
A Model and Tool Features for Collaborative Artifact

Inspection and Review

ABDUSALAM NWESRI, KHAIRUDDIN HASHIM

Software Engineering Department, Tenaga Nasional University

MALAYSIA

khairuddin@uniten.edu.my

Abstract: - Inspection offers an opportunity to detect and remove defects at various points during

software development. Early detection will reduce the effect of propagation and amplification of

defects into the later phases of software development. Collaborative inspection on the web aims

to eliminate the time factor needed to assemble the inspection or review team at a physical

location. Through the collaborative mode, software teams can perform software inspection and

review from geographically separated places asynchronously. These newly introduced practices

have proven that collaborative inspection and review of artifacts on the web is feasible. This

paper provides a model for collaborative inspection and review including possible features of

model and tool that will support collaborative inspection and review on the web.

Key-Words: artifact, collaborative, software inspection, review

1. Introduction

Artifacts produced in software development

activities are required to be inspected and

reviewed. Otherwise, defects get amplified

and propagated to the following phases. To

minimize this, review and inspection are

required.

With size of projects increase in magnitude

and cost, effective methods must be

introduced to ensure defects are detected

early in the development phase. Quality of

final products usually depends on the quality

of procedures employed. Comprehensive

documented procedures ensure that step by

step requirements are adhered to.

Considerations on process requirements

ensure that a process is executed accurately

with required focus and considerations.

Nowadays, it is quite common for team

members of a software development project

to be separated geographically. As such,

methods and tools have to be developed to

support this new requirement [1]. A

collaborative approach should facilitate

asynchronous activities due to time zone

difference. Software inspections have been

proven to improve software quality and

reduce software development costs.

The process as introduced by Fagan in 1967

[2], involves a group of competent people

working together to check required changes

on any milestone deliverable in software

development. Inspections are among the

most mature and perhaps best-studied

practices in software engineering [3].

Inspection is applied in various domains

including the software security domain as

reported in [4]. Although in general software

inspections have been accepted in the

software industry as a cost-effective

approach, many remain reluctant to

implement inspection [5].

Inspection methods can be more effective

than informal reviews and require less effort

than formal proof, but success depends on

having a sound and systematic procedure for

conducting inspection [6]. If this is effective,

maintenance cost may also be reduced.

There were many requirements suggested by

previous tools’ developers. Some of these

requirements vary from one tool to another.

In this paper we first present the traditional

WSEAS TRANSACTIONS on SYSTEMS

ABDUSALAM NWESRI, KHAIRUDDIN HASHIM

ISSN: 1109-2777 1038 Issue 10, Volume 7, October 2008

inspection process, discuss several research

approaches to inspection and then define

some requirements towards effective

collaborative inspection on the web.

2. Traditional Inspection Process

The original process as proposed by Fagan

[2] goes through five phases: overview,

preparation, inspection, rework and follow-

up. In the first phase, overview, the author

presents his product to the whole team.

Then, the document and any related work

such as the source document and checklists

are distributed to the team members.

Individually, each team member investigates

the document in order to understand it but

not to detect defects.

In the following phase, Inspection Meeting,

the document is paraphrased by the reader.

During this process, the inspectors can raise

issues regarding the document. If a

consensus that an issue is a defect is

reached, the issue is then classified as

missing, wrong, or extra and its severity is

also classified as either major or minor. The

defect is then recorded by the recorder. The

meeting moves on until the inspection team

finishes inspecting the document or within a

time limit not more than two hours.

 The moderator will hand over the defect list

to the author who makes the necessary

corrections. This phase is usually called

rework. In the following phase, follow-up,

the moderator ensures that all required

changes have been made. The moderator

thereafter decides upon the state of the

inspection and whether or not a re-

inspection is required. It is at this point that

the inspection process is considered

complete.

In the updated version [7] of the inspection

process, the planning phase was added. In

the planning phase, details of the product to

be inspected, the inspection team, time

schedule and defect detection approaches

are identified. The process is depicted in

Fig. 1.

Fig. 1: Fagan’s Inspection Process

3. The Research Landscape in

Software Inspection

A study [8] proposed an inspection quality

enhancement method. It suggested rules for

better implementation of inspection

procedures. The rule set has 8 categories and

30 indexes grouped by similarity of rule

characteristic. Table 1 shows the review

items for code inspection.

Category No Index Item

Readability

&

Maintenance

1 Macro Naming

2 Function Naming

3 Enum Constants

Naming

4 Global Variable

Naming

5 Local Variable

Naming

Planning

Overview

Individual

Preparation

Rework

Follow-up

Inspection

Meeting

WSEAS TRANSACTIONS on SYSTEMS ABDUSALAM NWESRI, KHAIRUDDIN HASHIM

ISSN: 1109-2777 1039 Issue 10, Volume 7, October 2008

6 File Naming

7 #define or #undef

within a block

8 File Comments

Dead Code 9 Failure Definition

Global Variables

10. Non-null Statements

Potential

Error

11 Default in Switch

12 Floating Point

Comparison

13 Uninitialized Pointer

14 Variable Initialization

15 Null Pointer

Assignment

16 Assignment in

Boolean Expression

17 Braces of Loop Body

18 Three Expressions of a

For Statement

Control

Error

19 Unreachable Code

20 Goto Statement

21 Empty Block Body

22 Loop Counter Type

Performance 23 Debug Statement

Storage

Management

24 Dynamic Heap

Memory

Interface 25 Number of Arguments

and Parameters

26 External Definition

Object

27 External Definition

Function

28 Internal Linkage of

Object

29 Internal Linkage of

Function

Security 30 Observe Prohibition

Function

Table 1: Review Items for Code Inspection

The question of whether or not inspection

meeting offsets its cost has been

controversial. Many articles, questioning the

meeting value, were published [9], [10].

Some researchers have anticipated that

asynchrony will replace the inspection

meeting in the future [11]. Some others

reached the conclusion that the inspection

meeting is of doubtful value. Many

experiments were conducted to check that

doubtfulness.

Votta at AT&T Bell Labs [9] observed a

series of inspection meetings involving

software professionals working on industrial

projects. His analysis from the data gathered

suggested that the number of defects found

in meetings is only 4% greater than the

number discovered during individual

preparation. He also conducted subsequent

cost-benefit study to compare meeting based

inspections with a process based around

individual defect depositions.

He reported that the potential benefit of

finding more defects in a meeting was not

adequately offset by the higher cost incurred

in organizing the meeting. Votta also

noticed that only two of the inspectors can

interact in the meeting at any one time.

Straightforwardly, he concluded that around

30%-80% of other inspectors’ time was

spent listening to the conversation.

McCarthy et al. [12] conducted a series of

experiments to investigate the notion that the

WSEAS TRANSACTIONS on SYSTEMS ABDUSALAM NWESRI, KHAIRUDDIN HASHIM

ISSN: 1109-2777 1040 Issue 10, Volume 7, October 2008

inspection meeting is responsible for

uncovering many defects and the

effectiveness of the meeting in finding

defects compared with other defect detection

techniques. They utilized three detection

techniques for testing the hypothesis namely

Preparation – Inspection (PI), Detection –

Collection (DC) and Detection – Detection

(DD).

PI is a technique whereby the inspectors at

first try to understand or only browse the

document and only look for defects later in

the meeting. DC is a technique where

inspectors go through the document to find

defects during the meeting. The individual

inspector simply reports his/her own

findings.

DD is a technique where another round of

checking is added after the initial individual

checking. Amongst the three methods used,

DD was found to be the best. The DD

technique recorded a detection rate of 46%

followed by DC (23%) and finally PI (19%).

Upon this finding, they concluded that

meetings are not necessarily vital to

successful inspections. However, they

reported that further study is needed to

confirm this finding. Porter et al.

Porter et al. [13] came to a conclusion that

inspection meeting gains is approximately

zero. In a series of experiments, they

compared the number of defects found for

the first time at the meeting (meeting gains)

and the number of the defects found before

the inspection meeting by any of the

inspectors that have not been found in the

meeting. They found that there is no

significant difference between the two

findings. Similar results have been

concluded by the replication of the same

experiment both in Italy [14] and in UK

[15].

In another study, Porter and Johnson [16]

compared two experimental studies of

software review meetings. The experiments

compared the performance of two different

groups performing inspections: “real”

inspection groups, which were involved in

the normal inspection meeting, and

“nominal” inspection groups, in which the

result of the inspection is the correlation of

individual inspectors’ results.

They performed the comparison to test five

hypotheses under the context that the real

groups will outperform the nominal group.

However, the studies failed to discover any

significant difference in the number of

defects found by the two groups. Instead,

they found that the number of issues

produced by the nominal groups were

significantly more than the ones produced

by the real groups.

This has raised a doubt about the

effectiveness of the inspection meeting. On

the other hand, these studies revealed that

the group meeting is more effective than a

meeting-less inspection in identifying the

false positive defects. Also, inspection

meeting was identified to be more effective

in finding some certain types of defects.

They concluded that the inspection meeting

does not in itself increase nor decrease the

detection capability of the inspection

process.

Land et al. [17] confirmed the findings

obtained by Porter. They found that the

number of new defects reported by

interacting groups (IG): groups that interact

during the inspection meeting is low.

According to this result, they discounted the

synergy to be the important factor behind

the inspection meeting. They also reported

that there are defects discovered by

individuals that have not been found by

groups. The most important point they

concluded is that interacting groups are the

best at the discrimination between true and

false positive defects. Therefore, they still

have the performance advantage over the

nominal groups in terms of the net defects.

Land et al. [18] reconfirmed these results

and have demonstrated that interacting

groups are the preferred choice over the

average individuals and the nominal groups.

WSEAS TRANSACTIONS on SYSTEMS ABDUSALAM NWESRI, KHAIRUDDIN HASHIM

ISSN: 1109-2777 1041 Issue 10, Volume 7, October 2008

Finally, based on the above arguments,

Glass concluded that inspection meeting is

of doubtful value [19]. The above results

resulted in development of new models.

These models have reduced the load on the

inspection meeting by distributing the

process and discharging it from the

inspection process.

Some asynchronous inspection models have

been developed. The main concern of these

models was to practice the software

inspection without the need for all the

inspectors to be present at the same time or

to convene at the same place.

A model developed by Philip Johnson [20]

has three identified roles: moderator,

producer and reviewer. The moderator is the

person who is in charge of the overall

process, the producer is the author of the

document and the reviewer is the person

who performs the checking. The process

goes through seven phases: setup,

orientation, private review, public review,

consolidation, group review meeting and

conclusion.

In the setup phase, the inspection team is

identified and the work product is made

available using a computer tool called CSRS

[21]. In the following phase, orientation, the

inspection team is briefed about the

inspection materials and objectives. In the

private review, reviewers check the

document and create annotations. In this

phase, the annotations are kept private.

However, they publicly become available in

the public review phase.

Reviewers can view all comments and also

add comments. New annotations can be

added at this phase as well. When the team

resolves all issues, or the moderator decides

to terminate the discussion, this phase is

considered complete. The consolidation

phase then follows in which the moderator

analyses the results of the private and public

review phases, and summarizes unresolved

issues. Based on the results, the moderator

will decide whether or not a group reviews

meeting will take place. The final phase is

the conclusion where the moderator

produces the final inspection report and the

inspection metrics reports.

Another model was introduced by

Mashayekhi et al. [22]. This model makes

use of Humphrey’s inspection process [23].

The process goes through the same phases

except the inspection meeting, which has

been substituted by a sequence of defect

discussions. In some cases synchronous

inspection meeting is held to resolve issues

that have not been resolved asynchronously.

The process starts with the initialisation

phase where the moderator makes the

inspection materials available to the whole

inspection team.

Afterwards, the reviewers start to check the

work product in what is called fault

collection. A fault list is usually produced by

each reviewer. In the following phase,

correlation, the producer correlates the fault

lists in one list. The correlated list is then

posted to the inspection team for further

asynchronous discussion. This phase is

usually called asynchronous meeting. If the

team manages to resolve all the issues in the

correlated fault list, an action-item list with

the resolved issues and suggested

resolutions is forwarded to the producer for

rework.

On the other hand, if the team failed to

resolve some issues, then the moderator

decides whether or not a synchronous

meeting phase should take place. The action

item list is passed to the author to make the

necessary corrections. This phase is called

rework. The moderator, as in the traditional

follow-up phase, assures that all the changes

have been properly made.

A model introduced by Paul Murphy and

James Miller [24, 25] replaces the inspection

meeting with another round of individual

inspection. The process starts with the

planning phase in which the moderator

prepares for the inspection. The first round

of individual preparation then starts. Here,

WSEAS TRANSACTIONS on SYSTEMS ABDUSALAM NWESRI, KHAIRUDDIN HASHIM

ISSN: 1109-2777 1042 Issue 10, Volume 7, October 2008

inspectors individually go through the

document looking for defects. When

reaching a pre-stated deadline, each

inspector circulates his/her own defect list to

the rest of the team and the moderator for

review.

Using a communication mechanism such as

email, inspectors then discuss those defects.

A second round of individual review is

followed. Learning from others inspectors’

defects, an inspector can generate new

defects, reclassify or delete his/her old ones.

The outcome of the second round is then

submitted to the moderator who collates the

defect lists into one list.

This list is sent to the author for rework. In

contrast to Humphrey’s inspection process,

the model opposes the idea that the author

can participate in the defect detection or

collation. The final phase is the traditional

follow-up activities.

4. Evaluation Criteria for

Software Inspection Tools

Hedberg and Lappalainen [26] introduced

the DESMET method of evaluation on the

functional requirements of a software

inspection tool covering the following

criteria: artifact management, defect

management, process management, process

improvement support and quality aspects. In

their paper, a brief description of each

criterion was given.

In order to develop a good software

inspection tool that can survive major

changes in the software development

process, we have to consider the nature of

software inspection that would be

performed. One good article linking

inspection with formal technical review

process was written by Philip Johnson [27].

His article gave some important insights of

tools that cannot be overlooked and have to

be taken into account in developing any

software inspection tool. He provided seven

recommendations for formal technical

reviews as follows:

Providing tighter integration between
inspection and the development method:

integrating the inspection method with

development in use improves the software

development process as well as the quality

of the inspection method. For example,

building inspection checklists when using

the spiral model might differ when using the

waterfall model.

Minimizing meeting and maximizing
asynchronous meeting: moving towards

asynchronous meetings may improve the

inspection process in some aspects.

Asynchronous meetings relax the time and

the place factors, support the review of

larger artifacts, and ameliorate the interval

time problem identified in the synchronous

meetings.

Shifting the focus from defect removal to

improved developer quality: inspection

methods should not focus on the author as

much as on the products of review. For

example, discussing issues, instead of

raising issues but not resolving in the

inspection meeting, helps improve the

quality of the inspection process.

Building organizational knowledge based

on review: software inspections should

generate and maintain an organizational

knowledge based on guidelines, checklists

and others. This knowledge base should be

available to other reviewers and developers.

Outsourcing review and insourcing of
review knowledge: the service of an

external consultant with specialized

knowledge might replace the insource

review in organizations. In addition,

organizations could insource their review

knowledge by buying or building review

guideline database.

WSEAS TRANSACTIONS on SYSTEMS ABDUSALAM NWESRI, KHAIRUDDIN HASHIM

ISSN: 1109-2777 1043 Issue 10, Volume 7, October 2008

Investigating computer-mediated review
technology: using automation to accomplish

the reengineering of software inspections. It

facilitates the points pointed above.

Breaking the boundaries in review group
size: group size should not be restricted to 6-

9 participants as in current approaches. The

use of computer-mediation allows for

increase in the number of participants,

allowing the review to be carried out

effectively and efficiently.

Based on the points presented above, we can

arrive at the following conclusion:

• Software inspection is moving towards

asynchronous mode. Therefore, software

inspection tools have to implement a good

asynchronous inspection model to make the

process more effective.

• Software inspection tools should maintain

an inspection knowledge base that can be

used in the improvement of the software

inspection process.

5. Attributes of Collaborative

Artifact Inspection Model

and Tool

Considering various requirements, we

propose the following model features for

collaborative artifact inspection and review.

Artifact Type. The model and tool should

support any type of documents allowing the

different milestones’ deliverables to be

inspected. In addition, it should be capable

of displaying any number of documents

required to accomplish the inspection task.

The model and tool should be able to

support inspection and review of artifacts

such as software requirements document and

systems documentation.

Inspection Management. The Inspection

process should be managed to ensure quality

process design and execution. Process steps

should be well documented.

Linked Annotations. The model and tool

have to implement an annotation mechanism

that connects annotations to the relevant

locations in the respective documents.

Implementing a good inspection meeting
model. The model and tool are to implement

a good asynchronous inspection meeting

model supported by a workflow feature.

This will ensure steps are adhered to through

effective completion of tasks.

Query & Reporting. The model and tool

should be able to report inspection results

and statistics that can be used in the

assessment of the inspection process.

Reports should include the following:

• Identification of annotations made by

o all inspectors/reviewers

o any single inspector/reviewer

• Identification of annotations, based on

certain keywords

• Identification of annotations made by all

or some inspectors/reviewers on

o selected sections of document

o selected pages

Checklist supported inspection/review. The

model and tool should make use of

checklists to guide the steps through the

inspection or review process. This will help

structure a review process that is consistent

through standardization.

Support Functions. The inspection process

should be supported by tool functions such

as search and glossary. This will allow

reference to words be clarified during the

process of inspection.

WSEAS TRANSACTIONS on SYSTEMS ABDUSALAM NWESRI, KHAIRUDDIN HASHIM

ISSN: 1109-2777 1044 Issue 10, Volume 7, October 2008

Reaching consensus. The model and tool

should allow the inspection team to initiate

discussions, comment and reach consensus

regarding issues. The model and tool should

include mechanisms to record preferences

and decisions.

Administration. The model and tool need to

support authorization of different roles with

responsibilities and restrictions along the

process steps. This includes incorporation of

selected annotations to create draft and final

versions of artifacts.

Attachments. The model and tool should

allow for attachment of files linked to

annotations. For instance, a video or audio

clip that gives an overview of a task to be

inspected should help put things in

perspective without having to read a

document. It is also necessary for author and

inspector(s) who might want to attach files

to support or demonstrate comments made.

Process Improvement. The model and tool

should collect inspection data for use in

future projects, for example, common causes

of defect relating to requirements domain or

project team. The tool should maintain a

good inspection database that can be used in

software process improvement.

Availability, Accessibility & Security. The

system should be available 24x7 to allow for

inspectors and reviewers located in different

time zones to have secure access. A web-

based implementation is suitable.

6. Conclusion

Inspection offers the opportunity to detect

and remove defects in the software

development process. Early detection will

reduce the time delay and cost implications

resulting from late detection. Effective

facilitation and execution of the process will

ensure timely change, when and where

necessary.

Multi-site software development projects

separated geographically in different time

zones require collaborative tools. This paper

presents the basic requirements for a

collaborative artifact inspection and review

model. We finally proposed twelve features

of model and tool for collaborative artifact

inspection and review.

References:

[1] A. Nwesri, K. Hashim, A Model for

Collaborative Artifact Inspection and

Review, Proc. of the 12
th
. WSEAS Int. Conf.

on Computers, Greece, July, 2008.

[2] M. Fagan, Design and Code Inspections

to Reduce Error in Program Development,

IBM Systems Journal, Vol. 15, No. 3, 1976,

pp. 182-211.

 [3] F. Shull, C. Seaman, Inspecting the

History of Inspections: An Example of

Evidence-Based Technology Diffusion,

IEEE Software, Volume 25, 2008, pp. 88 –

90.

[4] A. AlAzzazi, A. E. Sheikh, Security

Software Engineering: Do it the right way,

Proceedings of the 6
th
. WSEAS Int. Conf. on

Software Engineering, Parallel and

Distributed Systems, Greece, 2007.

[5] C. Denger, F. Shull, A Practical

Approach for Quality-Driven Inspections,

IEEE Software, Volume 24, Issue 2, 2007,

pp. 79-86.

[6] D. L. Parnas, The Role of Inspection in

Software Quality Assurance, IEEE

Transactions on Software Engineering, Vol.

29, No. 8, 2003, pp. 674-676.

[7] M. E. Fagan, Advances in Software

Inspection, IEEE Transactions of Software

Engineering, 12(7): 744-751, July, 1986.

[8] T. Kyung, S. Kim, A Study on the

Development of Rules for Effective Code

Inspection: Case Study of Company “A”

Information System, Proc. of WSEAS Int.

WSEAS TRANSACTIONS on SYSTEMS ABDUSALAM NWESRI, KHAIRUDDIN HASHIM

ISSN: 1109-2777 1045 Issue 10, Volume 7, October 2008

Conf. on Applied Computer and Applied

Computational Science, China, 2008.

[9] L. G. Votta, Does Every Inspection Need

a Meeting? In Proceedings of the First ACM

SIGSOFT Symposium on the Foundations of

Software Engineering, pp. 107–114,

December 1993.

[10] P. M. Johnson and D. Tjahjono, Does

Every Inspection Really Need a meeting?

Journal of Empirical Software Engineering,

Volume 4, Number 1, January, 1998.

[11] P. M. Johnson, Reengineering

Inspection: The Future of Formal Technical

Review, Communications of the ACM,

41(2):40-52, February, 1998.

[12] P. McCarthy, A. A. Porter, H. Siy, and

L. Votta, An Experiment to Assess Cost

Benefits of Inspection Meetings and Their

Alternatives. Technical Report, Computer

Science Dept., University of Maryland,

1995.

[13] A. A. Porter, L. Votta, and V. Basili,

Comparing Detection Methods for Software

Requirements Inspections: A Replicated

Experiment. IEEE Transactions on Software

Engineering, 21(6):563{575, 1995.

[14] F. Lanubile and G. Visaggio, Assessing

Defect Detection Methods for Software

Requirements Inspections Through External

Replication. Technical Report, Dept. of

Informatica, University of Bari, 1996.

[15] J. Miller, M. Wood, M. Roper, and A.

Brooks, Further Experiences with Scenarios

and Checklists. Technical Report, Dept. of

Computer Science, University of

Strathclyde, 1996.

[16] A. A. Porter and P. M. Johnson,

Assessing Software Review Meeting:

Results of Comparative Analysis of Two

Experimental Studies. IEEE Transactions on

Software Engineering, 23(3):129–145,

March 1997.

[17] L. Land, C. Sauer, and R. Jeffery,

Validating the Defect Detection

Performance Advantage of Group Designs

for Software Reviews: Report of a

Laboratory Experiment Using Program

Code. In Jazayeri M. and Schauer H.,

editors, Sixth European Software

Engineering Conference Held Jointly with

the Fifth ACM SIGSOFT Symposium on

Foundations of Software Engineering,

Number LNCS 1301 in Lecture Notes in

Computer Science, pp. 295-309. Springer,

September, 1997.

[18] L. Land, R. Jeffery and C. Sauer,

Validating the Defect Detection

Performance Advantage of Group Designs

for Software Reviews: Report of Replicated

Experiment. In Bailes P. A., editor,

Proceedings of Australian Software

Engineering Conference, IEEE Computer

society, pp. 17-26, October 1997.

[19] R. L. Glass, Inspections-Some

Surprising Findings, Communications of the

ACM, 42(4):17–19, April 1999.

[20] P. M. Johnson, An Instrumented

Approach to Improving Software Quality

Through Formal Technical Review. In

Proceedings of the 16th International

Conference on Software Engineering, May

1994.

[21] P. M. Johnson and D. Tjahjono (1993).

CSRS Users Guide. Technical Report ICS-

TR-93-16, Collaborative Software

Development Laboratory, Department of

Information and Computer Sciences,

University of Hawaii, 1993.

[22] V. Mashayekhi, C. Feulner, and J.

Reidl, CAIS: Collaborative Asynchronous

Inspection of Software. In Proceedings of

the Second ACM SIGSOFT Symposium on

the Foundations of Software Engineering,

December 1994.

[23] W. S. Humphrey, Managing the

Software Process, Chapter 10, pp. 171–190.

Addison-Wesley, 1989.

WSEAS TRANSACTIONS on SYSTEMS ABDUSALAM NWESRI, KHAIRUDDIN HASHIM

ISSN: 1109-2777 1046 Issue 10, Volume 7, October 2008

[24] P. Murphy and J. Miller, Asynchronous

Software Inspection, Technical Report

EfoCS-27-97, Department of Computer

Science, University of Strathclyde, 1997.

[25] P. Murphy and J. Miller, A Process for

Asynchronous Software Inspection. In

Proceedings of the 8
th
 International

Workshop on Software Technology and

Engineering Practice, pp. 96–104, July

1997.

[26] H. Hedberg and J. Lapalainen, A

Preliminary Evaluation of Software

Inspection Tools with the DESMET

Method, Proc. Fifth International

Conference on Quality Software, 2005.

[27] P. M. Johnson, Reengineering

Inspection: The Future of Formal Technical

Review, Communications of the ACM,

Volume 41, Issue 2, 1998. pp. 49-52.

WSEAS TRANSACTIONS on SYSTEMS ABDUSALAM NWESRI, KHAIRUDDIN HASHIM

ISSN: 1109-2777 1047 Issue 10, Volume 7, October 2008

