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Abstract - In this paper, a behavioral framework is proposed to solve dynamic GNSS positioning problems, which in the 
mean time may also provide a way to determine the DOP (dilution of precision) of a moving object. The concept of beha-
vioral framework was first proposed by Jan C. Willems in a series of papers (J.C. Willems, "From time series to linear system 
- part I, II, and III," Automatica Vol. 22, 1986.) as a generic tool for mathematical modeling of dynamical systems. In the 
proposed approach, a GNSS positioning problem is firstly described by a kernel representation and then the problem can be 
solved by a structured total least-squares (STLS) algorithm. STLS algorithm is a modified version of the traditional total 
least-squares (TLS) method. It can be shown that the STLS algorithm is able to provide better performance than the TLS al-
gorithm for the problems that possess a particular structure. In the case of the present paper, it is shown that the GNSS posi-
tioning problem has a Hankel structure (i.e., the geometric matrix of the pseudorange equation is Hankel), therefore the prob-
lem can be solved by an STLS algorithm subject to a Hankel structure. On the other hand, a formula for calculating DOP of a 
dynamic positioning problem is also provided. The proposed method is able to calculate the DOP value for multiple time 
epochs, in compared with the conventional DOP formula which can only be derived at a single time epoch, so as to reflect the 
inter-dependency between consecutive time epochs. 
 
Keywords – Global Navigation Satellite System (GNSS); Behavioral Framework; Structured Total Least-Squares; Dilution of 
Precision; Kernel Representation; Total Least-Squares; Least-Squares. 
 
 
 
1. INTRODUCTION  
 
Global Navigation Satellite System (GNSS) is a satellite-
based utility which provides users with accurate naviga-
tion and timing services worldwide. Because of its accu-
racy, ubiquity, and low cost of user equipment, it has be-
come the navigation and timing system of choice for 
many users [9][14][15]. Traditionally, in a GNSS receiver, 
the technique of least-squares optimization is utilized to 
find a position fix. In this approach, a nonlinear range 
relationship between the satellites and the receiver has to 
be obtained at first, and then this nonlinear relationship is 
linearized around a neighborhood of the equilibrium point 
to obtain a set of linear pseudorange measurements equa-
tions. The method of least-squares estimation can then be 
applied to the linearized pesudorange equations to acquire 
an optimal solution in the sense that the error covariance 
between the true position and the estimated position is 
minimized[10]. Specifically, consider for example a linear 

static model represented by an over-determined system of 
equations , where A, B are given measurements, 
and the classical least-squares (LS) method, which mini-
mizes the Frobenius norm of the residual E:=Ax-B, i.e., 

≅Ax B

 

,
min    subject to .

F
= +

E x
E Ax B E  

 
The residual E in the LS problem formulation can be 
viewed as an unobserved, latent variable that allows us to 
resolve the data-model mismatch. An approximate model 
for the data is obtained by minimizing some norm (e.g., 
the Frobenius norm) of E. This cost function is called 
latency, and equation error based methods are called la-
tency oriented. 
 

An alternative approach, called misfit, commonly 
seen in the literature is to find the smallest correction on 
the data that makes the corrected data compatible with the 
model. Then a norm of the lack of fit between the data 
and the model can be taken to be a quantitative measure, 
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namely the misfit, of the correction. Applied the above-
mentioned concept again to the linear static model, 
represented by the equation , the misfit approach 
leads to the classical total least squares (TLS) method

≅Ax B
[3]: 

 

, ,
min    subject to ( ) .

Δ Δ
Δ Δ Δ +Δ = +Δ

FA B x
A B A A x B B  

 
Here ΔA, ΔB are corrections on the data A, B; and x is a 
model parameter.  
 

The classical LS and TLS approximation methods 
minimize, respectively, the latency and misfit for a linear 
static model class. However, for the linear time-invariant 
dynamic model class, these two methods cannot be used 
directly. Since only one single time epoch is considered in 
both the LS and TLS algorithm (snapshot algorithm), the 
correlation between consecutive time epochs is not able to 
be included in both algorithms. In this paper, to overcome 
this difficulty, we adopt a behavioral approach to model a 
dynamical system. The behavioral approach, introduced 
in a series of papers by J. C. Willems [18][19][20], is able 
to provide a rigorous framework for deriving mathemati-
cal models that is suitable for dynamic model identifica-
tion (or model approximation). In this approach, a dynam-
ical system can be modeled in a kernel representation and 
then the kernel representation can be transformed to an 
equivalent structured TLS problem, which can then be 
solved by a structured TLS algorithm. In this paper, a 
system identification problem for a flight dynamical tra-
jectory is served as an example to illustrate the idea. After 
a dynamical system (in kernel representation) is identified 
by the structured TLS method, we can then use the de-
rived model to predict the trajectory in arbitrary time 
epoch. 
 

On the other hand, for a classical GNSS receiver, the 
DOP (dilution of precision) values can only be calculated 
at a single time epoch even for a dynamical system that is 
highly time correlated[8][10]. As we shall see in this pa-
per, the behavioral framework provides a natural way to 
derive the geometric matrix for multiple time epochs so 
that the geometric DOP of a kinematic positioning prob-
lem can be determined. In this way, the geometric diversi-
ty of the positioning problem can be increased so that the 
DOP of the corresponding problem can be reduced. 
 

The rest of the paper is organized as follows: In Sec-
tion 2, we will briefly review the concept of behavioral 
framework as a tool for the optimal approximate model-
ing of dynamical systems as well as some of the useful 
results and theorem. In Section 3, we shall use the concept 
of DOP to give a brief analysis on different optimization 
algorithms. In Section 4, some experimental results will 
be given to illustrate the usefulness of the proposed me-
thod. Finally, some concluding remarks will be given in 
Section 5. 
 

 
2. BEHAVIORAL FRAMEWORK 
 
Dynamical systems describe variables that are functions 
of one independent variable, usually referred to as “time”. 
In the behavioral setting, a system was defined as a subset 
B of a universum set U. In the context of dynamical sys-

tem, U is a set of functions  denoted by WT. 

The sets W and  are called signal space and time 

axis, respectively. The signal space is the set where the 
system variables take on their values and the time axis is 
the set where the time variable takes on its values. We use 
the following definition of a dynamical system 

:w →T W,

⊆T R

[18]. 
 

Definition 1. A dynamical system Σ is a 3-tuple Σ = 
(T, W, B) with  the time axis, W the signal space, 

and  the behavior.   ■ 

⊆T R

⊆ TWB

 
The behavior  is the set of all legitimate 

functions, according to the system Σ, from the universum 

set U = WT. The behavior can be described in many ways, 

while in the context of dynamical systems, the most often 
used are represented by the mapping 

⊆ TWB

: gf →TW R , i.e., 
 

{ }| ( ) 0= ∈ =TWB w f w . 
 
The equations f(w) = 0 are called annihilating behavioral 
equations. A dynamical system Σ = (T, W, B) is linear 

when the signal space W is a vector space and B is a li-

near subspace of WT (viewed as a vector space in the nat-

ural way). In this paper, we restrict ourselves to the case 
when the time axis is either T = N or T = Z, namely the 

discrete-time case. A system Σ = (T, W, B) is time-

invariant if  where σ is the backward shift oper-
ator (σw) := w(t+1) and . In the case 

T = Z, a system Σ = (T, W, B) is time-invariant if B = 

σB. Time-invariance requires that if a time series w is a 
trajectory of a time-invariant system, then all its backward 
shifts σtw, t > 0, are also trajectories of that system. 

σ⊆B B,

B: { | }w wσ σ= ∈B

 
The restriction of the behavior  to the 

time interval [t1, t2], where  and t1 < t2, is denoted 
by 

( )⊆ TRB w

1 2,t t ∈T
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2 1

1 2

1
[ , ]| : { ( ) | , , ( , , ) }t t
t t w w w w w w− +

− + − += ∈ ∃ ∋ ∈RB w col .B
 
A system Σ = (T, W, B) is complete if 
 

0 1 1 2[ , ] [ , ]| |t t t tw ∈B  for all   0 1 0 1, ,t t t t∈ ≤T
implies that  ;w∈B

 
i.e., by looking at the time series w through a window of 
finite width t1-t0, one can decide if it is in the behavior or 
not. The class of all complete LTI systems with w va-
riables is denoted by Lw. 
 

The class of dynamical systems that are studied in 
this paper consists of those that can be described by the 
following type of behavioral difference equation: 
 

0 1( ) ( 1) ( ) 0,lR w t R w t R w t l+ + + + =   (1) 
 
where . Equation (1) shows the de-
pendence between successive samples of the time series w. 
Without loss of generality, we can assume that  so 
that the equation has the maximum number of shifts l, 
which is also called the lag of the difference equation. 
Usually, Equation (1) will be much more analyzed by 
using the polynomial matrix representation. Define 

1 1, ,..., g
lR R R ×∈R w

0lR ≠

 
2

0 1 2( ) : [ ]l g
lR z R R z R z R z z×= + + + + ∈R w , 

 
then Equation (1) can be compactly written as  
 

R(σ)w = 0.    (2) 
 
Equation (2) (or equivalently, Equation (1)) is usually 
called a kernel representation in the behavioral context. A 
kernel representation (2) for a given B is not unique. If 
the polynomial matrix R(z) defines a kernel representation 
of B, then for any unimodular matrix , 
U(z)R(z) also defines a kernel representation of B. The 
kernel representation is called minimal if R is full row 
rank. There exists a minimal one, called shortest lag re-
presentation, in which the number of equations p = row-
dim(R), the maximum lag l, and the total lag 

[ ]p pU z×∈R

 

1

,
p

i
i

n l
=

=∑  

 
where li is the lag of the ith equation, are all minimal. A 
kernel representation R(σ)w = 0 is a shortest lag represen-
tation if and only if R(z) is row proper. Let li be the degree 
of the ith row of R. The polynomial matrix R is called row 
proper if the leading row coefficient matrix, i.e., the ma-

trix of which the (i, j)-th entry is the coefficient of the 
term with power li of Rij(z), is full row rank. 
 

In a shortest lag representation the number of equa-
tions is equal to the number of outputs in an input/output 
representation and the total lag is equal to the state dimen-
sion in a minimal state-space representation. These num-
bers are invariants of the system. The maximal lag of B, 
denoted by l(B), is called the lag of the system, and its 
total lag, denoted by n(B), is called the order of the sys-
tem. 

 
The behavior (or the system) induced by Equation (1) 

can be defined as: 
 

Ker( ( )) : { ( ) | ( ) 0}.R w R wσ σ= ∈ =NRw  
 
The following theorem gives a necessary and sufficient 
condition for the existence of a kernel representation. 
 
 

Theorem 2[11]. The following statements are equiv-
alent: 
(i)  is linear, time-invariant, and complete. ( , , )Σ= Z R Bw

(ii) B is linear, shift-invariant, and closed in the topology 
of pointwise convergence. 
(iii) There is a polynomial matrix , such 
that     ■ 

( ) [ ]R z z•×∈R w

Ker( ( )).R σ=B
 
 

Next, we shall introduce some of the algorithms that 
can be used to identify a dynamical system in a behavioral 
setting. Consider a time series w := (w(1),…, w(T)). The 
block-Hankel matrix with l block rows, constructed from 
the time series w, is denoted by 
 

(1) (2) ( 1)
(2) (3) ( 2)

( ) : .

( ) ( 1) ( )

⎡ ⎤− +
⎢ ⎥
⎢ ⎥− +⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥+⎢ ⎥⎣ ⎦

Hl

w w w T l
w w w T l

w

w l w l w T

 

 
The time series w satisfies the set of difference equations 
 

0 1( ) ( 1) ( ) 0,+ + + + + =lR w t R w t R w t l  for t = 1,…, T-l 
      (3) 
 
with maximum l lags (i.e., unit delays in time), if and only 
if 
 

1( ) 0+ =Hl wR  where R := [R0 R1 … Rl]. 
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The above identity shows that there exists a matrix R that 
is not identically zero if and only if the matrix Hl+1(w) 
does not have a full row rank. 
 

Let B be the set of all trajectories of a system Σ, de-
scribed by (2), i.e., 
 

: { : | ( ) 0}.w R wσ= → =N RB w  
 
The global total least-squares (GTLS) problem [1] can be 
described as follows. Let M be a user specified model 
class. Let B be defined as above and let w be an observed 
time series such that . It is assumed that . 
The problem of global total least-squares aims to find the 
model  that best fits the data according to the misfit 
criterion 

w∈B ∈MB

B̂

 
ˆ : arg min ( , )M w

∈
=

MB
B B  

 
with 
 
 

2

2

ˆ
ˆ( , ) : min

w
M w w

∈
= −

B
B w . 

 
For the solution of the GTLS problem, on the one hand, 
the approach taken by Roorda and Heij [12][13] is based 
on solving the inner minimization problem, the misfit 
computation, by using isometric state representation and 
subsequently used alternating least-squares or Gauss-
Newton type algorithm for the outer minimization prob-
lem. Also a state-space representation with driving input 
is used in [12][13]. On the other hand, in [6], Markovsky 
et al. use a different approach to solve the GTLS problem. 
They have related the identification problem to the struc-
tured total least-squares (STLS) problem and subsequent-
ly used solution methods developed for the STLS problem. 
Also a kernel representation of the system was used in 
their approach. 
 

The optimization problem considered in this paper is 
defined as follows. 
 
Problem 1(GTLS): For a given time series w and a com-
plexity specification (m, l), where m is the number of in-
puts and l is the lag of the identified system, solve the 
optimization problem 
 
 ( )

2,

2

ˆ
ˆ ˆ: arg min min .

m l w
w w

∈ ∈
= −

LB B
B   (4) 

 
The optimal approximating time series is , correspond-
ing to a global minimum point of (4), and the optimal 
approximating system is . 

ŵ

B̂
 

Problem 1 is a GTLS problem for the model class 
M = Lm,l. The first step here to solve the GTLS problem 
is to express (3) as an STLS problem. The STLS problem 
is defined as follows [1][4]: Given a time series w and a 
structure specification S, find the global minimum point 
of the optimization problem 
 

2

2

ˆ
ˆ ˆmin min  subject to ( ) 0 .

X w

X
w w w

I

⎛ ⎞⎡ ⎤ ⎟⎜ ⎢ ⎥ ⎟− =⎜ ⎟⎜ ⎢ ⎥ ⎟⎜ −⎝ ⎠⎣ ⎦
S  (5) 

 
The constraint of (5) enforces the structured matrix  
to be rank deficient, with rank at most rowdim(X). The 
cost function measures the distance of the given data w to 
its approximation . Thus the STLS problem aims at 
optimal structured low rank approximation of S  by 

. To express (4) as an STLS problem (5), we need to 
ensure that the constraint 

ˆ( )wS

( )w
ŵ

ˆ( )wS

 

ˆ( ) 0
X

w
I

⎡ ⎤
⎢ ⎥ =⎢ ⎥−⎣ ⎦

S  

 
is equivalent to . The following results are 
taken from 

,ˆ m lw∈ ∈LB

[7]. 
 

Lemma 3. Consider a time series w := (w(1),…,w(T)), 
, and natural numbers m  and . 

Assume that  for certain matrix R := [R0 

R1 … Rl], , where p := w – m, with Rl 
being full row rank. Then the system B, defined by the 

kernel representation R(σ)w = 0 with R z , 

is such that w , and the order of B is 
n(B) = pl.     ■ 

( )w t ∈Rw ≤ w

( )

m l

1l T≤ −

0

l i
ii

R z
=∑

1( ) 0+ =Hl wR

1 1, ,..., p
lR R R ×∈R w

[1, ]| ,T∈B B

=

,∈L

 
Lemma 4. Consider a time series 

 
w := (w(1),…,w(T)), , ( )w t ∈Rw

 
and natural numbers  and . Assume that 
there is a system B  with order n(B) = pl, such that 

. Let R(σ)w = 0, where , be 

a shortest lag kernel representation of B. Then Rl is full-
row rank and the matrix R := [R0 R1 … Rl] annihilates the 
Hankel matrix Hl+1(w), i.e., .  ■ 

m≤ w
,m lL

R

1l T≤ −

( )R z =

1( ) 0=w

∈

[1, ]| Tw∈B
0

l i
ii

R z
=∑

+Hl

 
Theorem 5. Assume that  is a system that 

admits a kernel representation R(σ)w = 0, 
 with Rl =: [Ql  -Pl], 

,m l∈LB

0
( ) l i

ii
R z R z

=
=∑ p p

l
×∈RP  of full-
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row rank. Then the constraint  is equivalent to 
the constraint 

[1, ]| Tw∈B

1] .l l

 

1( ) 0,T
l

X
w

I+

⎡ ⎤
⎢ ⎥ =⎢ ⎥−⎣ ⎦

H    (6) 

 
where 1

0[   T
lX P R R−

−= Q    ■ 
 

Before the end of this section, we will present a sim-
ple way to model a dynamic positioning problem in the 
kernel representation. For the purpose of navigation, 
usually a PVA (Position, Velocity, and Acceleration) 
model is used to describe a system with relatively higher 
dynamics: 

d ( ) ( )
d

x t Ax t
t

=     (7) 

( ) ( )y t Hx t=     (8) 
 
where  
 

0 1
0 0 1

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0

1

A
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
1

1
0 0 0 0

1

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

2( )  ( )  

( )  ( )  (

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

, 

 
11kH ×∈ (k denotes the number of satellites in view) and  

 
1 1 1 2 2

3 3 3

( ) [ ( )  ( )  ( )  ( )

            ( )  ( )  )]T

x t x t x t x t x t

x t x t t

= t x t x

x t b t b

( ) [ ]p s s∈

 ( ) ( )r s p s=

  

 
representing the three-dimensional position, velocity, and 
acceleration (x1(t), x2(t), and x3(t)) and the receiver clock 
bias (b(t)) and clock drift ( ), respectively. Equation (8) 
is a standard linearized GNSS observable equation, which 
will be described in a greater detail in the next section. In 
these two equations, we have omitted the noise terms. 
Now, define a polynomial  and a matrix po-
lynomial  by 

( )b t

11( ) [ ]kr s s×∈
 

1( ) : det( ),   ( )p s sI A H sI A −= − − . 
 

Let g(s) be the greatest common right divisor of p(s)I11 
and r(s), then the kernel representation of  (7)-(8) is given 
by 
 

1d d d( ) : ( ) ( ) 0
d d d

R y p g y
t t t

−= =  

 
 
3. DILUTION OF PRECISION 
 
The concept of dilution of precision (DOP) provides a 
simple way to evaluate the performance of a navigation 
algorithm. In this section, we shall let u = [x y z]T be the 
user’s position and si = [xi yi zi] be the broadcast position 
of the ith GPS satellite. The pseudo-range measurement ρi 
between the user and the ith GPS satellite is given by 
 

,i i i bρ = − −Δ + +u s s iε

]i

  (9) 
 
where b represents the error associated with the GPS re-
ceiver, [   i i ix y zΔ = Δ Δ Δs  is the difference between 
the broadcast position and true position of the ith GPS 
satellite, and εi stands for the errors due to the ith satellite. 
Typically in GPS positioning, b is assumed to be an offset 
term and is εi treated as a zero mean noise. The linearized 
equation of (9) around the nominal point [x0 y0 z0]T can be 
written as: 
 

11 12 13 0

21 22 23 0
0

0

1 2 3

' ' ' 1
' ' ' 1

' ' ' 1

i i i

i i i

h h h x x
h h h y y

e
z z

h h h b b

ρ ρ

0

⎡ ⎤ ⎡ ⎤−
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥− + = ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 
where  
 
 2 2

0 0 0
2
0x y zρ = + +  

0
1 2 2

0 0

0
2 2 2

0 0

0
3 2 2

0 0

'
( ) ( ) (

'
( ) ( ) (

'
( ) ( ) (

i i

i i i i i i i

i i

i i i i i i i

i i

i i i i i i i

x x x
h

x x x y y y z z z

y y y
h

2
0

2
0

2
0

)

)

)

x x x y y y z z z

z z z
h

x x x y y y z z z

+Δ −
=

+Δ − + +Δ − + +Δ −

+Δ −
=

+Δ − + +Δ − + +Δ −

+Δ −
=

+Δ − + +Δ − + +Δ −

 
 
When there are n observable satellites, in terms of matrix 
notations, we then have 
 

'H = +p q e      (10) 
 
where 
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1 1[  ]n Tε ε ε=e  

  

11 12 13

21 22 23

1 2 3

' ' '
' ' '

'

' ' 'i i i

h h h
h h h

H

h h h

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

1
1

1

 

0

0

0

0

x x
y y
z z
b b

⎡ ⎤−
⎢ ⎥
⎢ ⎥−⎢ ⎥= ⎢ ⎥−⎢ ⎥
⎢ ⎥− +⎢ ⎥⎣ ⎦

p ,  

1 1
0
2 2
0

0
i i

ρ ρ
ρ ρ

ρ ρ

⎡ ⎤−⎢ ⎥
⎢ ⎥−⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

q

 

Clearly, the observation matrix H’ is subject to uncertain-
ty mainly due to ephemeris error in this more realistic 
model. A positioning method that accounts for the error 
associated with observation matrix is worth investigating. 
 

Let H’ = H + HΔ , where HΔ  is the perturbation 
matrix, the resulting matrix equation becomes 
 

( )H H+Δ = +p q e.    (11) 
 
This model is termed as the unstructured error-in-variable 
model as the matrix HΔ  represents the errors associated 
with the observation matrix and no a priori structure on 

HΔ  is being imposed. The traditional least-squares solu-
tion of Equation (10) can be derived as: 
 
  -1ˆ ( ' ') ' ;T T

LS H H H=p q
 
and the geometric dilution of precision (GDOP) for the 
LS algorithm is given by 
 
 -1GDOP ( ' ')T

LS trace H H=  
 

On the other hand, for the TLS algorithm, the GDOP 
can be derived as follows. The TLS optimization has a 
solution if and only if the matrix [H’ q] is rank deficient. 
A general procedure for solving the TLS problem can be 
found in [17] and we shall only give a brief outline here. 
Let  
 
 [ '    ] T

TLS TLS TLSH U S V=q  
 
be a singular value decomposition of the augmentated 
matrix [H’  q], where UTLS  is an n × n orthogonal matrix, 
 

  

 

1

2

3

4

5

5

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0 0

TLS

n

S

σ
σ

σ
σ

σ

×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
and VTLS is a 5 × 5 orthogonal matrix. Then the optimal 
TLS estimator is given by 
 
  2 -1

5ˆ ( ' ' ) ' ,T T
TLS H H I Hσ= −p q

 
and the GDOP in this case is given by 
 
 

2 -1 2 -1
5 5GDOP ( ' ' ) ' '( ' ' )T T T

TLS trace H H I H H H H Iσ σ= − −

 
To calculate GDOP for the STLS algorithm, again we 
have to firstly derive a solution of the STLS optimization 
problem, which can be obtained by the subspace identifi-
cation method. We will not present the detail of the pro-
cedure here. Only the results will be presented here, 
which can be obtained by using the method shown 
in [7][16]. By using the subspace identification method, 
the solution to the STLS problem (or equivalently, solu-
tion to (6)) can be shown to be 
 

( )

0

1
1 1 1 1 1

:

   ( ) ( )( ( ) ( )) ( )
STLS

T T
l l l l l

X
Y

I

w I w w w w−
+ + + + + ;

⎡ ⎤
⎢ ⎥ =⎢ ⎥⎣ ⎦

= −H H H H H

 

 
Note that the similarity between the solution of the TLS 
problem and STLS problem; however, in the case of the 
STLS optimization, the dimension of Hl+1(w) is 

 times (l – T), therefore the solution Y0 would be 
a n× es n matrix rather than a single vector as 
in the case of the TLS problem. With the above identity in 
hand, the GDOP for the STLS problem can be easily 
computed as follows: 

( 1)n l× +
( 1l + )  tim

 

( )( )1
1 1 1 1 1 1

GDOP

( ) ( )( ( ) ( )) ( ) ( ) .

STLS

T T T
l l l l l ltrace w I w w w w w−
+ + + + + += −H H H H H H

 

 
 
4. EXPERIMENTAL AND SIMULA-
TION RESULTS 
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In order to verify the performance of proposed methods, 
we shall conduct several experiments in this section. 
Firstly, a static positioning problem is investigated. We 
will compare the results of different optimization algo-
rithms. Then a kinematic positioning problem is investi-
gated. To do this, we first construct a flight trajectory and 
then analyze the resulting error statistics. Finally, we will 
consider a model identification problem which may be 
solved by using the STLS algorithm in the behavioral 
setting. 
 

For the first experiment, the results shown in Figures 
1-6 are based on real collected data. In those figures, DLS, 
MTLS, and STLS stand for data least-squares, mix least-
squares-total least squares, and structured total least 
squares, respectively. DLS is a modified version of the 
TLS algorithm, and MTLS can be viewed as a special 
case for the STLS algorithm. Here we shall compare the 
results of different algorithm. For detailed discussion of 
those methods, please see [1][2][12][17]. Figure 1 shows 
the estimated ECEF (Earth-Centered, Earth-Fixed) posi-
tions by using different algorithms. Figure 2 and 3 are the 
estimated position errors for all the algorithms. Figure 4 
and Figure 5 show the mean values and error covariances, 
respectively, for different algorithms, and finally Figure 6 
shows the GDOP values for all the algorithms used in this 
experiment. From the results shown in those figures, we 
can easily see that the proposed method is able to provide 
better performance than all other methods. Note that in 
this experiment only one single epoch is considered at one 
time (hence the name: static positioning). In the following, 
the attention will be made on the dynamic position prob-
lem. In this case, only the proposed method in this paper 
is able to treat multiple epochs at one time. 
 

To do this, we first construct a simulated flight tra-
jectory and then use suitable software to generate simu-
lated GPS observable data. The analysis results are based 
on this generated data. The flight trajectory in ECEF 
coordinate is shown in Figure 7. The estimation error is 
shown in Figure 8. Means and error covariances for all 
cases are shown in Figure 9 and Figure 10, respectively, 
and the GDOP values for each case are shown in Figure 
10. The results also show that the STLS algorithm has the 
lowest GDOP. As we have explained before, this is be-
cause the geometric diversity can be increased in the 
STLS algorithm. 

 
Next, we shall consider a model identification 

problem for dynamical systems. The method introduced 
in Section 2 will be used. Again, we first construct a flight 
trajectory as shown in the Figure 12 on top of the page, 
which is simply a semi-circular. It is noted that we choose 
such a simple trajectory is merely for illustration purpose. 
As a matter of fact, a much more complicated model can 
also be used. In this case, we only choose a behavioral 
model with a larger time lag. The results of the simulation 

are shown in Figures 13 to 18. For the matter of compari-
son, we also use the WTLS (weighted TLS)[1][17] me-
thod to predict the flight trajectory. In the present simula-
tion, we use a behavioral model of time lag 3 (i.e., l = 3 in 
Equation (3)); therefore we can use the first 4 epoch to 
predict the flight trajectory. Figure 13 shows that we use 
the first 7 epoch to construct a behavioral model and then 
use the model to construct the whole trajectory. For a 
comparison of the WTLS method and the STLS method 
with the true trajectory, the results are shown in Figure 14, 
16 and 17. 
 
 
5. CONCLUSION 
 
In this paper, on the one hand, we have presented a beha-
vioral approach to solve GNSS positioning problems. In 
the proposed approach, a GNSS positioning problem is 
firstly described by a kernel representation and then the 
problem can be solved by a structured total least-squares 
(STLS) algorithm. It has been shown that the STLS algo-
rithm is able to provide better performance than the TLS 
algorithm for the problems that possess a particular struc-
ture. We can also use the proposed approach to perform 
the model identification. On the other hand, we also show 
a possible way to derive GDOP for a dynamic positioning 
problem. By considering multiple time epochs in the same 
time, the geometric diversity of the positioning problem 
can be increased so as to reduce the GDOP values. 
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Figure 1. Estimated x-, y-, z-positions in ECEF coordinate 

8 

WSEAS TRANSACTIONS on SYSTEMS He-Sheng Wang

ISSN: 1109-2777 861 Issue 9, Volume 7, September 2008



 
 

 

STLS 

STLS 

STLS 

Figure 2. Estimated Positioning Errors 
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Figure 3. Estimated User Position Using Different Algorithms 
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Figure 4. Mean Estimation Errors for Different Algorithms 
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Figure 5. Error Covariances for Different Algorithms 
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STLS 

 
Figure 6. Comparison of Geometric Dilution of Precision 

 
 

 
Figure 7. Flight Trajectory in ECEF Coordinate 
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Figure 8. Estimated Errors in x-, y-, z-directions 
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STLS 

Figure 9.  Expectation Values of Estimated Errors 
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Figure 10. Error Covariances for Different Algorithms 
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Figure 11. Comparison of Geometric Dilution of Precision 
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Figure 12. Flight Trajectory in ECEF Coordinate 

 
 

 
Figure 13. Initial Trajectory and Predicted Trajectory in ECEF Coordinate Using WTLS Method 

WSEAS TRANSACTIONS on SYSTEMS He-Sheng Wang

ISSN: 1109-2777 867 Issue 9, Volume 7, September 2008



 
Figure 14. Comparison of Estimated and True Trajectory 

 
 
 

 
Figure 15. Estimated Trajectories in x-, y-, z-directions 
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Figure 16. Estimated Errors in x-, y-, z-directions 

 
 

 
Figure 17. Mean Estimation Errors for Different Algorithms 
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