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Abstract - A generalized profile function model (GPFM) provides  an approximation of  individual profile 
functions of the objects (trees) in a region. It is shown in this paper that this generalized model can be 
successfully derived using artificial computational intelligence, that is, neural networks.  The generalized model 
(GPFM) is obtained as a mean value of all the available normalized individual profile functions. Generation of  
GPFM is performed by using the  basic dataset,  and verification is done by using a validation data set. As an 
example of the application of the proposed GSPM in volume computing, 42 objects from the same region are 
considered. Statistical properties of the original, measured data and estimated data based on the generalized 
model are presented and compared. Testing  of the obtained GPFM is performed also by regression analysis. 
The obtained correlation coefficients between the real data and the estimated data are very high, 0.9946 for the 
basic data set and   0.9933 for the validation dataset.  
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1 Introduction 
In this paper a derivation of the generalized profile 
function model  (GPFM) based on neural networks is 
described. It is known that neural networks (NN) can 
be used very successfully in the process of  modeling 
of many biological processes [1, 2, 3, 4]. The  
generalized model provides  an approximation of the 
individual profile function of any object in region [5, 
6, 7 ].  A region can contain many  thousands of 
individual objects (spruce trees) with their own 
individual profile functions. Measurements on all 
objects is practically impossible and because of that  
we shall try to find a generalized model that enables 
getting any individual profile functions without 
detailed measurements on the objects themselves. In 
other words, we are trying to get a generalized 
model, in order to be able to get an approximation of 
any individual profile function, only by using the 
basic measured values D and H  that is, the sets of 
values, data pairs, (1.3, D ) and (H, 0), where D is 
the diameter of a tree at  breast height, 1.3m, H is the  
total height of a tree, and, generally, the set of values 
or data pairs (h,r) which denote the tree radius r at 
the height h. 
________ 
*Research is supported by the Ministry of Science 
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Using the individual profile functions we can 

get very accurate  volumes of all the objects [7 ].  On 
the other hand, using the obtained approximations of 
the individual profile functions we can compute only 
approximate values of these volumes. Obviously, it 
is important that the errors in volume computing are 
unbiased. In this case  the sum of the volumes of all 
objects from a region will be computed with minimal  
error.  The overall volume of all objects from whole 
region is important because of sustainable 
management of the considered ecological system [8, 
9, 10, 11]. 
 
2 Input Data Specification 
 
The total data set contains 260 data which are 
divided into two datasets [12]. The basic data set will 
be used for obtaining the generalized profile function 
model and the validation dataset will be used for 
verification  of the obtained generalized model. In 
our case we have used 13 data sets (h,r) for every 
object. In fact, in the considered case 14  objects will 
be used to get the generalized profile function model 
and verification will be performed on 6 new objects.  
 

The basic statistics of the measured data, that is, 
of  the input data set, are summarized in Table 1. 
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Table 1. Summary statistics of the input 
datasets 

 
Numb.  

o f   
data  

Aver .  Med.  SD Min. Ma x.

Tota l  
Da ta se t  26 0  8 . 1 0 08  7 . 2 0 00  5 . 9 4 18  0 .0 2 9 . 5 0

Bas i c  
Da t a se t  18 2  7 . 4 9 75  6 . 3 2 50  5 . 9 0 19  0 .0 2 9 . 5 0

Va l i da t i o n  
Data se t  78  9 . 5 0 83  1 0 . 4 25 0 5 . 8 3 15  0 .0 2 3 . 7 5

 
  

Histograms of the measured values of the 
total, basic and validation dataset are shown in 
Figs.1, 2 and 3. 
 
 

 
 

Fig.1.  Histogram of  the measured values  
of the total dataset 

 

 
 

Fig.2.  Histogram of the measured values  
of the basic dataset 
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Fig.3. Histogram of  the measured values  
of the validation  dataset 
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The scatterplots and time sequence plots of  the 

measured values of the total, base and validation 
datasets are presented in the figures in Appendices 
A,  B and C, respectively. 

    

fr
eq

ue
nc 100 

 
3 Specific Profile Function Models 
Based on Neural Networks 
Artificial neural networks, in short, neural networks 
(NN), represent a very efficient and powerful tool of 
computational artificial intelligence. In modeling 
many different biological process NN ensure smaller 
modeling error than classical methods based on 
polynomials or exponential approximation functions 
[1, 2, 3] .  

A typical structure of a NN is the three-layer feed 
forward NN. The commonly used activation 
functions of neural networks include linear functions 
for output neurons, logistic sigmoid functions for 
hidden neurons, and identity functions for input 
neurons. Histogra

It is known that the best model for the observed 
data in the sense of  generalization is obtained in the 
case of a minimal number of neural network layers 
and individual neurons  (for a general discussion, see 
[13, 14]). In our case, network complexity is 
determined simply by the number of free model 
parameters, that is by the number of tansig neurons 
in the second (hidden) layer. The tansig neurons 
have logistic sigmoid tangent hyperbolic transfer 
function. The method of structural risk minimization 
(SRM) provides a general systematic procedure for 
achieving the best performances  by controlling the 
so-called VC dimension [13, 14]. In our case, we 
found the best network stucture by  decreasing, step 
by step, the number of tansig neurons in the hidden 
layer [15].  
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In this study, a three layered feed forward NN 
with the back propagation algorithm and with 2 
tansing neurons in the hidden layer was used. 

0.4

As  an example, we shall  consider two very 
different  individual profile functions. The process of 
NN learning (or training) for the first profile function 
is shown in Fig.4.  
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Fig.4. The process of learning for the first profile 
function 

 
Because of good convergence properties, the 

Levenberg-Marqurdt’s algorithm is used in the 
process of learning [15]. Certainly, it is possible to 
use the EEM algorithm with tuning of the smoothing 
parameters [16].    

In Fig.5, the first obtained (calculated)  
individual  profile function is presented.  

 
Fig.5. The first obtained individual profile function  

 
Errors of fitting or modeling  for the first  profile 

function are shown in Fig.6. 
 

 
Fig.6. Errors of modeling for the first profile 

function 
 

The process of learning for the second profile 
function is shown in Fig.7. 
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Fig.7. The process of learning for the second 

profile function 
 
The second obtained individual profile function 

is presented in Fig. 8. 

 
Fig.8. The second individual profile function  

Errors of modeling  for the second profile function 
are shown in Fig.9. 
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Fig.9. Errors of modeling  for the second 

profile function 
 

4 Generalized  Profile Function Model  
In order to get the generalized model, it is necessary, 
in the first step, to calculate the normalized 
individual  profile functions of all available objects. 
Normalization is performed by using the largest 
values on the x and y axes. In fact, the normalization 
of x axis is performed by using H , and of y axis by 
using r(0). Two normalized profile functions are 
presented in Figs. 10 and 11. 
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Fig. 10  The first normalized profile function  
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Fig. 11  The second normalized profile function  
 

The generalized model (GPFM) is obtained as a  
mean value of all the available normalized individual 
profile functions. The obtained generalized model  is 
presented in Fig.12.  
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Fig.12. The generalized model 
 

Now the generalized model presented in Fig.12 
can be used for generating approximations of all the 
individual profile function. Renormalization is 
performed so that each individual (renormalized) 
profile function  passes through the characteristic 
points (x0, y0 ), (x0 breast height, 1.3m, y0 = D /2 
radius at breast height) and the final point (H,0). In 
accordance with this, renormalization per x axis is 
performed using H, and per y axis using y(0) where:  

 
 
y(0) = [(D /2) / [y (1.3 /H)] .........................(1) 
 
 
The value y(1.3 /H) is obtained using the 

generalized model, Fig. 12.  
Quality and performance of the obtained GPFM 

will be analyzed in the subsequent sections. 
 
  

5 Basic Statistics of the Estimated Data 
In applications of artificial intelligence (neural 
networks) and verifications of obtained results, it is 
typical to use two datasets, the  basic (model) and  
the validation dataset. The validation dataset can 
have the same volume as the basic dataset, but more 
frequently it is smaller.  In our case, the validation 
datasets was about 40% of  the basic dataset. 

Testing the  model accuracy using the validation 
dataset we get the real model accuracy. Evidently, it 
is better to use more validation datasets. If we 
validate the model with the same data used during 
model derivation, we get the initial model accuracy. 
Typically, the initial model accuracy is higher than 
the real one. 

 Summary statistics of the estimated data for the 
validation and basic datasets are given in Table 2.  
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Table 2.  Summary  statistics of the estimated data of  
both the validation and basic datasets 

 
 

r  [ cm]  
Nu m.

o f  
da ta  

Aver .  Med.  SD Min.  Ma x.  

Va l i da t i o n
Da tase t  7 8  9 . 2 2 97  1 0 . 0 04 0 5 . 67 36  0 . 0 6 71 2 2 . 6 97 3

Basi c  
Da tase t  1 8 2  7 . 4 7 44  6 .3 8 28 5 . 84 83  0 . 0 2 04 2 9 . 6 14 5

 
    
 As we expected, a better agreement between the 
measured and estimated data, from the point of view 
of the average value, exists for the basic dataset, 
7.4975 and 7.4744, than for the validation dataset, 
9.5083 and 9.2297, Tables 1 and 2. 

The histogram of the estimated values of the 
validation dataset is shown in Fig. 13. 

 

 
Fig. 13. Histogram of the estimated values  

of the validation dataset 
 

Now we shall compare the histograms of the 
measured and estimated values of the validation 
dataset,  Figs. 3 and 13.  Based on Fig.3, we 
conclude that there are more data in the first range of 
the histogram than in the third. The conclusion is 
oposite in the case of Fig.13. However, the 
difference is very small, and the general conclusion 
is that a good agreement between the histograms for 
the measured and the estimated values is achieved.  

The histograms of the measured and the 
estimated values of the basic dataset are given in  
Figs. 2 and 14. We can see that the histograms 
presented in Figs. 2 and 14 are very similar. Based 
on the presented figures, we can conclude that a 
better agreement between the histograms is achieved 
for  the basic, than for the validation dataset. 
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Fig. 14. Histogram of the estimated values  
of the basic dataset 

 
6 Testing of the Obtained Generalized 
Models by Regression Analysis 
Usability of the obtained generalized model will be 
tested by comparing the measured data and the 
corresponding  estimated data. Testing  of the 
accuracy of the generalized  model is practically 
performed by applying the regression analysis 
technique. Undoubtedly, it is possible to use  the 
forward regression algorithm based on M-estimators  
[17].  A comparison of the measured and the 
corresponding estimated data is performed for both 
available datasets. The result of testing for the 
validation dataset is presented on Fig.15. 

 

 
Fig. 15. Statistical performance in radius estimation 

(validation data set) 
 

 

 S = 0.66236
R = 0.99325

r (measured) [cm] 

r [
G

PF
M

 ] 
[c

m
] 

0 4 8 12 16 20 24 28 32
0

4

8

12

16

20

24

28

32

-2
   0

18 28 8 38
r 

Histogra

 

 

fr
eq

ue
nc

  30 

 25 

 20 

  15 

  10 

 5 

 0 
 8   28 -2 18 

r 

WSEAS TRANSACTIONS on SYSTEMS
PERO RADONJA,SRDJAN- 
STANKOVIC,and DRAGANA DRAZIC

ISSN: 1109-2777 1190 Issue 10, Volume 7, October 2008



The first pair of results of data comparison 
represents  statistical performance  in  data 
estimation. This pair contains the regression 
parameters: standard error of the estimate S and the 
correlation coefficient R. The second pair of the 
results contains the slope of the regression line and 
the intercept on the y axis. Evidently, the slope of the 
regression line obtained by comparing the estimated 
and the measured data must have in the ideal case the 
angle of 450 and has to start from the origin. In other 
words, parameter b has to have its value near 1.0 and 
parameter a , that is the intercept on the y axis, has to 
have its value near 0. 

Residuals which determine the standard 
estimation error for the validation data set are 
presented in Fig. 16. 

 
Fig. 16. Residuals (validation data set) 

 
Data comparison between  the measured and the 

estimated data for basic data set is done, as well. The 
result of testing is presented in Fig.17. 

 
Fig. 17. Statistical performances in radius estimation 

(basic data set) 
 

Residuals which determine the standard estimation 
error in the case of the basic data set are presented in 
Fig. 18. 
 

 
 

Fig. 18. Residuals (basic data set) 
 
 

Values of the statistics of data  comparison 
by regression analysis are presented in Table 3. 

 
 

Table 3. Values of the statistics of data  
comparison by regression analysis 

 
 

Sta t i s t i c s  o f  the  r  co mpari s on  
 

Interc .
a  

Slo pe  
b  

Std .Err .  
S  

Co rr .  
coe f f .  

R  

R 2  

[ %]  
Va l i da t i o n

Da ta se t  0.0412 0.9664 0 .6624 0 .9933 98.65
Bas i c  

Da ta se t  0.0849 0.9856 0 .6070 0 .9946 98.93

 
 

As we expected, the parameter b, the slope of  the 
regression line, is closer to 1.0 in the case of  data 
from the basic data set, 0.9856,  than in the case of 
the validation dataset, 0.9664. Also, the obtained 
standard error 0.6070  is lower  in comparison with 
0.6624, and the correlation coefficient is higher 
(0.9946 compared to 0.9933). However,  the 
intercept on y axis is lower for the validation dataset, 
0.0412,  in comparison with 0.0849 for the basic 
dataset. Using the same dataset for both modeling 
and validation, Korol and Gadow [6] have obtained a 
lower standard error, 0.526, in comparison with  
0.607 in the our case, but a worse correlation 
coefficient, 0.9820, in comparison with 0.9946  in 
our case. 
 
7 Applications: Volumes computing 
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As an example of applications of the obtained GSPM 
in volume computing, consider 42 objects from the 
same region. The basic statistical properties of the 
input dataset are presented in Table 4. 
 

Table 4.  A review of the basic statistical 
properties of the input dataset 

 
 

D 
[cm] 

H[m] 

 

Aver. 

 

 

Med. 

 

SD 

 

Min
. 

 

Max. 

D 27.57 28.25 10.58 6.00 48.40 Total 

Data 

set 

H 24.28 24.77 7.86 5.65 36.15 

 
 The all available data, D and H are presented 
in Fig.19. 
 

 
 

Fig. 19. The all available data, D and H 
 
 
When NNs are used for obtaining   the 

individual profile function, stem volumes can simply 
be calculated by using the inner vector product 
instead of numerical integration. With the 
assumption that all the values of r(h) define the row 
vector R , the volume can simply be calculated by 
the  equation: 

 
( ) TV NN hπ= R R Δ    ..................(2) 

where    is the height increment  5.65 - 36.15 
mm. In the considered case, the row vector R 
contains 1000 values. 

hΔ

 

The basic statistical performance of the 
calculated volumes V(NN) based on Equation (2) are  
presented in Table 5. 

 
 

Table 5.  The basic values of the statistics of the 
calculated volumes 

 
 
The histogram of the calculated volumes is presented 
in Fig. 20 
 

 
Fig. 20. The histogram of the calculated  

(referent) volumes 
 
 

Testing of the accuracy of the obtained GSPM 
is  performed by comparing  the  obtained estimated 
volumes with the referent volumes. The estimated 
volumes represent the volumes based on GSPM, 
V(GSPM), and the referent volumes are in fact 
V(NN). 

 
In Table 6. values of the statistics of the 

estimated volumes based on GSPM, are given.  
 
 

 
 

Table 6. Values of the statistics of  the estimated 
volumes  

 

 V 
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SD 

 
Min. 

 
Max. 

Total 
Data 
set 
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 V 
[m3] Aver. Med. SD Min. Max. 

Total 
Data 
set 

 
GSPM 

 
0.8938 0.7764 0.7124 0.0105 2.7375 

 
 

3.2

 
 

The histogram of the estimated volumes is 
presented on Fig. 21. 

 

 
Fig. 21. The histogram of the estimated  

volumes 
 

Based on Figs. 20 and 21 we can conclude that 
most of the data are in the second range of both 
histograms. Also, we can conclude, based on both 
histograms that more data are in the first than in the 
third range. Evidently, the largest difference between 
the histogram exists for the fourth range. 

 
8 Testing of the Obtained Volumes by 
Regression Analysis 
Testing of the efficiency of volume estimation can be  
performed by comparing the obtained estimated 
volumes with the referent volumes by the regression 
analysis. As in the case of radii comparison, in the 
ideal  case it is necessary that four important 
regression parameters have already mentioned 
values. 

Comparison of the estimated and referent 
volumes done by regression analyses for the total 
data set is illustrated by Fig. 22.  

 

 
Fig. 22.  Testing of volume estimation  

V(GSPM) versus V(NN)  
 

We can see in Fig. 22 that the volumes based on 
GSPM do not deviate much (except four points) from 
the referent volumes, SVE = 0.0853 and RVE = 
0.9930, Table 7.  It can be seen that the regression 
line starts approximately from the origin, as the 
translation along y axis is only 0.0326.  

 
Table 7. Values of the statistics of volume  

comparison by regression analyses 
 

  GSPM 
 

SVE 0.0853 
RVE 0.9930 

a 0.0326 
b 0.9100 

 
9 Conclusion 
The estimated data based on  the proposed  GPFM 
are compared with real, measured data, using the 
basic statistics and  the obtained histograms, as well 
as by the regression analyses. The obtained 
histograms for the measured and the corresponding 
estimated data are very similar. This conclusion is 
valid for the validation and the basic dataset. Also, 
correlation coefficients between the measured and 
the estimated data are very high, over 0.99, and the 
standard error of estimation very low, less than 0.7, 
for both datasets. It can be seen that the obtained 
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generalized profile function model can be very 
successfully used in the process of estimating the 
individual profile functions. 
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Appendix A 
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Fig.A1.  Scatterplot of the measured values  
of the total dataset 

 

WSEAS TRANSACTIONS on SYSTEMS
PERO RADONJA,SRDJAN- 
STANKOVIC,and DRAGANA DRAZIC

ISSN: 1109-2777 1194 Issue 10, Volume 7, October 2008



Appendix C 
 

 

Time Sequence 

Fig.A2 Time sequence plot of the measured values 
of the total dataset 

 
 
 
 
Appendix B 

 
 

Fig. B1  Scatterplot of the measured values 
of the basic dataset 

 
 

Fig. B2  Time Sequence Plot of the measured values 
of the basic dataset 

 
 
 

 
Fig. C1  Scatterplot of the measured values 
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Fig. C2  Time Sequence Plot of the measured values 
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