
 
Frame Length Selection in Speaker Verification Task 

 
DONATO IMPEDOVO, MARIO REFICE 
Human-Machine Interaction System Lab. 

DEE – Dept of Electrical and Electronic Engineering 
Politecnico di Bari 

Via Orabona 4, 70125 Bari 
ITALY 

impedovo@deemail.poliba.it, refice@poliba.it 
 
 

Abstract: - In this paper an approach based on the use of different frame lengths for the feature extraction 
process in the training and recognition phases of a speaker verification system is presented. It is able to sensibly 
reduce the ER and the degradation on performance related to the training/verification feature mismatch. The 
potentiality of the approach are investigated in an a-posteriori search of the best combination to be adopted. A 
prototype of an expert system is also presented in order to automatically search, in real time operating 
conditions, the optimal combination of parameters. Tests have been performed on a set of speakers whose 
speech productions were spanned over approximately 3 months.  
 
Key-Words: - Speaker Verification, Text Dependent, Mismatch, Frame Length, CD-HMM 

 
 

1 Introduction 
 

In everyday life, it is a common experience for 
people to be able to identify speakers by their 
voices, and even “distinguishing between voices 
they have heard only one or two times” [1].  

In speech technology, many attempts have been 
made aiming at modelling such human ability for a 
number of applications, such as in security access 
control systems, or in specific investigation fields 
like computational forensics. Such a task is 
particularly challenging because, differently from 
fingerprints or DNA sequence, a person’s voice can 
change strongly, depending on several factors like 
state of health, emotional state, familiarity with 
interlocutors [1], and also along the time.  

In voice identification, several linguistic- 
phonetic parameters have been investigated and 
proposed as representatives of the individual vocal 
tract characteristics. Average fundamental 
frequency, formants frequency values at some 
specific points, intonation patterns are, among 
others, the most popular features for which a certain 
degree of reliability have been experimentally 
demonstrated.  

In Forensic applications, for example, a common 
used approach is the computation of the so called 
“Likelihood Ratio” which proves to provide reliable 
results when two speech samples are to be compared 
in order to quantify the probability of belonging to 
the same speaker or to two different ones. The most 

common acoustic features used in these kind of 
applications are Vowel Formants, extracted in some 
specific context. Although Cepstral analysis has 
been found more powerful than formant analysis 
since it is more representative of the global 
characteristics of speech production, in forensic 
applications this approach has not been fully 
exploited yet. 

One of the main reasons is that judges and 
lawyers, usually not familiar with speech analysis 
techniques, understand the connection between 
formants and physiology better than the relation 
between  the latter and the abstract concept of 
Cepstrum. [2]. It is also obvious that any judgment 
in a court is normally based on a number of proves 
coming from different sources and speaker 
identification/verification is only one of these. 

In a security access systems however, like those 
we are looking at in this work, there is no need to 
convince people and the only requirement is the 
capability of the system to provide a reliable 
decision with as much accuracy as possible. 

In speech technology applications, the Mel 
Frequency Cepstrum Coefficients (MFCC) are 
widely recognised to be a good set of acoustic 
parameters as they encode vocal tract and some 
source information, even though a reduced set of 
phonetic features has also been demonstrated to be 
effective in text-independent speaker identification 
performance [3].  

In this paper we report on the influence of the 
frame length on the computation of MFCC in a text-
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dependent speaker recognition system. The approach 
uses different frame lengths for the speech signal 
processing in the training and in the verification 
phases. The aim is to identify optimal parameter 
combination in order to improve performances.  

The approach here proposed shows its theoretical 
potentialities in the a-posteriori observation of 
performance.  
The system here proposed in details is an additional 
component of an expert system we are developing 
aiming at identifying a person in a control security 
access application 
 
2 Speaker Verification process 
 

Speaker verification is defined as the process of 
deciding if a speaker is who she/he claims to be 
Text-dependent applications are the ones with the 
highest performances and can be applied 
successfully in real situations. In these kinds of 
systems, the speaker is recognized through an 
uttered phrase known by the system as for instance a 
password. 

 This procedure implies at least a double security 
level: the first consists in the secrecy of the chosen 
password while the second is represented by the 
vocal characteristics of the speaker.  

From a general point of view, the process of 
speaker verification consists in a decision derived by 
a comparison between the features extracted by a 

recognition engine and those stored in a database as 
schematized in Fig. 1. 

The state of the art for the recognition engine is 
based on statistical classifiers such as Hidden  
Markov Models (HMM) [4] or Gaussian Mixture 
Models (GMM) [5]. These systems work in two 
phases: enrolment and recognition. During the 
training (enrolment) phase, the system learns the 
generative models for each user, while during the 
recognition phase the unknown input is classified 
according to the known models, or possibly rejected.  

The first macro-step both for the training and the 
recognition phases (Fig.1) is the Features Extraction 
from the speech input files. Features Extraction is 
the process through which a reduced set of 
parameters is derived from the input speech in order 
to characterize and represent it. The utterance 
recognition component uses a set of phonemes and 
sub-words speaker independent models in order to 
recognize the pronounced password (“name 
surname”). 

 As already mentioned, spectral based features, 
like Mel Frequency Cepstral Coefficients (MFCCs) 
and their derivatives are widely used and accepted as 
the basic features able to give a suitable 
representation of the vocal tract [6, 7, 8]. 

The process for extracting MFCCs from the input 
speech emulates the way human ears capture and 
process sounds with different accuracy levels over 
different frequency bandwidths. Unfortunately, since 
the vocal tract characteristics tend to vary along the 
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Fig. 1. Overall model of a speaker verification system 
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time, whereas the identification process is based on 
models trained on features extracted during the 
enrolment phase, the performance of the recognition 
process results in a significant degradation.  

A reason of this degradation may be due to the so 
called “pitch-mismatch” [9]: the change of the pitch 
cycle along the time, even though both the speaker 
and the spoken utterances remain the same. In this 
paper we refer to a system we are developing, where 
the password used by the speaker for verification 
simply consists in his/her “name surname”.  

In order to cope with the above mentioned 
problem of performance degradation, we carried out 
a set of tests by varying the frame length of speech 
analysis window.  

Tests have been carried out by observing 
verification performance on speakers who have been 
asked to perform different authentication session 
over a period of three months. 

In order to cope with the huge amount of data, 
and with the needed flexibility of the system in 
dealing with the experimental adjustment of the 
varying analysis windows, a fast prototyping system 
has been used [10, 11]. 

The use of different frame lengths for the speech 
signal processing in the training and in the 
recognition phases can cope with the kind of 
degradation already mentioned since a specific frame 
length could be better than another in a particular 
case to better solve the natural pitch’s cycle.  

The aim is to identify optimal parameter 
combination in order to improve performance. 

 
3 System Description 
 

The system consists of two components, the first 
aims at checking the validity of the uttered 
password, and the second at verifying the genuine 
identity of the speaker that has pronounced the 
password. 
 
3.1   The speech recognition engine 

 
The utterance recognition component uses a set 

of phonemes and sub-words speaker independent 
models in order to recognize the pronounced 
password (“name surname”).  

The speech recognition system is based on a very 
simple grammar with few syntactic rules for the 
dynamic concatenation of the basic units. At the end 
of the process, the recognition hypothesis is parsed 
by using the knowledge of the known and allowed 
identities. The output is the transcription of the 
identity stored in the database or, if the utterance has 
been judged as not belonging to the defined sets, a 

rejection message is provided. The complete 
description of the utterance recognition system is 
beyond the aims of this paper and will not be 
illustrated in more details here. 

 
3.2   The speaker verification engine 

 
The speaker verification engine is here described 

according to its main components: the features 
extraction for the speech signal and the recognition 
engine. 

 
3.2.1 Features Extraction 
 

In this work, the Mel Frequency Cepstral 
Coefficients (MFCCs), their time derivatives and the 
respective energy parameter have been considered. 
MFCC are obtained from the power spectrum of the 
speech signal. Since speech is a non stationary 
signal, in order to perform the Discrete Fourier 
Transform (DFT) a short time analysis is performed. 
Figure 2 shows the framing process.  

 
 

 
 
 
 

Fig. 2. The framing process 
 
 

In speaker verification applications, this step is 
usually performed using 20÷30ms frames and a 
fixed shift of 10÷15ms, with the assumption that the 
signal is quasi-stationary within a frame interval. 

For each frame the DFT is computed as follow: 
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for k = 0,1,…,N-1, where: 
 

• x(n) is the time discrete signal in the frame 
with length N, 
 
•  k corresponds to the frequency f(k) = kfs/N,  

 
• fs is the sampling frequency in Hertz, 

 
• w(n) is the Hamming time window given by 

 
w(n)=0.54-0.46cos(πn/N). 
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The magnitude spectrum |X(k)| is then scaled in 
frequency and magnitude. The frequency is scaled 
using the Mel filter bank H(k,m) and then the 
logarithm is considered: 
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for m = 1, 2,…., M, with  
 

• M is the number of filter banks, 
 
• M << N.  
 
The Mel filter bank is a collection of triangular 

filters defined by the center frequencies fc (m) and 
defined as follow: 
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and the center frequencies of the filter banks are 
spaced logarithmically on the frequency axis. 
Finally, the MFCCs are obtained by computing the 
Discrete Cosine Transform (DCT) of  X′(m): 
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for i = 1, 2, ..., M, and c(i) is the ith MFCC. 

The Mel warping transforms the frequency scale 
to place less emphasis on high frequencies: it is 
based on the non linear human perception of the 
frequency sounds. For each frame, over the MFCC, 
the delta cepstrum coefficients (time derivates of the 
MFCC) and the respective power parameters have 
been also considered. 

Unfortunately, the alignment between the 
position of the frame under analysis and the 
stationary part of the signal cannot be guaranteed in 
a uniform way. As a consequence, artefacts are 
introduced in the power spectrum and in the 
information related to the fundamental frequency 
(pitch) conveyed by the MFCC. It has been observed 
that for high pitched speakers and for those 
characterised by average pitch variations between 
enrolment and testing phases (“pitch mismatch”), the 
fine spectral structure related to the pitch causes 
degradation on speaker recognition performance [12, 
13]. In the last years, different approaches have been 
proposed, which are largely based on pitch 

synchronous methods by windowing the Cepstrum 
coefficients after their evaluation [14], or on the 
attempt of calculating features less sensitive to pitch 
changes yet capable of retaining good discriminative 
properties [15], aligning each individual frame to its 
natural cycle [9, 16].  

Other approaches have considered modified two 
dimensional root Cepstral analysis [17, 18], or on 
multi-scale fractal analysis [19]. 

In this work, an approach that uses different 
frame lengths is investigated. Recognition 
performances have been computed by using 
different frame lengths to extract features from the 
speech signal in the training and in the recognition 
phases.  

The use of frames having different sizes between 
the two different phases has been already 
demonstrated to cope with the pitch mismatch, 
reducing false rejections for the subset of high 
pitched speakers [20]. The frame lengths here 
considered are 22, 25, 28 and 31ms: they equally 
divide the range of the most used lengths, while the 
fixed size of 10ms has been adopted for the shift in 
the framing process. 

 
3.2.2    The verification step 

 
The system is based on HMMs with continuous 

observation densities. In text independent 
applications, GMMs are generally adopted [5] even 
though recently discriminative approaches have been 
proposed [21]. A GMM can be considered as a 
special case of continuous observation densities 
HMM [4, 22], where the number of states is one.  

An HMM can be characterized by a triple:  
 
• the state transition probabilities matrix A, 
 
• the observation densities matrix B,  

 
• the initial state probabilities Π, 
 

through the following notation: 
 

{ } { }iiji baBA πλ ,,,, ,=Π=  

 
with i, j = 1,…,N, where: 
 

• N is the total number of states in the model, 
 
• ai,j is the transition probability from the state 

i to j.  
 

Given an observation sequence (features vectors) 
O={ot} with t=1,…,T, the continuous observation 
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probability density for the state j is characterized as 
a mixture of Gaussian probabilities: 
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where: 
 

• M is the total number of the Gaussian 
components in the mixture,  

 
• μjm is the d-dimentional mean vector of the 

mth component at state j 
 

• Rjm is the d-dimentional covariance matrix of 
the mth component at state j  

 
• cjm are the mixture weights which satisfy the 

constraint .1
1

=∑ =

M

m jmc  

 
The mentioned model parameters have been 

estimated by the Baum-Welch iterative methods 
(also known as the expectation-maximization EM 
algorithm), in order to maximize Pr(O| λ) [23, 24].  

A continuous HMM is able to keep information 
and to model not only the sound, but even the 
articulation and the temporal sequencing of the 
speech.  

In text independent speaker verification tasks, the 
sequencing of sound in the training data does not 
necessarily represent the sound sequences of the 
testing data, so the state transition probabilities have 
a little influence, while in text-dependent application 
they play a fundamental role.  

The Hidden Markov Models considered in all our 
experiments adopt a left-to-right no skip topology: a 
transition may only occur from one state to the 
immediate following one or to the same state. Figure 
3 shows a 4 states left to right no skip model. 

The choice of this topology is justified by the fact 
that speech production is a sequential phenomenon: 
in each state a new symbol is emitted, the one given 
at time t is temporally antecedent to the one which 
will be emitted at the time t+1. 

For each state, the Gaussian observation 
probability-density function (pdf) is used to 
statistically characterize the observed speech feature 
vectors. 

 
Fig. 3 : Four state left to right no skip model 

 
 

For each speaker 4 different models were trained 
on the same speech data but adopting one of the four 
different parameters of 22, 25, 28 or 31ms for the 
framing process. In the verification phase they were 
used separately in order to better analyze the results.  
For each speaker an anti-model has been trained in 
order to represent impostors using the genuine 
author’s password. 

Give O the input file to be verified, kλ  the model 

for the k-th genuine speaker, and I
kλ  the impostor 

model for the k-th identity, the following value is 
computed: 

 
( )( ) ( )( )I

kkk OpOpS λλ |log|log −=  
 
where the logarithmic probabilities ( )( )kOp λ|log  

and ( )( )I
kOp λ|log  have been evaluated by the 

Viterbi algorithm. In the decision process, if kS  is 
over a threshold and the output of the utterance 
recognition system corresponds to the k-th identity 
verified by the speaker verifier, then the output is 
accepted,  otherwise  it  is  rejected.  This  allows the  
rejection of all unknown (i.e. not included in the 
database) utterances from the inset and outset 
speakers. 
 

4 Experimental Results 
 

4.1    Experimental Setup 
 

The experiments have been carried out on a 
corpus specifically collected which currently 
includes 34  speakers (16 female and 18 male) aged 
between 20 and 50 (we are still in the process of 
improving the size of this corpus). Each of them 
repeated his/her “name surname” in 4 or 5 recording 
sessions during a time span of 3 months. The time 
between sessions, and the number of recordings in 
each session is variable across speakers, making 
speech data much closer to real situations. In all the 
recordings sessions, a typical PC sound card has 
been used in an office environment with 22.050 Hz 
sampling rate, 16-bit quantization level and single 
channel.  

 q1        q2                   q3                   q4 
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Once the signal was framed, for each frame a 
filter bank of 24 Mel filters was used in order to 
extract 19 MFCC coefficients, their time derivatives 
(Δ-Cepstral, used to model trajectory information) 
and two energy values related to the MFCCs and to 
their derivatives [22, 25, 26, 27, 28]: this makes a 
total of 40 parameters per vector. In the training 
process, these parameters remain the same while the 
extracted features vectors differ by varying the 
frame length within the values 22, 25, 28 and 31 ms. 
No score normalisation was applied. 

Table 1 summarizes the parameters adopted to 
extract features from the speech signal. 

For each speaker in the corpus, four HMMs have 
been trained (one per frame length) using recordings 
of the first session (between 30 and 40 seconds of 
training data per speaker). 

 
 

Parameters MFCCs – Energy –  
ΔMFCC – Energy 

Frame Lengths 22, 25, 28, 31 [ms] 

Frame Shift 10 [ms] 

No. of frame for Δ 
calculation 5 

No. of vector 
element  per frame (19+1)*2=40 

No. of  MEL filters 24 

 
Table 1 - Features parameterization details 

 
 
Each model has 8 states and 3 Gaussian 

components in the mixture per state (this has been 
determined experimentally). The relative little 
amount of training data simulates real applications 
where an exhaustive training session cannot be 
performed and imposed on the users. 

The system was tested on the remaining 
recordings of the following sessions even 
considering trials from impostors: the testing data 
are about a mean of 240 seconds of recordings for 
each speaker. 

 
4.2    Performances 

 
In a verification task, two typical errors can 

occur: the rejection of a genuine speaker (FR – False 
Rejection) since it has been considered as an 
impostor by the system, and the acceptance of an 
impostor (FA – False Acceptance) when it has been 
considered as a genuine speaker by the system. The 

Error Rate (ER) has been evaluated as the sum of 
these two terms. 

Table 2 reports the results related to a classic 
approach where the performances of a baseline 
system are reported. In this case the frame length 
used for features extraction is the same value both 
for training and testing. In the training phase one 
genuine model for each speaker is trained: this is the 
way speaker verification systems usually work. As 
can be observed there is a significant gap in 
performance when comparing results obtained for 
the male set versus the female set. For the male 
subset the best classic approach is the one related to 
the use on 31ms: in this specific case the ER of 1.59 
is observed. For the female subset the best classic 
approach is the one related to the use of 25ms: 
2.57% in ER is observed.  

 
 

System 
Configuration

Males ER 
% 

Female ER 
% 

22-classic 1.69 3.13 

25-classic 1.62 2.57 

28-classic 1.74 3.01 

31-classic 1.59 3.35 

 
Table 2 - Classic Approach Performances 

 
 

Many tests have been performed by considering 
all the possible combination of HMM models (22, 
25, 28 and 31ms) with one of the four different 
lengths to be used for the framing process in the 
verification phase. In the following, the most 
significant results are reported. 

Table 3 reports the results obtained by using a 
frame length of 22ms in the framing process of the 
verification phase on the different models. 

 
 

Model Males ER 
% 

Female ER 
% 

22-ms 1.69 3.13 

25-ms 1.46 2.56 

28-ms 1.65 3.10 

 
Table 3 - 22ms in the verification phase vs. 22, 25 

and 28-ms models 
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The first row in Table 3 refers to the classic 
approach. The second row refers to the use of 22ms 
frame length in the verification phase with models 
trained on features obtained using 25ms: in this 
configuration an ER reduction of about 13% for the 
male subset and of about 18% for the female subset 
is observed. Improvements are also observed when 
considering 28ms models. 

Table 4 shows the results obtained by using a 
frame length of 28ms in the framing process of the 
verification phase on the models trained using frame 
lengths of 25, 28 and 31ms.  

 
 

Model Males ER 
% 

Female ER 
% 

25-ms 1.61 2.53 

28-ms 1.74 3.01 

31-ms 0.88 3.60 

 
Table 4 - 28ms in the verification phase vs. 25, 28 

and 31-ms models 
 

 
As can be observed, the use of 25ms frame length 

in the verification phase produces an ER reduction 
of about 16% for the female subset when compared 
with the classic approach (second row), while the 
use of 31ms produces about 50% of improvements 
for the male subset if compared with the classic 
approach. In this case, it must be observed that the 
use of the combined approach with 31ms models 
produces a degradation for the female subset. 

In order to summarize, a comparison of the best 
combined and best classic approach having the 
lowest ER, leads to the following considerations: 

 
• female subset: an ER reduction of about 2% 

has been observed with the combination 28V-
25T (28ms for the Verification phase and 
25ms for the Training one) if compared with 
classic 25V-25T; 

• male subset: an ER reduction of about 40% 
has been observed when using the 
combination 28V-31T if compared with the 
classic 31V-31T.  

 
4.3    Punctual Speaker Analysis 

 
 Results observed and discussed in the previous 
paragraph, refer to performance’s mean values 
obtained over the whole female and male subsets. In 

order to explore the theoretical potentialities of the 
proposed approach a speaker by speaker test was 
successively performed. Test searched for the best a 
posteriori combination to be used for each speaker in 
order to minimize the ER. The final values obtained 
are the following: 
 

• ER - Male subset = 0.66%  
 
• ER – Female subset = 1.59%  
 
The reduction for the male subset from the best 

classic approach is of about 58%, while for the 
female subset is of about 40%. 
 The frame length combinations able to perform 
for each speaker the lowest ER are reported in Fig. 
4. The dotted squares refer to female speakers, while 
the vertical lined ones refer to male speakers. As can  
be observed there are many users that gain the 
minimum ER in all the different combination, bat 
there are also many others that gain the lowest ER 
just in one specific configuration. 
 
5 Multiple Models 
 

When a real time application is considered, the 
approach proposed could be applied performing an a 
posteriori investigation on the best frame length 
combination for each single speaker on the current 
trial in order to adopt it in the following one. On the 
other hand periodical investigation over specific and 
pre-determined testing data set could be performed: 
this second approach would have the advantage of a 
statistical value. Of course many other protocols 
could be introduced. Unfortunately there is evidence 
that the best frame length combination varies not 
only among speakers, but even among trials, so that 
the best combination determined in a specific trial 
could be different from the a-posteriori best one of 
the next trial. 

Moreover these kind of protocols need a  specific 
testing data set that should be different for each 
speaker, thus resulting in long, expansive and non 
fully automated process, especially when 
applications involving an high number of speakers 
are considered. 

In order to solve this problem, and to exploit the 
potentialities of the approach, as already showed in 
paragraph 4.3, the needing is for a system able to 
check at each trial all the possible combinations and 
to evaluate which the best one could be. Of course 
the evaluation cannot have the certainty of the a 
posteriori one. One simple way to implement such 
kind of system is to identify the combination, among 
that considered, that generates the highest 
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probability in the verification process. In this 
formulation kS  (par. 3.2.2) depends by the specific 
fl (frame length) parameter related to the speaker 
model considered, moreover it would depend even 
by framing length parameter adopted in the framing 
process of the verification phase. 

In order to investigate this kind of approach a 
preliminary test was performed. For each genuine 
speaker 4 different models were trained (22ms, 
25ms, 28ms and 31ms) at the same time. In the 
verification phase the unknown input to be verified 
is framed using just one of the different frame 
lengths, successively the value kS  is computed for 
each model and the decision related to the highest 
value is given as final output decision.  

Table 5 reports results related to the use of 25ms 
frame length in the verification process vs. 25ms 
models (first row) and vs. the multiple models 
(second row). 
 

Model Males ER 
% 

Female ER 
% 

25-ms 1.62 2.57 

   ALL 1.53 2,51 

 
Table 5 – Classic approach vs. a ALL models 

Improvements were observed both for the male 
subset (an ER reduction of about 5%) and for the 
female subsets (an ER reduction of about 2%), but 
results are still far from that obtained in the a-
posteriori selection of the best combination. 
 
6 Conclusion 
 

This paper reports on the investigation of the 
influence of frame length for the computation of 
MFCC on the performance of a text-dependent 
speaker verification system.  

For each speaker specific combinations of frame 
length to be adopted in the training and in the 
verification phase can be searched in order to 
minimize the ER. Combinations are speaker-
dependent, and for each speaker  the  best  
combination  could  be  found in a particular session 
and then applied in the following. Unfortunately a 
specific combination which is optimal for a session 
is not necessary the optimal even in the following 
one. Preliminary tests based on the use of multiple 
speaker models have showed the potentiality of 
performing an a priori selection of combinations, but 
performance are still far from the best (a-posteriori) 
already observed. 

Future work will be focused on the mechanisms 
of variations of the optimal combination and on the 

Fig. 4 – “Best” Frame length combination  
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development of an intelligent system able to 
automatically detect it. 
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