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Abstract: - The paper deals with an automatic system meant to control an aircraft jet engine’s rotation speed, 
through the fuel injection’s control, based on a constant pressure chamber controller. One has established the 
non-linear mathematical model (based on the motion equations of the system’s parts), the linear model and the 
non-dimensional linear model, as well as the simplified model, the transfer function and the block-diagram. 
One has also performed a stability study and established the system’s stability domains, as well as some quality 
studies, for different engine-controller configurations. 
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1 Introduction 
For a gas-turbine engine, particularly for a jet 
engine, the speed n control is one of the most 
important aspects (even most important than the 
engine’s temperature control) and it’s currently 
realized by some specific hydro-mechanical or 
electro-mechanical controllers.  
The engine’s speed is the most important operating 
parameter, especially for the multi-spool engines, 
because it represents the parameter which assure the 
most accurate co-relation with the engine’s thrust 
amount, as well as with the engine’s fuel 
consumption; meanwhile, the speed n offers an 
image about the dynamic load of the engine’s 
mobile parts (compressor’s blades and disks, 
turbine’s blades and disks, shafts), as well as an 
indirect image about the thermal charge of the 
engine’s hot parts (combustor, turbine(s), exhaust 
nozzle). 
An aircraft engine operates at various flight regimes, 
that means at various flight speed and flight 
altitudes, which means that the engine’s thrust 
variation must follow the aircraft flight dynamic’s 
necessities, therefore the engine’s speed (and thrust) 
must be strictly controlled, because of its important 
operating role. 
The engine’s speed is one of the engine’s operating 
parameters, which are the easiest to measure, both 
for steady state regimes and for dynamical regimes. 
That fact represents an advantage and promotes the 
engine’s speed as the most important controlled 
engine’s parameter. 
Consequently, any aircraft engine has a speed 
controller or, at least, a speed limitation gear, in 

order to assure an optimum operating speed range. 
Therefore, for the engine’s speed control, an 
important issue is the identifying of the most 
efficient parameter, which can be used as control 
parameter during the control activity. There are two 
important parameters, which have the highest 
influence above the engine’s rotation speed [3,7]: 

a) the injected fuel flow rate ; iQ
b) the exhaust nozzle’s open area . 5A

The fuel flow rate has a higher influence than the 
exhaust nozzle’s area and it is easier to be itself a 
controlled parameter, so most of the speed 
controllers are based on the injected fuel flow rate 
control, directly or indirectly, using feed-back, feed-
before or combined elements. 
Possible speed control systems are described in [5, 
9,10,11,12], most of them based on feed-back 
elements, directly measuring the speed values, using 
mechanical, hydraulic, or electrical sensors or 
transducers, as well as hydraulic and/or electrical 
actuators. 
Combined controllers (speed and temperature) are 
forced to operate with the same control parameter, 
the fuel flow rate, but at different priority levels, 
that means that one parameter (e.g. the speed n), is 
the main controlled parameter and the other (the 
combustor temperature or the turbine temperature) 
is the secondary one ad it is only limited (only its 
extreme value is controlled), both using the fuel 
flow rate. Obviously, when the second parameter is 
limited (by reducing the fuel flow rate), the main 
parameter is affected too, which represents a 
disadvantage of such a combined controller, but an 
acceptable one.   
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Fig. 1. System’s details scheme 

In this paper one has studied an engine speed 
controller with constant pressure chamber, which 
controls the main fuel flow rate toward the engine’s 
combustor injectors. The system was defined as a 
controlled object, based on its mathematical model 
and its transfer function(s) and it was also studied 
from the stability and quality point of view. 
 
 
2 Speed controller’s presentation 
This paper deals with such a controller [10,11], 
based on the fuel injection pressure’s control, in the 
fuel pump’s pressure chamber, before the engine’s 
combustor, as shown in fig.1. 
Main parts of the system are: 1-fuel pump with 
plungers; 2-pump’s actuator; 3-pressure sensor with 
nozzle-flap system; 4-dosage valve (dosing 
element). 
The fuel pump is connected to the engine’s spool, so 
its rotor 5 has the same speed (or proportional 
speed) as the engine spool’s shaft. The plungers 7 
are controlled by the mobile plate 6, which cline 
angle is established by the actuator’s rod 22. The 
plate’s cline limits are established by the tampons 8 
and 9, which positions are determining the highest 
and the lowest level of the injected fuel flow rate; 
that means that one can set the maximum and the 
minimum values for the engine’s rotation speed by 
adjusting the tampons’ position. 

The fuel pump delivers a  fuel flow rate, at a  
pressure in a pressure chamber 10, which supplies 
the injector ramp through the dosage valve 4. This 
dosage valve’s slide 11 operates proportionally to 
the throttle’s displacement, being moved by the 
lever 12. This lever is connected to the engine’s 
throttle, which means that the engine’s control lever 
(throttle) commands the injected fuel flow dosing: 
a) directly, by the 4 valve’s opening; b) indirectly, 
controlling the pressure’s level in chamber 10.   

pQ cp

The pump is connected to the engine’s rotor’s shaft, 
so its speed is n, or proportional to it. Pump’s 6 
plate’s angle is established by the actuator’s rod 22 
displacement y, given by the balance of the 
pressures in the 2 actuator’s chambers (A and B) 
and the 21 spring’s elastic force. 
The pressure  in chamber A is given by the 
balance between the fuel flow rates through the 
drossel 20 and the nozzle 17 (covered by the semi-
spherical flap, attached to the sensor’s lever 14). 

Ap

The pressure sensor’s lever’s displacement x is 
established by the balance between two moments: 
the first - given by the elastic force of the spring 16 
(due to its z pre-compression) and the second – 
given by the elastic force of the membrane 19 
(displaced by the pressure in chamber, between the 
membrane and the fluid oscillations buffer 13).  
The system operates by keeping a constant pressure 
in chamber 10, equal to the preset value 
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(proportional to the spring 16 pre-compression, set 
by the adjuster bolt 15). 
The engine’s necessary fuel flow rate  and, 
consequently, the engine’s speed n, is controlled by 
the co-relation between the  pressure’s amount 
and the dosage valve’s variable slot dimension 
(proportional to the lever’s angular displacement

iQ

cp

θ ). 
A functional block diagram of the system is 
presented in fig.2. 
 
 
3 System’s mathematical model 
System’s model is described by a set of non-linear 
motion equation, but in order to study the system’s 
behavior, some transformation must be done. 
 
 
3.1 Non-linear model 
The non-linear mathematical model consists of the 
motion equations for each sub-system, as follows: 
a) fuel pump flow rate’s equation 

 , (1) ),( ynQQ pp =

b) constant pressure chamber’s equation 

 , (2) Api QQQ −=

c) fuel pump’s actuator’s equations 
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d) pressure sensor’s equations 
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e) dosing valve equation 
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s

ii ppbQ −
+

=
ρπ

θθ
μ 2
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f) jet engine’s equation (for the rotation speed n) 

 ( )*
1

*
1 ,, TpQnn i= , (9) 

where  are fuel flow rates, -

pump’s chamber’s pressure, - actuator’s A 
chamber’s pressure, -combustor’s internal 
pressure, -low pressure’s circuit’s pressure, 

sAip QQQQ ,,, cp

Ap

CAp
sp

dAμ , nμ , iμ -flow rate co-efficient, -drossels’ 
diameters, -piston’s surfaces, 

nA dd ,

BA SS , BA SS ≈ , -
sensor’s elastic membrane’s surface, -spring 
elastic constants, -actuator’s A chamber’s 
volume, 

mS

ef kk ,

0AV
β -fuel’s compressibility co-efficient, ρ -

fuel’s density, ξ -viscous friction c-efficient, m-
actuator’s mobile ensemble’s mass, θ -dosing 
valve’s lever’s angular displacement (which is 
proportional to the throttle’s displacement), x-
sensor’s lever’s displacement, z-sensor’s spring 
preset, y-actuator’s rod’s displacement,  -
engine’s inlet’s parameters (total pressure and total 
temperature). 

*
1

*
1 ,Tp

 
 
3.2 Linear mathematical model 
Assuming the small-disturbances hypothesis, one 
can obtain a linear form of the model; so, assuming 
that each X parameter can be expressed as 
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 (where is the steady state regime’s X-value and 0X
XΔ -deviation or static error) and neglecting the 

terms which contains ( ) 2, ≥Δ rX r , one obtains a 
new form of the equation system, particularly in the 
neighborhood of a steady state operating regime, as 
follows: 

 

TURBO-JET
ENGINE

FUEL
INJECTION

DOSAGE
VALVE

FUEL
INJECTION

PUMP

PRESSURE
CONTROLLER

(pc=const.)

( )*
1

*
1 ,, TpVH

Flight regime

Σ

α

θ

n
n

y

Qp

Qi

pc
pc

pc i (z) x

THROTTLE

 
 

Fig. 2. System’s functional block diagram 
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where the above used annotations are 
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Using, also, the generic annotation
0X

XX Δ
= , the 

above mathematical model can be transformed in a 
non-dimensional one. 
After applying the Laplace transformer to the above 
determined equations, one obtains the non-
dimensional linearised mathematical model, as 
follows 

 ( ) cczcxyAAPA pzkxkypk =++++ s1s ττ , (19) 
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22 ω , (21) 
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One must add also the fuel pump equation and the 
engine’s speed equation (having the forms in [9,11]) 
 yknkQ pypnp += , (24) 
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and one obtains the equations of the non-
dimensional mathematical model. 
Above equation system’s co-efficient are 
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The expressions for Mτ ,  and  are deduced in 
[12], but here, it isn’t necessary to be developed. 

ck HVk

Based on this mathematical model, one has built the 
block diagram in fig. 3. 
 
 
3.3 Simplified mathematical model 
Based on some practical observation, some sup-
plementary hypotheses could be invoked, which are 
leading to a new form of the mathematical model. 

 

θk ∑θ θ Ap Ap

( )1s2s
1

0
22 ++ yyAy TTk ω

y

syτ

( )1s +APAk τ

cxkx
zxck cp

cp
cQk

1s +M

c

τ
k n niQ

Qkθ
θ

cp

czk z

Ack
cp

pyk

pnk

pckQpk

pQ

∑

∑

∑

∑ ∑

∑

+
+

+

_

++

+

++

_
+

+
_

+

+

+

 
Fig. 3. System’s block diagram with transfer functions 
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These hypotheses are: 
a) the fuel is a non-compressible fluid, so 0=β ;  
b) the inertial effects are very small, as well as the 

viscous friction, so the terms containing m and 
ξ  are becoming null; 

c) the fuel flow rate through the actuator  is 
very small comparative to the combustor’s fuel 
flow rate , so it can be neglected, which 
means that . 

AQ

iQ

ip QQ ≈

So, the new, simplified, equations’ forms, based on 
these simplifying hypotheses, are: 

- for the pressure sensor 

 zkpkx zcl += , (27) 

where 
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  (28) 
or, considering that the adjusting bolt’s displacing 
represents the preset of the  pressure’s reference 
value  
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one obtains 

 ( )ccil ppkx −−= ; (29) 

- for the actuator 

 ( ) xky xy −=+ 1sτ , (30) 

where yτ  is the actuator’s time constant and  is 
the actuator’s gain co-efficient with respect to the 
sensor’s lever’s displacement. Their forms are, as 

follows   
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where 000 ykpp fcA −= . (33) 

Introducing these equations into the old 
mathematical model, one obtains, eventually, its 
new form, as follows 

 ( ) *
11s pkQkn HVicM +=+τ , (34) 

 yknkQQ pypnpi +=≡ , (35) 

 ( )ccil ppkx −−= , (36) 

 ( ) xky xy −=+ 1sτ ,    (37) 
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k
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which represents the simplified non-dimensional 
mathematical model. 
System’s simplified block diagram with transfer 
function, based on the equations (34) to (38) is 
presented in fig. 4. 
One can observe that the system operates by 
assuring the constant value of the pressure in the 
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Fig. 4. System’s simplified block diagram with transfer functions 
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fuel pump’s chamber , the injection fuel flow rate 
being controlled through the dosage valve’s 
positioning, which means directly by the throttle. 
So, the system’s relevant output is the pressure in 
chambers 10, .  

cp

cp
For a constant flight regime ( ), 
which means that , the term 

in Eq. (34) containing 

const.,const. == VH
const.,const. *

1
*
1 == Tp

*
1p  becomes null and the 

equation’s new form is 

 ( ) icM Qkn =+ 1sτ . (34/) 

 
 
3.4 System’s transfer function 
The last equations, for a constant flight regime, after 
some appropriate parameters’ replacing/reducing, 
are leading to 
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where . lxr kkk =
So, one can define two transfer functions: 

a) with respect to the dosage valve’s lever 
angular displacement ; ( )sθH

           (40) 
b) with respect to the preset reference 

pressure , or to the sensor’s spring’s 
pre-compression z, . 

cip
( )szH

          (41) 
While θ  angle is permanently variable during the 
engine’s operation (being proportional to the 
throttle’s angular displacement α ), the reference 
pressure’s value is established during the engine’s 
tests, when its setup is made and it remains the same 

until its next repair or overhaul operation, so 
0== cipz . Obviously, in this case the transfer 

function ( )szH  definition has no sense. 
Consequently, the system’s transfer function 
remains (40), which characteristic polynomial’s 
degree is 2. 
 
 
4 System’s stability 
One can perform a stability study, using the Routh-
Hurwitz criteria, which are easier to apply because 
of the characteristic polynomial’s form. So, the 
stability conditions are 
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The first stability condition (42) is obviously, 
always realized, because both yτ  and Mτ  are strictly 
positive quantities, being time constant of the 
actuator, respectively of the engine. 
In opposite with that, the (43) and (44) conditions 
must be discussed. 
According to [9] and [11], the factor pnc kk−1  is 
very important, because its value is the one who 
gives information about the stability of the 
connection between the fuel pump and the engine’s 
rotor. There are two situation involving it: 
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A) 1<pnc kk , when the connection between the 

engine’s fuel pump and the engine’s spool 
shaft is a stable object; 

B) , when the connection between the 
engine’s fuel pump and the engine’s spool 
shaft is an unstable object and it is 
compulsory to be assisted by a controller. 

1≥pnc kk

Both these situations will be analised from the 
stability and the quality’s point of view. 
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A) If 1<pnc kk , the factor  is strictly 
positive, so the first term in the left member of (43) 
is strictly positive, 

pnc kk−1

( ) 01 >− ypnckk τ .  
According to their definition formulas (see 
annotations (31) and (26) ),  are positive. pyp kk ,

The term  must be discussed, because of its 
denominator. One can assume that, in order to 
assure a strictly positive value for , between the 
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rk
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drossel’s diameters  and  the next relation must 
be accomplished 
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which represents the first stability request for the 
controller (a geometrical condition for the drossel’s 
diameter’s choice). 
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stability requests, (43) and (44), are accomplished, 
thus the system is a stable one for any situation. 
 
B) If , the factor  becomes a 
negative one. The inequality (40) leads to 

1≥pnc kk pnc kk−1

 
( )

y
pyr

pnc
M kk

kk
ττ

⎟
⎞

⎜
⎛

+

−
<

1

1

pk ⎟
⎠

⎜
⎝

, or ( ) M
pnc

p

pyr

y kk

k
kk

ττ
1

1

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

<  (46) 

which offers a criterion for the time constant choice 
and establishes the boundaries of the stability area 
(see. Fig. 5). 
Obviously, both time constants must be positive, so 
the domains in fig. 5 are relevant only for the 
positives sides of yτ  and Mτ  axis. 
The (45) condition must remain the same. 
Meanwhile, from the inequality (44), one can obtain 
a condition for the sensor’s elastic membrane 
surface area’s choice, with respect to the drossels’ 
geometry ( ) and quality nA dd , ( An )μμ , , springs’ 
elastic constants ( )fe kk , , sensor’s lever arms ( )21, ll  

and other stability co-efficient ( )pypnc kkk ,, . The  
(44) inequality becomes 
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  (47) 
The above presented inequality (47) is the second 
geometrical condition for stability, following and 
completing the (45) condition.  
These conditions offers the first pre-design 
information, concerning the system’s stability and 
can be used as stability estimators. 
Another observation can be made, concerning the 
character of the stability, periodic or non-periodic. If 
the characteristic equation’s discriminant is positive 
(real roots), than the system’s stability is non-
periodic type, otherwise (complex roots) the 
system’s stability is periodic type. 
Consequently, the non-periodic stability condition is 
given by the inequality   
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which leads to the inequalities 

 
( ) ( )( )

( )pyrppyr

ppyrpncp

M

y

kkkkkk

kkkkkkkkk

p

pyrp

++

+−−−
<

2

21
2

222

τ
τ

, 

  (49) 

 
( ) ( )( )

( )pyrppyr

ppyrpncp

M

y

kkkkkk

kkkkkkkkk

p

pyrp

++

++−−
>

2

21
2

222

τ
τ

. 

  (50) 

 

τ y

( ) M
pnc

p

pyr

y kk
k
kk

ττ
1

1

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

=UNSTABLE
SYSTEM

STABLE
SYSTEM

τM

L2

NON-PERIODIC
STABILITY

τy

τM

( ) ( )( )
( ) M

pyrppyr

ppyrpncp

y kkkkkk

kkkkkkkkk

p

pyrp ττ
++

+−−−
=

2

21
2

222

( ) ( )( )
( ) M

pyrppyr

ppyrpncp

y kkkkkk

kkkkkkkkk

p

pyrp ττ
++

++−−
=

2

21
2

222

NON-PERIODIC
STABILITY

PERIODIC
STABILITY

L1

        
                  Fig. 5. System’s stability domains                        Fig. 6. Periodic and non-periodic stability domains 
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From the geometrical point of view, as fig. 6 shows, 
in a ( )My ττ −  co-ordinate system, these two 
inequalities are representing two semi-planes, which 
boundaries are two lines, denoted L1 and L2, and 
given by the equations: 
 - for L1
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 - for L2
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2
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 (52) 

In fig. 6 the area between the lines is the periodic 
stability domain, respectively the areas outside are 
the non-periodic stability domains. 
Both figures (Fig. 5 and 6) are showing the domains 
for the pump’s actuator’s time constant choice or 
design, with respect to the jet engine’s time 

constant. When the domains in Fig. 5 and 6 are 
overlapped, it results the effective stability map, as 
fig. 7 shows; one can observe that the left domain of 
non-periodic stability is, in fact, overlapped on the 
unstable domain; meanwhile, the stability domain is 
divided by the line L1 into the non-periodic and the 
periodic stability areas.  
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5 System’s quality 
As the transfer function form shows, the system is a 
static one, being affected by static error. 
One has studied/simulated a controller serving on an 
engine Vk-1 type, from the point of view of the step 
response, which means the system’s behavior for 
step input of the dosage valve’s lever’s angle θ . 
Considering that the engine is operating at the 
maximum regime, system’s time responses, for the 
fuel injection pressure  and for the engine’s 
speed n are 

cp

 ( ) ( )t
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k
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−
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, (51) 
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+−
=

1
, (52) 

as shown in fig. 8.a) – for the  pressure and in 
fig. 8.b) – for the engine’s speed. 

cp

The co-efficient values are calculated for a jet 
engine Vk-1 type (existing in the Avionics 
Department of Craiova Labs), using their 
mathematical expressions and some experimental 
data (presented in [9], [12] and [11]), for the 
maximal operating regime (maximum range of the 
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Fig. 8. System’s step response for cp  and n  
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engine’s acceleration or deceleration). 
For the engine’s acceleration, from idle to 
maximum, (assumed as caused by a step input – 
“step” displacement of the engine’s throttle and of 
the dosing valve’s lever), one can observe that the 
non-dimensional parameter of the pressure ( )tpc  

has an initial step decreasing,
p

c k
kp θ−=)0(  (caused 

of the rapid dosing valve’s slot opening), then an 
asymptotic increasing; the static error is around 
3.5% and it is negative, so the final value of  is 
smaller than the prescribed one. 

cp

Meanwhile, the engine’s speed n is continuous 
asymptotic increasing, caused by the continuous 
fuel flow rate’s growing. The non-dimensional 
parameter n -value’s behavior (see fig. 8.b) shows 
that the static error is around 5.5 %, which is 
acceptable. 
Similarly, one has performed simulations for other 
engine’s operating regimes, such are the partial 
accelerations (from 65% of the maximum speed to 
maximum speed, or from 85% of the maximum 
speed -cruise speed- to maximum speed); the results 
are presented in fig. 9, together with the results of 
the full acceleration simulation (from 40 % of 
maximum speed, which is the idle speed, to 
maximum speed), already presented in fig. 8. One 
can observe that, for any operating regime, the trend 
is the same, any curve ( )tpc  or ( )tn  having similar 
shape. The static error decreases from the maximum 
acceleration regime to the cruise acceleration regime 
for n  (from 5.5% to 4.5%), but for cp  is increasing 

(from 3.5% to 5.3%), so the  value is as smaller 
as the acceleration is more intense. 

cp

The above discussed simulations were performed 
for an operating jet engine, a stable controlled 
system, which co-efficient is 1456.0 <=pnckk . 
One has also performed simulations for some 
hypothetic unstable engines, which have such a co-
efficient combination that , respectively an 
engine which co-efficient value is 

1≥pnc kk
1258.1 >=pnckk  

and an engine which co-efficient value is 
1452.1 >=pnckk , in this last case the time constant 

values being close ( )My ττ ≈ . Systems’ behavior 

(step response ( )tpc  and ( )tn ) is presented in 
fig.10.  
Both in this new studied cases, the systems (jet 
engine+controller) are stable, the studied parameters 
curves ( )tpc  and ( )tn  having asymptotic shapes. 
In the last case, when ( )My ττ ≈ , its stability 
happens to be periodic. One can observe that both 
the pressure and the speed have small overrides 
(arround 0.85% for n and 0.6% for ) during their 
stabilisation process. 

cp

About the static error, one can observe in fig.10.a) 
that, for cp , it changes the sign, becoming positive, 
and is also growing with the -value’s growing 
(from -3.5%, when , to 5.07% when 

pnckk
456.0=pnckk

452.1=pnckk ).  
For the parameter n , fig. 10.b) shows that the static 
error is continuous increasing (from 5.5%, when 
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Fig. 9. System’s step response ( cp  and n ) for other engine’s operating regimes 
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456.0=pnckk , to 10.9% when ), being 
unacceptable for this last case, when even the 
stability is periodic. 
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6 Conclusions 
The studied system (engine+controller) can be 
characterized as a 2nd order controlled object. For its 
stability, the most important parameters are engine’s 
and actuator’s time constants; a combination of a 
small yτ -value and a big Mτ -value (until the 
stability conditions are accomplished) assures the 
non-periodic stability, but comparable values 
( )My ττ ≈  can move the stability into the periodic 
stability domain; a small (or a very small) Mτ  value 
and a big  (or a very big) yτ  value are leading, for 
sure, to instability. 
The chosen Vk-1-controller assures both stability 
and asymptotic non-periodic behavior for the 
engine’s speed, but its using for another engine can 
produce some unexpected effects. 
These studies can be useful for a whole class of 
similar controllers, as pre-design and pre-
operational simulation. 
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Fig. 10. System step response for maximum acceleration of jet engines having different  values pnckk
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