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Abstract: The main aim of the paper is to introduce a novel method – based on fuzzy control and linear parameter
varying (LPV) system representation transformable into HOSVD based Canonical form – for modeling deforma-
tion processes with respect to the distribution of the absorbed kinetic energy. Modeling such kind of processes
requires many uncertain input parameters. Using the proposed concept we are able to handle them and keep the
complexity of the models low by using higher order singular value decomposition (HOSVD) technique.
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1 Introduction
On the roads of the European Union annually hap-
pen a vast number of traffic accidents. These claim
more than 40000 deathly victims and 1.6 million in-
jured. According to the directive of the EU these
numbers have to decrease significantly. This includes
the increasing both the active safety (accident preven-
tion, driving morality) and the passive safety (as less
as possible human injuries occur in an accident hap-
pened).

The manufacturers develop both the active and
passive safety systems. Intelligent vehicle control sys-
tems (which analyze the moving of the other vehicles
and the road conditions) could be ranked among the
active safety systems, safety belt, various airbags and
the so-called energy absorbing elements, energy ab-
sorbing zones.

These latter used for the absorption of deforma-
tion energy arising at the transformation of the be-
fore collision kinetic energy of the vehicle, and in this
manner the passenger compartment is protected from

the more serious consequences of the collision, at least
up to certain velocity. [1] [2]

The development of each listed is an extremely
difficult engineering task, in the resolution of which
apply experimental data, mathematical models which
at least approximately describe the examined system,
and the results of simulation procedures, of course [3]
[4] [5].

The experiential data may taken from real acci-
dents, but at this time unfortunately only few parame-
ters are known, and their values are in general uncer-
tain. Because of this reasons it is more convenient to
execute well-planned crash tests with known parame-
ters, which are at least theoretically repeatable. In the
course of this procedure at what more of the param-
eters of the examined vehicle and the collision pro-
cess are registered, and then the theoretical simulation
model’s behavior is compared with the data measured
here.

These experiments are exceptionally expensive,
only some thousand are done annually of them, and it
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is almost impossible to measure all of the parameters
of the system and the process simultaneously under
the very short time of the crash. [1] [6]

Because of causes mentioned above, modeling
processes and estimations of partial processes and pa-
rameters are of great importance. In what follows we
deal with the energy absorption models of the front of
vehicle, the so-called wrinkling zone.

From the point of view of the deformation energy
absorbed by the crash process of the vehicle two main
kinds of methods can be distinguished, i.e. there are
methods, which aim is to estimate the absorbed en-
ergy using the final state of the deformed car-body and
crash test data as input, while the other ones give alter-
natives for analyzing the behavior of the whole defor-
mation process usually based on heuristic approaches.

The main aim of this investigation is to introduce
models supporting the analysis of deformational pro-
cesses, i.e. to model energy distribution of car body
deformation using measurement data, fuzzy control
and LPV representations.

The paper is organized as follows: In Section 2.
the finite element method and the so called heuristic
model based approach is confronted. Section 3. de-
scribes an LPV model based approach for modeling
the energy distribution of car body deformation, while
Section 4. discusses the same modeling problem us-
ing fuzzy reasoning. Finally Section 5 reports illustra-
tive examples and conclusions.

2 FEM and Heuristic Models
For modeling the collisional deformation processes in
the engineering practice usually a kind of finite ele-
ment method (FEM) based softwares are applied. In
these simulations the FE model of the vehicle rarely
contain less than 500 000 elements. The model de-
scribes the dynamic process in time domain, and has
to handle several contact conditions.

During the calculation it is necessary to apply
non-linear laws for materials, since the components
suffer plastic deformation in the course of the colli-
sion. Moreover, because of a process takes place with
high velocity, the material features depend on the ve-
locity of changing the deformational zone. [7] [8]

A huge amount of data arises during the calcula-
tion (esp. in all nodes 3 coordinates, the 9 elements of
the tenseness tensor, etc.), and a model consists usu-
ally 100 000s of nodes. The distribution of the de-
formation energy, the quantity of the energy absorbed
by certain parts is determinated from the values cal-
culated in this way (force, shift), naturally together
with many other features. The FE description, be-
ing based on differential equations is general, yields a

model which can be used on every area, although this
model is exceptional complicated and has high com-
putational complexity. But also here the heuristic and
the engineering experience receive an important role,
for instance in generating the finite element net. [7] [8]

Contrary to this, the heuristic models handling
only a certain part of the problem (for example en-
ergy distribution) have much smaller complexity, but
of course not provide an overall description. Math-
ematical models based on those methods, which use
less number of variables and include some heuristic
knowledge of human experts are more efficient then
the usual descriptions. From this reason our investi-
gation is strongly related to these family of models.

3 LPV Model for Deformational Pro-
cesses

During deformation processes of car-bodies in the
force function characteristics fluctuations can be ob-
served (see Fig. 1). This is caused by the inhomo-
geneous structure of car-body and all of its elements
(e.g. engine, stiffeners, etc.). There are some basic
models - used by many applications for deformation
analysis - which do not take into consideration the
above mentioned fluctuations of the force function.
For example Campbell’s method is based on approxi-
mating the above mentioned behavior of the force by
function illustrated in (see Fig. 2).

Our main aim is to construct a model, which is
able to handle the fluctuating behavior of the force, as
well. To describe such a deformation process, mea-
surements of certain parameters have to be performed
at discrete time steps and locations on the specific
parts of car body. These measured parameters may be
the force and the displacement of a predefined number
of measurement points located on the car-body (see
Figs. 3 and 4).

Furthermore, we suppose that the mass of the ve-
hicle and the impact speed are given.

Based on the above considerations our proposal
is to fit a linear parameter varying (LPV) model to the
measured data. In the followings the description of
the proposed LPV model approach can be followed.

For determining the energy absorbed by the de-
formed car body we have to know the forces appear-
ing against the deformation during the whole defor-
mational process and the measure of deformation. In
general, the absorbed energy is

Ed =

∫ x0

0
F(x)dx, (1)

where x0 is the maximal deformation, which is the
same in the full width of the vehicle in case of totally
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Figure 1: Illustration of a real force function. x axle
represents the crush (displacement), the y axle stands
for the time and the vertical axle represents the force.

Figure 2: Illustration of a simple force model. Hor-
izontal axle represents the crush (displacement) and
the vertical axle stands for the force.

Figure 3: Illustration of forces. The grid represents
the deformation zone of the front of car-body. The
gray area stands for the deformed state of the car-body
at a time t.

Figure 4: Illustration of crushes (displacements) cor-
responding to forces illustrated in the previous figure.

frontal collision. Force F is usually approximated by
a simple model. Based on Emori’s work ( [9]) Camp-
bell introduced first the linear force model ( [10]),
which is the basis of some crash simulational program
(CRASH, SMAC). The main feature of the model is
that constant stiffness parameter of the vehicle (or of a
part the vehicle) is used for computation of deforma-
tional forces, the car body is taken into consideration
during the collision as a simple linear spring with stiff-
ness parameter k:

F = −kx. (2)

This first approach was followed by number of mod-
els, which use more difficult force descriptions. For
example bilinear force model, which deals with lin-
ear spring model until a certain level of permanent
deformation and after this stage uses bilinear form
( [11], [12], [13]), the saturation force model, which
was applied successfully for investigation of frontal,
lateral and rear impacts ( [14], [15], [16], [17]).

However the results of crash tests show more dif-
ficult force and displacement behaviors than the sim-
ple models mentioned above. According to the obser-
vations, the stiffness parameter of a vehicle (or a part
of the vehicle) is not a constant value, but depends on
the measure of deformation (x), impact speed of the
vehicle (v) and direction of the impact (ϕ) (this last
can be out of consideration in case of purely frontal
collisions). Based on this fact, we assume the force
can be approximated well by a nonlinear form, which
is a generalization of the linear spring model:

F = −k(x, v)x. (3)

Or, in differential equation form:

mẍ = −k(x, v)x. (4)

From this, with k′ = k(x, v)/m, x1 = x and x2 = ẋ1 we
obtain the following matrix form:

(
ẋ1
ẋ2

)
=

(
0 1
−k′ 0

) (
x1
x2

)
. (5)
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This is a parameter varying matrix and our main as-
sumption is that the behavior of original system (force
and displacement) can be described quite well using
this kind of nonlinearity. In general state-space model
form

ẋ(t) = f (x(t)) (6)
y(t) = c(x(t))

where

f (x(t)) =

(
x2(t)

−k (x1(t), v)

)
(7)

c(x(t)) =
(
x1(t) 0

)

If we write the above equation into the typical form of
linear parameter-varying state-space model:

(
ẋ(t)
y(t)

)
= S(p(t))

(
x(t)
u(t)

)
(8)

Here system matrix S(p(t)) :

S(p(t)) =

(
A(p(t)) B(p(t))
C(p(t)) D(p(t))

)
(9)

where p(t) = (x1(t), v) and

A =

(
0 1
−k′ 0

)
B =

(
0
0

)
(10)

C =
(
1 0

)
D =

(
0
)

The next task is to determine the function k′. The
approach is similar to the methods introduced in [18]
and [19]. Firstly the functional dependence of k′ on
the variables x (depth of deformation) and v (impact
speed) must be specified, for example piecewise lin-
ear, polynomial, spline or other linear combinations
of given functions of x and v.

The model identification includes two major
steps: identification of the local models (LTI models)
with the same structure of the LPV model and on the
base of these models identification of the final LPV
model.

For LTI model identification we need some data
from well-measured crash tests. For example, a cas-
cade of tests have to be taken at a speed of v = 30km/h
to register the deformational process: depth of defor-
mation vs. time, force (at sensors) vs. time. From this
data set for a certain deformation x (for example with
10 cms steps size) a linear spring model can be identi-
fied. Certainly, for other x an other model is valid. In
this way, for a certain impact speed a set of simple lin-
ear models is determined. After that we have to repeat

this measuring and identifying process at other im-
pact speeds (for instance at 35km/h, 40km/h, 45km/h,
etc.), but with the same division of x. Finally we get
a large amount of local LTI models in the space of
the impact speed and the deformation, with the same
structure of the searched LPV.

A set of linear models means a set of certain val-
ues of the parameter varying k′ at different parame-
ter values. From these points and using our assump-
tion about the type of the functional dependence, the
function k′ identified. With the obtained LPV model,
estimation of the energy distribution for crash defor-
mational process is available at a point of the phase
space of x and v even differents from those used for
identification.

Because of the large amount of obtained LTI
models our system may become very complex. In or-
der to reduce the complexity of the system the number
of LTI models have to be minimized by maintaining
the accuracy as precise as possible. For this purpose
the so called higher order singular value decomposi-
tion can advantageously be used, in order to get the
minimal number of LTI models by keeping the error
at a lower level [20] [21] [22]. The such obtained re-
duced number of LTI models form an orthonorm sys-
tem. Our system can be expressed as a linear combi-
nation of such minimal set of orthonormal LTI mod-
els. In the next subsection we are going to introduce
the mentioned HOSVD reduction technique for a gen-
eral LPV system.

3.1 HOSVD Based Reduction of the LPV
Model

Consider such LPV state-space model
(
ẋ(t)
y(t)

)
= S(p(t))

(
x(t)
u(t)

)
(11)

where p(t) = (p1(t), ..., pN(t)) ∈ Ω and which can be
given in the form of

(
ẋ(t)
y(t)

)
=

(
S �N

n=1 wT
n (pn))

) ( x(t)
u(t),

)
(12)

where column vector wn(pn) ∈ RIn n = 1, . . . ,N con-
tains one variable bounded and continuous weight-
ing functions wn,in(pn), (in = 1..In). The (N +

2)-dimensional coefficient (system) tensor S ∈
RI1×···×IN+2 is constructed from linear time invariant
(LTI) vertex systems

Si1...iN = {S i1...iN ,α,β, 1 ≤ α ≤ IN+1, 1 ≤ β ≤ IN+2}

Si1...iN ∈ RIN+1×IN+2 .
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Symbol �n represents the n-mode tensor-matrix prod-
uct. For further details we refer to [20].

For this model, we can assume that the functions
wn,in(pn),in = 1, . . . , In, n = 1, . . . , .N, are linearly
independent over the intervals [an, bn], respectively.

The linearly independent functions wn,in(pn) are
determinable by the linear combinations of orthonor-
mal functions (for instance by Gramm–Schmidt-type
orthogonalization method): thus, one can determine
such a system of orthonormal functions for all n as
ϕn,in(pn), 1 ≤ in ≤ In, respectively defined over the in-
tervals [an, bn] , where all ϕn,k j(pn), 1 ≤ j ≤ In are the
linear combination of wn,i j , where i j is not larger than
k j for all j. The functions wn,i j can respectively be de-
termined in the same way by functions ϕn,k j . Thus, if
the form (12) of (11) exists then we can determine it
in equivalent form as follows:

(
ẋ(t)
y(t)

)
=

(
C �N

n=1 ϕ
T
n (pn(t))

) (x(t)
u(t)

)
, (13)

where tensor C has constant elements, and column
vectors ϕn(pn(t)) consists of elements ϕn,kn(pn(t)).

Corollary 1. (see [20]) We can assume, without the
loss of generality, that the functions wn,in in the tensor-
product representation of S(p) are given in orthonor-
mal system:

∀n :
∫ bn

an

wn,i(pn)wn, j(pn)dpn = δi, j, 1 ≤ i, j ≤ In,

where δi, j is the Kronecker-function (δi j = 1, if i = j
and δi j = 0, if i , j).

Theorem 2. (see [20]) [Higher Order SVD
(HOSVD)] Every tensor S ∈ RI1×···×IL can be
written as the product

S = D �L
l=1 Ul (14)

in which
1. Ul =

[
u1,l u2,l . . . uIl,l

]
is an orthogonal

(Il × Il)-matrix called l-mode singular matrix.
2. tensor D ∈ RI1×...×IL whose subtensors Dil=α

have the properties of
(i) all-orthogonality: two subtensors Dil=α and

Dil=β are orthogonal for all possible values of l, α and
β :

〈
Dil=α,Dil=β

〉
= 0 when α , β,

(ii) ordering:
∥∥∥Dil=1

∥∥∥ ≥
∥∥∥Dil=2

∥∥∥ ≥ · · · ≥∥∥∥Dil=Il

∥∥∥ ≥ 0 for all possible values of l.
The Frobenius-norm

∥∥∥Dil=i
∥∥∥, symbolized by σ(l)

i ,
are l-mode singular values of D and the vector ui,l is
an i-th singular vector. D is termed core tensor.

Theorem 3. (see [20]) [Compact Higher Order
SVD (CHOSVD)]For every tensor S ∈ RI1×···×IL the
HOSVD is computed via executing SVD on each di-
mension of S. If we discard the zero singular values
and the related singular vectors url+1, . . . ,uIl

, where
rl = rankl(S), during the SVD computation of each
dimension then we obtain Compact HOSVD as:

S = D̃ �L
l=1 Ũl, (15)

which has all the properties as in the previous theorem
except the size of Ul and D. Here Ũl has the size of
Il × rl and D̃ has the size of r1 × ... × rL.

Consider (11) which has the form of (12). Then
we can determine:

(
ẋ(t)
y(t)

)
=

(
D0 �N

n=1 wn(pn(t))
) (x(t)

u(t)

)
, (16)

via executing CHOSVD on the first N-dimension of
S. The resulting tensor D0 = D̃ �N+2

n=N+1 Ũn has the
size of r1 × ... × rN × IN+1 × IN+2, and the matrices
Ũk ∈ RIk×rk , k = N + 1,N + 2 are orthogonal [20].

The weighting functions have the property of:
1. The rn number of weighting functions wn,in(pn)

contained in vector wn(pn) form an orthonormal sys-
tem. The weighting function wi,n(pn) is an i-th singu-
lar function on dimension n = 1..N.

TensorD has the properties as:
2. TensorD ∈ Rr1×...×rN+2 whose subtensorsDin=i

have the properties of
(i) all-orthogonality: two subtensors Din=i and

Din= j are orthogonal for all possible values of n, i and
j :

〈
Din=i,Din= j

〉
= 0 when i , j,

(ii) ordering:
∥∥∥Din=1

∥∥∥ ≥
∥∥∥Din=2

∥∥∥ ≥ . . . ≥∥∥∥Din=rn

∥∥∥ > 0 for all possible values of n = 1, . . . ,N+2.
3. The Frobenius-norm

∥∥∥Din=i
∥∥∥, symbolized by

σ(n)
i , are n-mode singular values ofD.

4. D is termed core tensor consisting the LTI sys-
tems.

As result we obtain a much more simple system,
which includes minimal number of orthonormal LTI
systems. The number of these vertex systems depends
on the number of kept singular values. As higher the
number of kept singular values as precise the approxi-
mation will be. Even if the number of discarded singu-
lar values is small, significant decrease in complexity
can be observed [23].

4 Takagi–Sugeno Fuzzy Model
4.1 TS Fuzzy Model Description
In this section we give a brief review on the fun-
damental form of Takagi-Sugeno (TS) fuzzy models
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[24] [25] [26]. A TS model consists a number of lo-
cal linear models assigned to fuzzy regions, which are
designed to approximate the dynamic features at the
corresponding operating fuzzy points in vector space
P. Fig. 5 shows the structure of a TS fuzzy model.
The model varies according to vector p ∈ RN , which
may contain some values of the state vector x as well.
The TS fuzzy inference engine is responsible for com-
bining the local linear models according to vector p in
order to find a proper model, which is assumed to be
the momentary linear descriptor of the system capable
of generating output vector y from state vector x and
input vector u.

Consequently, the original system is approxi-
mated by a convex combination of a number of lo-
cal linear models assigned to regions defined by basis
functions µ j(p). In case of TS model approximations
coefficients µ j(p) are computed as the firing proba-
bility of the fuzzy rules, based on the product opera-
tor t-norm. Usually the antecedent sets are given in
Ruspini-partition, so for every j:

∑
i µA j,i(p j) = 1.

TS fuzzy inference

Local models
S 1 S 2 . . . S N

@@R ?
©©©¼

-input u

-state x

-output y

6
parameter p

Figure 5: Scheme of the Takagi-Sugeno fuzzy infer-
ence model

The fuzzy rules are formed by all combination of
the antecedent sets. So a typical rule is:

IF p1 is A1,i1 AND . . . AND pN is AN,iN

THEN model S i1i2...iN

The range of the indeces in = 1 . . .Vn, where Vn de-
notes the number of antecedent sets in the n-th uni-
verse. The output of a rule is:

Ŝ i1,i2,...,iN = S i1i2...iN

N∏

j=1

µA j,i j
(p j) (17)

The final conclusion is the weighted sum of the out-

puts:

Ŝ (p) =

V1∑
i1=1
· · ·

VN∑
iN=1

Ŝ i1,i2,...,iN

V1∑
i1=1
· · ·

VN∑
iN=1

N∏
j=1
µA j,i j

(p j)
= (18)

=

V1∑
i1=1
· · ·

VN∑
iN=1

N∏
j=1
µA j,i j

(p j)S i1i2...iN

V1∑
i1=1
· · ·

VN∑
iN=1

N∏
j=1
µA j,i j

(p j)
(19)

If the antecedents sets are in Ruspini partition
then

V1∑

i1=1

· · ·
VN∑

iN=1

N∏

j=1

µA j,i j
(p j) = 1 (20)

so the approximated model is

Ŝ (p) =

V1∑

i1=1

· · ·
VN∑

iN=1

N∏

j=1

µA j,i j
(p j)S i1i2...iN (21)

4.2 TS Fuzzy Model for Crash Process
The main task is generating a fuzzy rule base which
includes partitioning the parameter spaces and identi-
fying the local linear models, too. Because of the rea-
son that exact matemathical of the system, or rather
of the process is unknown (if we were know that, it
would be too difficult to deal with), determination of
the rules is based on available measurment data and
heuristic assumptions.

Analysing crash test results one can establish that
the stiffness parameter of a certain vehicle is not a con-
stant value, but depends on impact velocity and mea-
sure of deformation. Namely, if we take into consid-
eration a simple linear spring model, our system is a
spring with changing stiffness parameter, where this
non-constant stiffness is unknown. Based on measur-
ment data (force, displacment), assign different simple
linear spring models to different points of the (X,V)
parameter space, which describe approximately well
the behavior of the system at these certain points.

Construct the partition of parameter spaces (fuzzy
universes) X and V in such a way, that every measured
point let be a core of a certain fuzzy set. For simplic-
ity, determine the fuzzy sets to form a Ruspini parti-
tion. Since in case of given x and v the local linear
spring model depends on parameter k only, therefore
a general fuzzy rule is the following:

IF x is x∗ AND v is v∗ THEN k = k∗

Applying this rule base, the value of parameter k is
interpolated at arbitrary value of x and v, and using
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Figure 6: Fuzzy partition of parameter space V

this, the appearing force is approximated. By this way,
based on measured data of force and displacement,
one can estimate the amount of energy absorbed by
the deformation for arbitrary value of x and v.

5 Examples

The input data used in this investigation were gener-
ated on the bases of real crash test charts correspond-
ing to 35, 40, 50, 60, 70 km/h impact velocities.
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Figure 7: Force data for different velocities and defor-
mations.
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Figure 8: Stiffness data for different velocities and de-
formations.

Figs. 7 and 8 illustrate the force as function of
displacement and velocity. The below examples are

based on these generated data.

5.1 Example I

This example belongs to our proposed fuzzy based
modeling technique. The measured data as mentioned
in the previous section are the force and the corre-
sponding displacement. Based on these data our fuzzy
rule base can be created with the corresponding mem-
bership functions illustrated in Fig.9 and 10. In Fig.
11 the obtained surface is illustrated describing the
force distribution as function of the displacement and
velocity, while Fig. 12 shows the surface correspond-
ing to the stiffness.
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Figure 9: Fuzzy partition of the displacement (the
cores are at points 0.1, 0.2, etc.)
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Figure 10: Fuzzy partition of the velocity (the cores
are at 35, 40, 50, 60 and 70)

Figure 11: Surface of the fuzzy inference system. The
output is the force
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Figure 12: Surface of the fuzzy inference system. The
output is the stiffness

5.2 Example II

This example is connected with our proposed LPV
model. As described in section 6, first the function
k has to be estimated. Using the proposed LPV based
approach the force and the stiffness as functions of the
displacement and velocity have been determined (see
Figs. 13 and 14. For the impact velocity 55 km/h
the absorbed energy distribution has been modeled, as
well (see Figs. 15, 16, 17).

The LPV system can reduced by discarding some
of singular values, for example if only two singular
values are kept for each dimension then we get the
following vertex systems and waiting functions (see
Figs. 18 and 19. The computations were carried out
by TPToolbox [27].
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Figure 13: The force in function of the velocity and
displacement (deformation).
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Figure 14: The stiffness in function of the velocity and
displacement (deformation).
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Figure 15: The force function at corresponding to the
impact velocity 55 km/h.

S 11 =

(
0.0000 11.3459
−1.1597 0.0000

)

S 12 =

(
0.0000 1.5225
0.0000 0.0000

)

S 21 =

(
0.0000 −4.2236
0.0000 0.0000

)

S 22 =

(
0.0000 −0.5667
−0.1896 0.0000

)
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Figure 16: The stiffness function corresponding to the
impact velocity 55 km/h.
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Figure 17: The absorbed energy corresponding to the
impact velocity 55 km/h.
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Figure 18: The obtained weighting functions of the
HOSVD reduced LPV model.

6 Conclusion
LPV and fuzzy models were introduced to support
the modeling of vehicle crash deformational processes
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Figure 19: The obtained weighting functions of the
HOSVD reduced LPV model.

with respect to the distribution of the absorbed kinetic
energy. These kind of models provide an estimation
of the real (or simulated) case, but they require less
computational capacity than the usually applied FEM
based procedures.

The methods described have to be validated by
comparing with real crash test results or accurate sim-
ulations. The data we used are based on real measure-
ments, but in order to achieve better approximation
more detailed measurement data are required.
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