
into several sets for training of networks and 
validation of generalization capability. In this 
technique, before achieving a minimum training 
error, the training course is stopped at certain 
iteration. The stopping iteration is decided by 
cross validation. 
     Using only the sampling period for 
determination of the input weights of a wavelet 
neural network may results in a very large 
number of basis functions and overfitting. In this 
article, we have shown that using wavelet 
thresholding and or early stopping in 
conjunction with the sampling information of 
the given data will results in a less complex 
network with better noise removal. 
     This article is divided into four sections.   
Following this introduction, section 2 briefly 
reviews the theory of wavelet networks and its 
training based on the sampling theory. In section 
3, new approaches developed for improvement 
of the wavelet neural network training based on 
sampling theory are presented. This section 
includes two parts. The first part explains a new 
method for constructing the appropriate 
feedback matrix and the second part explains 
developments in the training wavelet network. In 
section 4 simulation results for both one and 
two-dimensional target functions are presented. 
 
 

2 Wavelet network and sampling 
theory   
 
 
2.1 Review of wavelet neural network 
In neural network learning, in order to take the 
full advantage of orthonormality of basis 
function, with localized learning, we need a set 
of basis functions which are local and 
orthogonal. Wavelets are new family of 
localized basis functions that have found many 
applications in large areas of science and 
engineering [2,3]. Wavelets are universal 
approximator which can be used to approximate 

any arbitrary multidimensional nonlinear 
function. They have many powerful 
mathematical properties such as orthonormality, 
locality in time and frequency domains, different 
degrees of smoothness, fast implementations, 
and effective compact support.  
     Wavelets are usually introduced in a 
multiresolution framework developed by Mallat 
[3]. We focus on the wavelet networks 
constructed from a multiresolution analysis 
(MRA) [3]. Consider a function ݂(ݔ) in ܮଶ(ℝ), 
where ܮଶ(ℝ) denotes the vector space of all 
measurable, square integrable one dimensional 
functions. In addition, assume ܸ be the vector 
space containing all possible approximations of ݂(ݔ) at the resolution ݉. Then, the ladder of 
spaces ܸ , ݆߳ℤ represents the successive 
resolution levels for ݂(ݔ). The properties of 
these spaces are as follows:  
1. 
(Nested)  ܸ ⊆ ܸାଵ ,∀݆ ∈ ℤ                           (1) 
2. ݂ሺݔሻ ∈ ܸ  ⇔ ݂ሺݔ − ݇ሻ ∈ ܸ ,∀(݆,݇) ∈ ℤଶ    (2) 
3. 
(Density) ݈ܿ݁ݏమ൫ڂ ܸ∈ℤ ൯ =  ଶ(ℝ)             (3)ܮ
4. 
(Separation) ځ ܸ∈ℤ = ሼ0ሽ                             (4) 
5. 
(Scaling) the function ݂(ݔ) belongs to ܸ if and 
only if the function ݂(2ିݔ) belongs to ܸ    (5) 
6. 
(Basis) There exists a function ߶ ∈  ଶ (called aܮ
scaling function or a father wavelet), with ߶, = 2 ଶΤ ߶(2ݔ − ݇), such that ൛߶,;݇ ∈ ℤൟ 
is a basis for ܸ.                                              (6) 
     The function ߶ is called a scaling function of 
the multiresolution analysis (MRA). A family of 
scaling functions of the MRA is expressed as: ߶,ሺݔሻ = 2 ଶΤ ߶൫2ݔ − ݇൯ , ݆,݇ ∈ ℤ   (7) 
Where 2 and k correspond to the dilation and 
translation factors of the scaling function 
respectively while 2/ଶ is an energy 
normalisation factor. 
     Let ܹ be the orthogonal complement of ܸ to ܸାଵ ( ܸ⨁ ܹ = ܸାଵ). Then the orthonormal 
basis functions corresponding to ܹ�s named 
wavelets and denoted by ߰,�s can be easily 
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obtained from ߶,�s[3]. A family of wavelets 
may be represented as: ߰,ሺݔሻ = 2 ଶΤ ߰൫2ݔ − ݇൯ , ݆,݇ ∈ ℤ   (8) 
with 2,k and 2/ଶ being the dilation, 
translation, and normalisation factor of the 
wavelets, respectively. Next ܮଶ(ℝ) can be 
expressed as: ܮଶሺℝሻ = ⋃∈ℤ ܸ = ⋯ ିܹଵ⨁ ܹ⨁ ଵܹ� =⨁∈ℤ ܹ                                                              (9) 

Where ܹ ⊥ ܹ for ݆ ≠ ݉.  
     Fig.1 illustrates the relation between ܸ and ܹ spaces in MRA: 
                        ܸାଵ = ܸ⨁ ܹ  
 ଶ(ℝ)ܮ                                                     
 
 
 
 
 
 
 
 
 
 
 
Fig.1 Embedded spaces ܸ�s for multiresolution 
representation of ܮଶ(ℝ) 
 
     Equation (9) indicates that the wavelet basis 
generates decomposition of the ܮଶ space. It 
shows that any ܮଶ function is uniformly 
approximated using a wavelet series: ݂ሺݔሻ = σ σ ݀,߰,(ݔ)ୀାஶୀିஶୀାஶୀିஶ                 (10) 
If we start from the approximation of the 
function at resolution j=0, then: ݂ሺݔሻ = ݂ሺݔሻ + σ σ ݀,߰୨,୩(x)ୀାஶୀିஶୀାஶୀ     (11) 

Where ݂ሺݔሻ = σ ܽ,߶,(ݔ)ୀାஶୀିஶ                     (12) 
We can conclude that any function݂(ݔ) ∈  ଶ canܮ
be written as a unique linear combination of 
wavelets of different resolutions. This means 
that ሺݔሻ = ⋯+ ݃ିଵሺݔሻ+ ݃ሺݔሻ+ ݃ଵሺݔሻ+ ⋯ , 
where ݃(ݔ) ∈ ܹ is unique. Since ܸ = ܹ +ܹିଵ +⋯ and spaces ܸ can be generated by the 
scaling function ߶(ݔ) ∈   ଶ, there existsܮ
 ݂ሺݔሻ = σ ܿ,߶൫2ݔ − ݇൯ =ஶୀିஶσ ܿ,߶,ஶୀିஶ                                          (13) 
Such that ԡ݂ሺݔሻ− ݂(ݔ)ԡ⟶ 0 when j→∞. In 
fact formula (13) is just the presentation of 
wavelet networks with three layers. In an impact 

interval of interest, formula (13) can be written 
ass: ݂ሺݔሻ = σ ܿ,߶,(ݔ)ூభୀூబ             (14) 

Where ߶, = ߶(2ݔ − ݇). A wavelet network 
is realized by taking ܿ,�s as the output weights, 2�s as the input weights and ߶(ݔ − ݇) as the 
activation function.  
Variety of approaches have been proposed for 
determining wavelet network parameters such as 
input weights 2 and also output weights c୨,୩�s. 
Here we use the approach based on sampling 
theory proposed by Zhang[1] for specifying 
appropriate resolution j. 
 
 
2.2 Sampling theory 
Since we use the sampling theory for the 
training of wavelet network, we briefly 
introduce some aspects of the sampling theory. 
For more discussions, we refer the reader to 
[17,18]. An analog signal can be simply 
discretized by recording its sample 
valuesሼ݂(݊ܶ)ሽ∈ℤ at interval T. An 
approximation of f(x) at any ݔ ∈ ℝ may be 
recovered by interpolating these samples.  
     If the samples ݔare taken in constant T 
period, then the target function is represented as: ݂ሺ݊ܶሻ = ݂ሺ݊ܶሻݔ)ߜ − ݊ܶ)     (15) 
The Fourier transform of the discrete signal 
obtained by sampling f at intervals T is: መ݂ௗሺݓሻ = ଵ்σ መ݂(ݓ − ଶగ் )ାஶୀିஶ     (16) 

If the support of መ݂ is included in ሾ−ߨ ܶΤ ߨ, ܶΤ ሿ 
then ݂ሺݔሻ = σ ݂ሺ݇ܶሻ((ݔ − ݇ܶ) ܶΤ )ାஶୀିஶ     (17) 
On the other hand, the frequency band of 
wavelet network that described in previous 
section is obtained as follows:  ห ሚ݂(ݓ)หଶ݀ݓஶିஶ ≤  ห ሚ݂(ݓ)หଶ݀ݓଶೕೢିଶೕೢ +2ିߝ σ ห ܿ,หଶ                                (18) 
So the energy of wavelet network is 
concentrated well in the following frequency 
band: ൣ−2ܾ௪, 2ܾ௪൧                             (19) 
The parameter ܾ௪ only depends on scaling 
function. Formula (19) means that the frequency 
band of wavelet network can be controlled by 
input weights.  
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     Suppose ሼ݇ܶ, ௦݂(݇ܶ)ሽ�s are training data with σ ȁ ௦݂(݇ܶ)ȁଶ < +∞  then, by the sampling 
theorem, there exists a unique function ݂(ݔ) to 
interpolate all training data in the Paley�Wiener 
space ்ܲ. On the other hand, a wavelet network 
is a function in ܮଶ(ℝ) so a wavelet network 
represents a function in ்ܲ if its Fourier 
transform has a support included in ሾ−ߨ ܶΤ ߨ, ܶΤ ሿ. 
     This means that the network ݂(ݔ)whose 
Fourier transform has a support in ሾ−ߨ ܶΤ ߨ, ܶΤ ሿ 
is complex enough to recover a band-limited 
function. Since the regularity of function is 
related to the asymptotic decay of Fourier 
transform, a band-limited function is always 
��smoother�� than the other functions. This 
means that the training results that are obtained 
when the frequency band of wavelet network is 
limited in the interval ሾ−ߨ ܶΤ ߨ, ܶΤ ሿ are always 
more regular than the results that are obtained 
when the band is limited in the other intervals, 
so we limit the frequency band of wavelet 
network to ሾ−ߨ ܶΤ ߨ, ܶΤ ሿ in our new algorithm. 
According to (18), the input weights can be 
calculated using following formula: 2 = ߨ (ܾ௪ × ܶ)Τ                        (20) 
     This formula is the consequence of a 
distinguishing property of wavelet function that 
its energy is well localized in frequency domain. 
For constructing the structure of wavelet 
network, the property of energy concentration of 
wavelet in time domain should be employed. In 
wavelet network, the ݇௧ node has the following 
input-output function: ܵ௨௧ = ߶(2 ܵ − ݇)                 (21) 
     Where ܵ is the input, 2�s are the input 
weights, k is the ݇௧ threshold and ߶(∘) is the 
scaling function. If the support of scaling 
function is limited to ൣ0, థܰ൧, then the ݇௧ node 
of network has the following support: ൣ2ି݇, 2ି( థܰ + ݇)൧                 (22) 
     Assume the domain of interest for estimation 
of function is the interval [a,b], then the 
translations are found as follows: 2ܽ − థܰ ≤ ݇ ≤ 2ܾ                (23) 
Many methods have been proposed for training 
output weights of wavelet neural network based 
on minimizing error function: ܬሺ ௦݂, ݂ሻ = σ ȁ ௦݂ሺݔሻ− ݂(ݔ)ȁଶேୀଵ            (24) 

     Whereሼݔ, ௦݂(ݔ)ሽ�s are samples and ݂(ݔ)�s 
are output of approximator. Without any 
additive term, this cost function is widely used 
in the training of networks because of 
convenient implementation. 
     Three commonly used methods are direct 
solution method, iterative method and inner 
product method. In this paper, the iterative 
method is employed for training the output 
weights. In this method the output weights can 
be calculated as follows: ܧ(ାଵ) = ௦ܨ − ߶×ܥ(ାଵ)                        (25) ܥ(ାଵ) = ()ܥ +  (26)                              ()ܧܣ
     The column vector ܧ() denotes the error of 
interpolation by the wavelet network at ݇௧ 
iteration, the column vector ܥ() represents the 
output weights at ݇௧ iteration and the matrix ܣ 
is the feedback matrix. The values of elements in 
the feedback matrix indicate that how much the 
errors in each data point would affect on output 
weights. The ߶× matrix is  ߶× =߶,ூబ(ݔଵ) ⋯ ߶,(ݔଵ) ⋯ ߶,ூభ(ݔ)⋮ ⋯           ⋯ ⋮߶,ூబ(ݔ) ⋯ ߶,(ݔ) ⋯ ߶,ூభ(ݔ) 
(27) 
     Where the subscript ܫ = ൣ2ܽ − థܰ൧ and the 
subscript ܫଵ = ሾ2ܾሿ, which denote respectively, 
the minimum and maximum of translation ݇ 
obtained from (23).  
The structure of wavelet network with two sub 
wavelet network is depicted in Fig.2: 
 
 

 
 
 
 
 

Fig.2 structure of wavelet neural network with two sub 
network 

 
Zhang [1] has shown that we always can find a 
feedback matrix that causes the iterative course 
to converge to fix point. However there is not a 
unique method for constructing the feedback 
matrix. In the next section, an intuitive method 
for finding this matrix is proposed.  
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3 Modifications in the training of 
wavelet network 
We propose three modifications for 
improvement in training of wavelet network that 
will be discussed in the following sections.  
 
3.1 Determination of appropriate 
feedback matrix 
In this part, an intuitive approach for finding the 
appropriate feedback matrix is proposed. In this 
method the feedback matrix is constructed based 
on the ߶ matrix. This method uses the receptive 
field of each node or scaling function in wavelet 
network. It means that each output weight is 
trained only using the training data that lie in the 
receptive field of its node. However, all of these 
training data should not have the same effect in 
training of output weight. It means that the 
training data that the scaling function has a 
larger value in its location have a stronger effect 
in training of output weight.  
     On the other hand, the elements of feedback 
matrix represent the effect of each training data 
in training of output weight in each node. Since 
the values of ߶ matrix represents the amplitude 
of scaling function in each data point, the 
feedback matrix should be constructed based on ߶ matrix. We use the forth order cardinal scaling 
function as activation function that shown in 
Fig.3 as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   Fig.3 Fourth order cardinal scaling function at scale=1 
 
      
     According to Fig.3, the domain that the 
scaling function has larger amplitude is in the 

vicinity of zero. In other words, the training data 
that lie in this vicinity have intensive effect on 
training of the correspondent output weight. 
Therefore we can define different levels of effect 
for training data in each node. Therefore, the 
procedure for finding the appropriate feedback 
matrix is stated as follow: 
1. Generate raw feedback matrix: ܣ = ߶்  
2. Define levels of effect by partitioning the 
amplitude of scaling function by levels 2ܭ & 1ܭ & � as depicted in Fig.1 (about 2 or 3 
levels is appropriate.) 
3. Assign the values of a, b and c that represent 
the values of effect for each level. These values 
can be calculated by trial and error. 
     Performance of the algorithm is indicated by 
training a sinusoidal function. In this example, 
different groups of levels of effect and values of 
effects are applied in training course. The 
convergence of four training courses is 
compared together. The results are shown 
below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4 Comparison of MSE for different feedback matrix 
 
     In Fig.4, mean square error (MSE) versus 
Number of iteration is depicted. In comparison 
between 4 figures, it�s concluded that by 
appropriate assignment of levels of effect and 
values of effect, the MSE converges to zero by 
increasing of iteration. 
 
 
3.2 Improvement in algorithm for 
training non uniform data 
For uniform sampled data, training wavelet 
neural network based on sampling theory shows 
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quite acceptable results. However, for non 
uniform data, the algorithm encounters severe 
problems such as high overfitting error and 
deviation of estimated function from the actual 
target function. Here we use some available 
techniques to overcome this problem. These 
techniques are described in detail in the 
following sections. 
 
3.2.1 Optimum number for sub wavelet 
networks  
For training of non uniform data, the domain of 
interest for estimation is divided in some clusters 
that the sampling rate is approximately uniform 
in each cluster. The formula that is proposed by 
Zhang in [1] is described as follows: ܦ = ݇ݑݏ ∈ ℤȁݔ − ݇ܶȁ < 0.25 × ܶ      (28) 

In this formula, ݔ denotes the training data at ݇௧ point, ܶ denotes the approximate sampling 
rate and ܦ denotes the maximum distance 
between training point in cluster with data in 
uniform sampling rate. In implementation of this 
method in simulation, it will be proved that 
because of generating multitude sub wavelet 
network, noise contents will be trained in 
estimation of wavelet network. This event 
causes overfitting error in estimation. In 
simulation, it is proved that the best criterion for 
generating the appropriate clusters for domain of 
interest is as follow: ܦ = ݇ݑݏ ∈ ℤȁݔ − ݇ܶȁ < 0.99 × ܶ      (29) 

Using formula (29), the number of sub wavelet 
network is optimized and results in less noise 
content in estimation of wavelet neural network.            
     The performance of the new proposed 
formula is shown in training of exponential 
function in Fig.5. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5 Comparison of estimations for 2 methods 

3.2.2 Application of wavelet thresholding 
The wavelet thresholding is an effective way for 
removing noise content from training data 
[6,7,8].  
     Hard and soft thresholding could be 
employed for this purpose. Hard thresholding 
can be described as the usual process of setting 
to zero the output weights whose absolute values 
are lower than the threshold. Soft thresholding is 
an extension of hard thresholding, first setting to 
zero the output weights whose absolute values 
are lower than the threshold, and then shrinking 
the nonzero weights towards 0. Fig.6 depicts 
ramp signal that is thresholded in the amplitude 
of 0.4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.6 Comparison between hard and soft thresholding 
 
     There are some approaches for determining 
the value of threshold. The stein�s unbiased risk 
estimate (sure), fixed form threshold, the 
mixture of two methods and minimax estimation 
principle, are four methods that is presented in 
the literature [6,7,8,9,10,11].  
     In addition, there are different types of noise 
such as white noise, unscaled white noise and 
non white noise that can be treated by different 
types of wavelet thresholding. These methods of 
wavelet thresholding could be added to the 
training procedure of wavelet network for 
reducing the effect of overfitting. In simulation 
(section 4), it is proved that by defining a 
threshold, the estimation performance is 
improved.  
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3.2.3 Apply early stopping  
Early stopping technique is widely used in 
neural network training for reducing the effect of 
noise and overfitting. This technique causes the 
training course to stops when the test error 
begins to increase. In simulation (section 4), it is 
shown that this technique intensively affect on 
reducing the overfitting error. 
 

 
4 Simulation 
In this part, we indicate the performance of the 
proposed modifications described previously. 
This section includes two parts. In the first part, 
the one dimensional function is employed and in 
the second part the two dimensional function is 
used.  
 
 
4.1 Learning one dimensional function 
 
4.1.1 The target function 
For comparison purposes, we use the function 
that is used in [1]. The target function is: ௦݂ሺݐሻ = σ ݁ି(௧ି)మଷୀିଷ                (30) 
And the interval [-10, 10] is taken as domain of 
interest. The shape of target function is shown in 
Fig.7 as below: 

 
 
 
 
 
 
 
 
 

Fig.7 Target function 
 
For producing non uniform data the random data 
with uniform distribution is employed. The 
noise function ݊(ݐ) of Gaussian distribution is 
added to training data. The noise has zero mean 
and variable variance with time as follows: ߪଶሺݐሻ = (0.005 + 0.009ȁݐȁ)ଶ                (31)   
 

The noise function is depicted in Fig.8 as shown 
below: 

 
 
 
 
 
 
 
 
 
 

Fig.8 The noise function 
 
     Now the training data are generated. For 
generating the test data, we use the same 
method. 
     In each iteration, the wavelet network is 
tested with test data and if the mean square error 
begins to increase, then the training course stops. 
The objective of this simulation is to compare 
the performance of method in [1] with the 
improved one that described in previous 
sections. First we should find the appropriate 
feedback matrix for training. 
 
4.1.2 Results of training 
After some iteration, the values that are achieved 
for levels of effect and values of effect values are 
as follows: ݇ଵ = 0.4 ,݇ଶ = 0.1  ܽ = 0.3 ,ܾ = 0.01 , ܿ = 0                    (32) 
     In simulation, the method that is described in 
[1] is called method I and the improved one that 
is described in this paper is called method II. 
This method contains decreasing of sub wavelet 
networks, applying wavelet thresholding and 
addition of early stopping to training procedure. 
The structures of wavelet network that are 
generated of two methods are shown in Table 1. 
Table 1 
 Comparison of two wavelet networks  

                      No. of sub                     No. of 
                         wavelet networks          nodes 

Method I          81                                 413 
 
    Method II          7                                   72 
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Table 2 
Statistic errors of two methods 

                                     Maximum absolute error                Mean absolute error                        Root mean square error 
Method I                             0.20019                                           0.043885                                           0.058885     
 

   Method II                           0.11919                                           0.026758                                           0.036794 

 
 
     According to Table 1, the wavelet network of 
method II is so smaller in number of sub wavelet 
network and also nodes. The training course of 
method I is stopped after 200 iterations, but in 
method II the training course stopped after 8 
iterations. The value for wavelet thresholding in 
method II is chosen0.009. The estimation results 
are depicted in the Fig.9 and Fig.10. This result 
indicates that in addition of reducing the sub 
wavelet networks, the iterations of training 
course and also the overfitting error are 
significantly reduced. By comparison of two 
figures, it�s clear that in addition to noise 
reduction, the estimated function in method II is 
smoother than the one in method I. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.9 Estimation of wavelet network with method I 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.10 Estimation error of wavelet network with method II 
 

 
4.2 Learning two dimensional function 
 
4.2.1 The target function 
The target function that is used for this course of 
training is in domain ሾ−10,10ሿ× ሾ−10,10ሿ and 
is as follows: ௦݂ = ݁ି.ଶହ(௫మା௬మ) + ݁ି.ଶହ(ඥ௫మା௬మିଵ)మ +݁ି.ଶହ(ඥ௫మା௬మିଶ)మ                (33) 
     The noise function is of Gaussian distribution 
with zero mean and variable variance as follows: ߪଶ = 10ିସ + 10ିଷߩଶ             (34) 
     The shapes of target function and noise 
function are shown in Fig.11 and Fig.12 as 
below: 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.11 The target function 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.12 The noise function 
 
 

-10 -8 -6 -4 -2 0 2 4 6 8 10
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-10 -8 -6 -4 -2 0 2 4 6 8 10
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-10
-5

0
5

10

-10

-5

0

5

10
0

0.2

0.4

0.6

0.8

1

xy

fs(x,y)

z

-10
-5

0
5

10

-10

-5

0

5

10
-0.5

0

0.5

xy

n(x,y)

z

WSEAS TRANSACTIONS on SYSTEMS Ehsan Hossaini Asl, Mehdi Shahbazian, Karim Salahshoor

ISSN: 1109-2777 1388 Issue 12, Volume 7, December 2008



Table 4  
Statistic errors of two methods 
                                Maximum absolute error                Mean absolute error                        Root mean square error 

Method I                           0.45125                                        0.060125                                             0.080736 
 
Method II                          0.33816                                        0.045253                                             0.062437 

 

 
4.2.2 Results of training 
After trial and error, the levels of effect and 
values of effect of feedback matrix are calculated 
as follows: ݇ଵ = 0.35  ܽ = 0.22 ,ܾ = 0                    (35) 
     Table 3 compares the structure of wavelet 
networks that are generated by these two 
methods.  
 
Table 3 
Comparison of two wavelet networks 

                  No. of sub                               No. of  
                     wavelet networks                  nodes 

Method I              81                                   170569     
 
Method II            10                                     7114 

 
     According to Table 3, it�s clear that the 
wavelet network that is generated by method II 
is much smaller than the first one. This leads to 
less mathematic computation and compensating 
in time of training course. 
     The Fig.13 to Fig.16 depicts the results of 
two methods. As it is clear in these figures, the 
results of method II contain less noise and so its 
performance in rejecting noise is better than the 
method I in [1]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.13 Estimation of wavelet network with method I 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.14 Error surface of method I 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.15 Estimation of wavelet network with method II 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.16 Error surface of method II 
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     The results of method I are achieved after 
100 iterations but in method II, the results are 
gained after 15 iterations. The wavelet threshold 
value that is chosen in this course of training is 
0.009. Table 4 also shows that the maximum 
absolute error, mean absolute error and root 
mean square error are decreased by reducing the 
number of sub wavelet networks and also the 
number of nodes and also applying early 
stopping technique. Therefore method II avoid 
wavelet neural network from over training the 
noise contents of target function in training 
course. 
 
 

5. Conclusion  
Training wavelet neural network based on 
sampling theory has been shown to have good 
performance for uniform data. For non uniform 
noisy data, however, it encounters severe 
problems such as overfitting and large number 
of sub wavelet networks and long training 
course. This paper has proposed modifications to 
this approach to improve its performance. We 
proposed a new method for determining the 
feedback matrix, reduction the number of sub 
wavelet networks and employing some useful 
techniques for complexity control like wavelet 
thresholding and early stopping to overcome 
overfitting. The simulation results proved that 
applying this modification results in smaller 
wavelet network with faster training and less 
overfitting. Actually the main problem in 
wavelet networks based on sampling theory is 
that in practice, no information about noise is 
employed in determination of input weights. 
Therefore we recommend new researches on 
including the information of target function 
and/or noise in determining the input and output 
weights of wavelet network.  
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