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Abstract: - This paper present a real time identification of the parameters value of a slow process using adaptive 
IIR-OSLMS filters. This kind of process can be assimilating to a time constant and a delayed time. To ensure 
the convergence of the adaptive algorithm the initial values of the parameters can be compute using an on-line 
identification method. The measured temperature is affected by noise, so it was used a ALMS filter to reject the 
noise.   
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1   Introduction 
     The heating process of an electrical resistance 
furnace is a slow process and is very difficult to 
control it because the parameters values of the 
system of the electrical resistance furnace cannot be 
compute with accuracy. These values are adequate 
for designing the heating process regulator. In [8] 
and [9] is been considered that this process can be 
very well approximated taking into consideration 
that the heating process model has a time constant 
and a delayed time.   

     Because the parameters of the system can be 
modifying in the heating process, it is required to 
compute them in real time. In order to solve this 
problem, for the identification of the system it can 
be used an adaptive filter. The coefficients of the 
adaptive filter are modifying at every each iteration, 
having as consequence that the parameters of the 
system can be also compute at every each iterations. 
The temperature control system is conditioned by 
the convergence of the adaptive algorithm. One of 
the convergence criterions for an adaptive filter is 
the initial value of the parameters of the filter and 
from this reason, the initial values were computed 
using an on-line method. 

     An experimentally determination leads to the 
conclusion: if the values of the samples are distorted 
by the additive noises, it has to be used a smoother 
filter. 

2   Problem Formulation 
     One of the problems that must be solved consists 
in regulation of the slow process, which is a very 
difficult activity because the parameters of the 
process are variable in time in many situations. 
     In some applications, such as heating process of 
electrical resistance furnace, the output signal is 
delayed comparative to the input signal by a time 
constant, as in relation 
      ( ) ( )y t x t    , 0   ,τ τ= − >   (1) 
where τ  is a delayed time constant or time 
propagation constant. 
     The transfer function of such a process is       
      ( ) sH s e τ

τ
−=   .    (2) 

     In [9] it is shown that the model of the electrical 
resistance furnace is a model with a time constant 
and a delayed time defined by the relation: 

 
sK eH( s )

1 Ts

τ−⋅
=

+
  , where T, τ  > 0. (3) 

     In (3) K is the amplification coefficient, τ  is the 
delayed time and T is the time constant. 
 
2.1. The approximation of the parameters 
system function model  
     One of the problems that must be solved consists 
in approximation of se τ−  with a rational function.  
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     The transfer function which approximate ( )H sτ  

is ( )aH sτ , where 

( ) , 
2 n

1 2 n
a n2 n

1 2 n

1 c s c s c sH s b 0.  (4) 
1 d s d s d sτ
+ ⋅ + ⋅ + + ⋅

= ≠
+ ⋅ + ⋅ + + ⋅

L

L

     The coefficients of  transfer function can 

be compute by developing the function 

( )sH aτ

( )sHτ in 
Taylor series in origin. Such an approximation 
knows as Pade approximation of n+k order, where n 
is the order of denominator and k is the order of 
nominator.  
     In [8] are presented the most used Pade 
approximations by (2+0), (2+1), (1+1) and (2+2) 
order. 
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  (5) 

 
 
2.2. Determining the system transfer function 
of numerical system  
     To obtain the system transfer function of 
numerical system we use one of the Pade 
approximation forms of , resulting the relation: se τ−

 ( ) ( )a a
KH s H s    

1 s T τ= ⋅
+ ⋅

.  (6) 

     The numerical transfer function system results by 
using the transform methods of the analogical filter 
in a numerical filter. The two methods that we are 
studied are: 
     1. The approximation of differential equation by 
finite difference method in which the system 
function is obtain from relation:   

 ( ) ( ) (

     2. The bilinear transform method in which the 
system function is obtained from relation: 

 ( ) ( ) 1

1
e

a 2 1 zs
T 1 z

H z H s −

−
−

= ⋅
+

= .  (8) 

     Irrespective of the used Pade approximation, the 
general expression on the system function can be 
written as: 

 ( )
2 3

0 1 2 3
2

1 2 3

b b z b z b zH z
1 a z a z a z3
+ ⋅ + ⋅ + ⋅

=
+ ⋅ + ⋅ + ⋅

. (9) 

     The system function coefficients was determined 
in both method and it can be observed that only 
Pade approximation (1+1) gives two poles of the 
system function. Also, we can notice that the values 
of the system function coefficients depend on 
sampling period, which means that the sampling 
period influences the poles position and the stability 
of the system.  
     The authors simulated the behavior of the 
obtained filters for the four Pade approximations to 
different values of the parameters of the system. The 
conclusion is that to ensure the convergence for the 
coefficients of the adaptive filter at coefficients 
values of the filter that would result for the chosen 
values of the parameters of the system, it is required 
to grow the sampling period in proportion to the 
number of the poles of the system function. 
 
 
2.3. The determination of the coefficients of 
the process model 
     We determined the coefficients of the system 
function in the case of using both methods of 
equivalence and all the 4 Padé approximations, but 
the only approximation that gave the system 
function only 2 poles is the Padé approximation 
(1+1). In this case the coefficients values are: 

 
( )

( )( )
e e

0
e e

kT 2T
b

T T 2T
τ
τ
−

= −
+ +

 
( )( )

e
1

e e

k Tb
T T 2T

τ
τ

=
+ +

 

 
( )( )

e e
1

e e

2 T 2T T Ta
T T 2T
τ τ

τ
+ +

= −
+ +

             (10) 

 
( )( )2

e e

Ta
T T 2T

τ
τ

=
+ +

 

 2 3b a 0= =  

)1

e

a 1s 1 z
T

H z H s
−= ⋅ −

= ;  (7)      Making use of the coefficients of the system 
function, we can compute the parameters of the 
model of the heating process according to relations:  
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2 e
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     Since the values of the parameters of the system 
model can be finding by knowing the values of the 
adaptive filter, we had to choose the optimal 
identification algorithm with respect to the 
convergence rate, as well as to stability. We also 
had to choose the form of implementation, direct of 
lattice, as well as the method of equivalence for the 
analog filter with a numeric one. 
 
 
2.4. Defining the IIR-OSLMS filters 
     One of the applications of adaptive filters is 
identification. In this case, the purpose of the 
adaptive filter is to supply a model that will 
represent the best approximation of the unknown 
system. There are some situations when the model 
of the unknown system is defined through a rational 
function and its coefficients must be determinate 
using the adaptive filter. In this situation, the 
adaptive filter will be an IIR filter, described by 
relation (12). 

    ,         (12) ( ) ( ) ( ) ( )
N N

k k
k 0 k 0

a n y n k b n x n k
= =

− = ⋅ −∑ ∑
where  a0=1.  
     A version of the LMS algorithm, the OSLMS 
filtering, is obtained by updating the filter’s 
coefficients, starting from relation (13), and is given 
in [1] 
 ( ) ( ) ( )aMww  1 nnn NNN ⋅+=+ α   (13)          
where α is the adaptive parameter and MN(n) is a 
matrix having the dimensions (NxL) given by 
relation 

           

 .              (14) ( ) ( ) ( ){ nneTn NN xM  = }
     By T{⋅} we understand an algebric 
transformation of increasing ordering applied to 
each sequence line  

           (15)          
( ) ( ) ( ) ( )
( ) ( )}1 1  

    1 1    {
+−+−

−−
LnLne

nnenne

N

NN

x
xx L

 

and the vector a is given by relation 
 ( ) ( ) ( )[ Laaat       2   1 L=a ]  ,             (16)      
a representing the weight coefficient vector of the 
elements of matrix MN(n). Parameter L usually 
takes odd values, being named as length of the 

ordering window. Line i of matrix MN(n) is a line 
that can be written as   

 
( ) ( ) ( ) ( )

( ) ( )}21
    1  1{

+−−⋅+−
−⋅−+−⋅

LinxLne
inxneinxneT L

,(17)                  

where Ni ,,1L= . To be noticed that each 
prediction coefficient is calculated by applying 
relation (1). If all the coefficients of vector a are 
equal to 1, the OS filters thus obtained are called 
rectifier OS filters.      
     The output of the OSLMS filters is obtained 
according to the same relations as in the general 
case 
 ( ) ( ) (nnny N

T
N xw ⋅= )               (18)                  

and the prediction error is given by relation 
 ( ) ( ) ( )nyndne −= .              (19) 
     According to matrix a, we can obtain different 
types of particular OSLMS filters [12]. Thus, if 
matrix a is defined according to relation (20), we 
obtain the median filter LMS (MLMS). 

 
( )⎪

⎪
⎩

⎪⎪
⎨

⎧

+
≠=

=⎟
⎠
⎞

⎜
⎝
⎛ +

.  
2

1,0

1
2

1

Liifia

La
             (20) 

     An equivalent notation for the MLMS filter is 
        ( ) ( ) ( ) ( ){ LNNN nnemednn xww  1 ⋅+=+ α } ,  (21)                   
where ( ) ( ){ }LN nnemed x is a column vector with N 
lines, containing mean elements of 

 
( ) ( ) ( ) ( )
( ) ( )1 1

      1 1    {
+−+−

−−
LnLne

nnenne

N

NN

x
xx L

.       (22) 

     If the matrix a has been defined according to 
relation (23), we obtain the mean filter LMS 
(ALMS) 

 ( ) Li
L

ia ,,1,1
L==   ,                               (23) 

whose equivalent notation is given by  
     ( ) ( ) ( ) ( ){ }LNNN nnemeannn xww  1 ⋅+=+ α .   (24) 
     IIR adaptive filters can be implemented as in 
direct form and also in lattice form. 
    The authors are presenting 3 algorithms that can 
be used for the recalculation of the coefficients of 
the adaptive filter: using gradient algorithm, 
Steiglitz-McBride algorithm and Sharf algorithm. 
     These algorithms can be used if a Gaussian noise 
overlaps on the output signal of the unknown 
system. If on the output signal of the unknown 
system overlaps impulses with high amplitude and 
short duration, the values of the coefficients of the 
adaptive filters can be variable. 
     In [5] it is demonstrate that a method to decrease 
the influence of the impulses with high amplitude 
and short duration consist in using an OSLMS filter. 
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Based on these, the authors defined an IIR-adaptive 
filter that recalculates the coefficients with one of 
three identification algorithms, combined with an 
ordering operation. 
     IIR filter can be implemented directly and also 
using lattice structures (using any of three 
algorithms), and there are 6 possibilities to 
recalculate the coefficients of the adaptive filter. 
With the earlier mentioned notations, the relations 
for computing the filter coefficients, proposed by 
authors are:  
     a1) Gradient algorithm, direct form  

( )
( )

( )
( )

( ) ( )
( ) (n 1 n e n+ ⎪⎝ ⎠ ⎝ ⎠ ⎩ Ab b    X )n

μ ⎨ ⎬⎟
⎭

n 1 n e n n
T

⎛ ⎞ ⎛ ⎞ ⎧ ⎫+ −⎪ ⎪= + ⋅ ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜
Aa a Y

a   (25) 
⎪

    a2) Gradient algorithm, lattice form       
( )
( )

( )
( ) ( ) ( )n 1 n e n n

( ) ( )ˆn 1 n e n n
Tμ
⎧ ⎫⎛ ⎞ ⎛ ⎞+ −⎪ ⎪= + ⋅⎜ ⎟ ⎜ ⎟ ⋅⎨ ⎬⎜ ⎟ ⎜ ⎟+ ⎪ ⎪

Ak k U
a

⎝ ⎠ ⎝ ⎠ ⎩ Ab b    X

    b1) SHARF algorithm, direct form 
⎭

 (26) 

( )
( )

( )
( )

( ) ( )
( ) (b b    xn 1 n c n+ ⎪⎝ ⎠ ⎝ ⎠ ⎩ )

a a y
a

n 1 n c n n
T

n
μ

⎛ ⎞ ⎛ ⎞ ⎧+ −⎪ ⎪= + ⋅⎜ ⎟ ⎜ ⎟ ⎨ ⎬⎜ ⎟ ⎜ ⎟
⎫
⋅

⎪⎭
     (27) 

where 
( ) ( ) ( )c n e n 0.6 e n 1= − ⋅ −  

b2) SH
(⎛ +

ARF algorithm, lattice form        
⎫
⋅

⎪⎭
     (28) 

     c1) Steiglitz Mc-Bride algorithm, direct form     

⋅

 Steiglitz Mc-Bride  lattice   
⎫

) ( )
( )

( ) ( )
( ) ( )

n 1 n c n n
Tμ

⎞ ⎛ ⎞ ⎧−⎪ ⎪= + ⋅⎜ ⎟ ⎜ ⎟ ⎨ ⎬⎜ ⎟ ⎜ ⎟
k k u

a
( )n 1 n c n n+ ⎪⎝ ⎠ ⎝ ⎠ ⎩b b    x

( )
( )

( )
( )

( ) ( )
( ) ( )

n 1 n e n n
T

n 1 n e n n
μ

⎛ ⎞ ⎛ ⎞ ⎧ ⎫+ −⎪ ⎪= + ⋅⎜ ⎟ ⎜ ⎟ ⎨ ⎬⎜ ⎟ ⎜ ⎟+
Aa a D

a
b b    X⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎩ ⎭A

     c2) algorithm, form       

  (29) 

     
( )
( )

( )
( )

( ) ( )
( ) ( )

n 1 n e n n
T

n 1 n e n n
μ

⎛ ⎞ ⎛ ⎞ ⎧+ −⎪ ⎪= + ⋅⎜ ⎟ ⎜ ⎟ ⋅⎨ ⎬⎜ ⎟ ⎜ ⎟+ ⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎩ ⎭A

     With this aim, we tested identification 
iglitz 

Ak k U
a

b b    X
 (30) 

3 
algorithms: the gradient algorithm, the Ste
Mc-Bride algorithm and the SHARF one, each of 
them being implemented both in direct and lattice 
form, by using one of the two methods of 
equivalence for the analog filter with a numeric one. 
           For this goal, there were identified the parameters 
of the unknown system with the transfer function: 

( ) 21 7,019,11 −− +−
=

zz
zH  .               (31) 

     This system has the values of the reflection 

21 6,13,11,0 −− +−− zz

coefficients k1= _ 0,7  şi  k2= 0,7. At 
unknown system was applied a noise with gaussian 

the input of the 

distribution. All simulations were realised using the 
same value of the adaptation parameter 05,0=μ  
and with the same window length (9 samples). 

     It was determined experimentally for these value 
of the adaptation parameter, respective the values of 

operties (the 

 

the window length, that a number of 5000 samples 
are enough in order to all the coefficients of the 
adaptive filter to converge to the values of the 
unknown system.  
     To study the behaviour of the IIR-OSLMS 
filters, [10], [11],  in situation when appear impulse 
perturbations with high amplitude and short 
duration, at the unknown system output it considers 
that appear 3 impulses of different amplitude, 2, 3 
respective 4 units, that are situated on samples 
positions with numbers 2000, 3000 respective 4000. 
     For the first two algorithms it was represented 
the variation form of the IIR adaptive filter 
coefficients, the ALMS adaptive filter coefficients, 
respective the MLMS adaptive filter coefficients 
implemented in direct and lattice form. The results 
are presented in figures 1 -14.   
     It was determined the followings: 
     1.  In direct form of implementation the IIR and 
ALMS filters have similar pr
convergence speed and also the influence of 
impulses with high amplitude and short duration). 
The MLMS filter has a reduced speed convergence, 
but the influence of impulses with high amplitude 
and short duration is reduced. 
     2. In lattice form of implementation the IIR and 
ALMS filters have similar properties (the 
convergence speed), but the influence of impulses 
with high amplitude and short duration on variation 
of coefficients is higher in MLMS filter case. In this 
case too, MLMS filter has a reduced convergence 
speed, and the influence of impulses with high 
amplitude and short duration on variation of 
coefficients is reduced. 
     3. Comparing the characteristics of the two 
algorithms, it is obvious that convergence speed is  
the same, no matter of implementation form and the 
kind of filter. In the same time, the influence of 
impulses with high amplitude and short duration on 
variation of coefficients is reduced at SHARF 
algorithm. 
     4. In case of Steiglitz-McBride algorithm, the 
author concluded experimentally that the IIR-
OSLMS filters are not convergent for the chosen 
values of adaptation parameter and window length. 
In figures 13 and 14 was presented the variation of 
coefficients for IIR adaptive filter using this 
algorithm in the both implementation forms. The 
variation forms of the coefficients were made after 
iterated tests, because this algorithm wasn’t 
convergent in many cases. 
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Figure 1. Variation of IIR filter coefficients, gradient algorithm, direct form. 
 

 
 

Figure 2. Variation of ALMS filter coefficients, gradient algorithm, direct form. 
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Figure 3. Variation of MLMS filter coefficients, gradient algorithm, direct form. 
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 Variation of IIR filter coefficients 

 
 

Figure 4. Variation of IIR filter coefficients, gradient algorithm, lattice form. 
 

 
 

 
Figure 5. Variation of ALMS filter coefficients, gradient algorithm, lattice form. 

 

 

 
Figure 6. Variation of MLMS filter coefficients, gradient algorithm, lattice form. 
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Figure 7. Variation of IIR filter coefficients, SHARF algorithm, direct form. 
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Figure 8. Variation of ALMS filter coefficients, SHARF algorithm, direct form. 
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Figure 9. Variation of MLMS filter coefficients, SHARF algorithm, direct form. 
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Figure 10. Variation of IIR filter coefficients, SHARF algorithm, lattice form. 
 

 
 

Figure 11. Variation of ALMS filter coefficients, SHARF algorithm, lattice form. 
 

 
 

Figure 12. Variation of MLMS filter coefficients, SHARF algorithm, lattice form. 
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 Variation of IIR filter coefficients 

 
 

 
Figure 13. Variation of IIR filter coefficients, Steiglitz-McBride algorithm, direct form.. 

 
 

 
 

 
Figure 14. Variation of IIR filter coefficients, Steiglitz-McBride algorithm, lattice form.  
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computation is more complicated, because of 
comparing operations.  
     6. MLMS filter has the best performances in 

of a lot of computations for implementation, this 
filter has more adva t
influence of impulses with high amplitude and 
short duration. Also, this kind of filter can be used 
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in on-line identifications of the parameters of slow 
processes. 
      The results of the tests meant to identify the 
heating process of the furnace, lead us to the 
conclusion that the Pade (1+1) approximation 
allows the easiest determination once the 
coefficients of the numeric adaptive filter are 
known. 
             We also determined experimentally that the most 

 
f the coefficients. In the second step, starting from 

orithm are 
 values of adaptive 

o a system whom balanced state is described 

efficient algorithm of identification is the SHARF 
algorithm, implemented in its lattice form, the 
equivalence of the analogous filter with a numeric 
one being done by the method of the approximation 
of the differential equation with finite differences. 
 
 
3.   Problem Solution 
     In this part of this paper, the authors present a 
method that determines the adaptive filter 
coefficients. In the first step, using an on-line 
identification method, are estimate the initial values
o
these values and using an adaptive alg
computing the instantaneous
filter.  
  
3.1. The on-line identification method for 
the parameters of slow process with delayed 
time  
     The on-line identification method, that is 
presented in [8], consists in applying of an input 
signal t
by the (X0, Y0) point. The relation (32) describes 
this input signal. 

1 0

0 0

X 0 t T
x( t )

X t T>⎩
     The input signals form is presented in figure 15. 
     Applying this kind of input signal instead of the 
stage signal presents two advantages. The first 
advantage: it can 
stabilized in the sa

≤ ≤⎧
= ⎨   .                (32)            

be observed if the Y output can be 
me stationary Y0 point, or not. If 

the Y0 value can’t be reached,
the process is no stationary, which can conduct to a 

                             

 we conclude that or 

better approach of the model, or a perturbation 
appeared during the experiment, so the experiment 
must be resumed. The second advantage consists in 
the fact that differences ( ) ( )    and    y0 0x t X t Y− −  
are null after a time interval that is larger then 
process stabilization time interval, so the integrals 

 ( ) [ ]K
XK 0

0

I t x( t ) X dt
∞

= − − ⋅∫             (33) 

 ( ) [K
YKI t y(

∞

and 

dt]0t ) Y
0

= −∫ ) − ⋅    ,            (34

where K 0, 1,= K    ,  will be finite.  

     Taking into consideration that the chosen model 
depends by N parameters, the identification process 
consists in evaluation of H(s) function and the first 
N-1 derivatives in origin. The result is a N equation 
system with N variables. The solution of this 
equation system is the N system parameters. 
     The N-1 derivatives can be determined in 
recursive way, by the relation: 
 Y( s ) H( s ) X( s )= ⋅  ,             (35) 

from which result 
 Y(0 ) H(0 ) X(0 )= ⋅               (36) 
and by successive derivations it can be obtained the 
general relation for the k-th order derivative in 
origin 

K
( K ) i ( K i ) ( i )

KY (0 ) C H −−∑
( K ) i 1

(0 ) X (0 )
0 )

X(0 )
=

⋅
=

here 

H ( (37) 

w

 [ ]( K ) K
0

0

Y ( 0 ) ( t ) y( t ) Y dt
∞

= − − ⋅∫ ,         (38)                   

 [ ]( K ) K
0

0

X (0 ) ( t ) x( t ) X dt
∞

= − −∫ ⋅ ,  (39) 

K= 0, 1, . . ., N-1.  
integrals that are obtained from (38) and (39) 

 on a finite domain, 
     The 
can be computed i0 t T≤ ≤ , 
w tion. Using here Ti  represents the limits of integra
(37) it was computed successive for the model given 
by the relation (3): 

  
( )
( )H 0 K′ = − +( )

H 0 K

T τ

=

⋅

( ) ( )2 2H 0 K T T  ,τ⎡ ⎤′′ = ⋅ + +⎣ ⎦
     These relations permitted the evaluation of the 
model parameters. 

            (40) 

x(t) 

T 
t

X0 

1 X

Figure 15. The input signal shape. 
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( )
2'' '

K H 0

H (0 ) H (0 )T 
H

'

(0 ) H(0 )

)

=

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
            (41) 

 
3.2. Noise cancellation and evaluation of the 

odel parameters 
     To study the possibility of noise cancellation 

it was applied a test impulse and the temperature 
values was measured. The impulse duration was 20 

pling period was 0.2 seconds. The 

To cancel the noise it was 
use

ing from 
zer

ere 
cho

H (0 ) T   .
H(0

τ = − −

m

minute and sam
form of impulse is presented in figure 15. 

     In figure 16 it can be see the noise that affect 
the measured results. 

d a MALMS filter, with a window of 75 
samples. The results are presented in figure 17. 

     In scope of determining the values of the 
model parameters, the authors made 10 
measurements with initial conditions start

o, the measurements results being presented in 
table 1.     

     Based on the results presented in table 1 the 
initial values of the models parameters w

sen 440=K , 275=T  seconds and 
66=τ seconds. 

Table 1.  
No. 
crt. 

Tm   τ m  

    
     Using P roxima 1), it w lied 
at e inp e syst  has  
function gi elation ectang nal. 
Th filter ents v  is pr  in 
figures 18 and 19, for the values 0,001 015 
o aptat ficien s observe that a 

ater value of the adaptation coefficient conduct 

 
 
4. Conclusions 
     The on-line identification method has two 
disadvan
if the durati

tegration time are not chosen according to the 
rocess parameters, the 

of the parameters have great 

of the analogical filter with a numerical filter. 

Km 

  
ade app tion (1+ as app

 th ut of th em, with the system
ven by r  (3), a r ular sig

e coeffici ariation esented
and 0,0

f ad ion coef t. It wa
gre
to a better convergence of the filter coefficients, but 
the value of the adaptation coefficient cannot be 
chosen too great because the adaptive filter became 
unstable.  

   

tages. First of them consists in the fact that 
on of the test impulse and of the 

in
real values of the p
measurement values 
errors. The second disadvantages consist in fact 
that for measure the values of the parameters 
process the system must be take out of the stable 
state and the measured values are considered 
constants until a new measurement.  
     The system transfer function can be obtain using 
a Pade approximation of the transfer function 
which is associate on delayed time process and the 
discrete system function is obtained by equivalence 

(sec) (sec) 
1 442,60 274,22 66,21 
2 438,56 272,21 64,87 
3 450,88 34 65,38  280,
4 4 275,33 66443,2 ,86 
5 436,22 271,00 67,12 
6 4  2  645,78 78,22 6,43 
7 436,50 2  70,29 63,26 
8 447,87 279,24 65,96 
9 440,26 275,34 67,28 

10 438,22 273,37 66,32 

Fig. 16. The measured temperature.

Fig. 17. The filtered measured temperature 
variation. 
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     The authors determined the computing relations 
of the filter coefficients knowing the values of the 
parameters pro erse relations. 
     It w  each 
imple , 
resulting that the lattice form has a better 

ergence speed than direct form and also that 

f 

] G. R. Arce, N.C. Gallagher, T. A. Nodes, 
edian Filters: Theory for One and Two 

 Filters, Advances in Computer Vision 

ade Lattice IIR Adaptive 

ansactions on Signal Processing, vol 40, 

ibson, "A 

h. Muscă, C. Calcev, "Automatizări 

ul Ştiinţific Timişoara, Tom 40 (54), 

w complexity 

 C.T., “Implementing 

“,WSEAS Transactions on 

cess, and also the inv
as studied 3 identifications algorithms

mented in ect form and lattice formdir

conv
SHARF algorithm present the smallest oscillation. 
     Finally it was experimentally demonstrated that 
the using of the adaptive filter on identification o
the parameters process is necessary a previous 
measure with another method in scope to obtain the 
initial values of the adaptive filter coefficients.  

 
 

Filters coefficient variations 
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