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Abstract: - As Bayesian networks are applied to more complex and realistic real-world applications, the 

development of more efficient inference approaches is increasingly important. This paper presents a method for 

metareasoning in Bayesian networks adopting prediction models to select algorithms for the inference tasks, 

when multiple schemes are used to calculate the propagation of evidence. The proposed method is based on 

multiple characterizations of Bayesian networks and prediction models to select the algorithm that will provide 

the best performance in future inferences. Logistic regression analysis is applied to determine when exact 

algorithms may be used for specific tasks. The prediction models of approximate inference algorithms are 

created by multiple regression analysis, based on experimental results using Variable Elimination, Gibbs 

Sampling and Stratified Simulation algorithms. These algorithms belong to exact method, stochastic and 

deterministic sampling methods, respectively. Experimental analyses compare some alternative models and show 

better results when multivariate analysis is applied. 
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1   Introduction 
Bayesian networks (BNs) have become a popular 

representation for reasoning under uncertainty, as 

they integrate a graphical representation of causal 

relationships with Bayesian foundation, providing 

both a compact method to represent probability 

distributions and a powerful tool for uncertainty 

management.  

BNs are directed acyclic graphs in which every 

node is associated with a random variable Xi and 

edges represent conditional dependencies between 

variables. In this paper every variable is categorical 

(has a finite number of values), and the terms “node” 

and “variable” are used interchangeably.  

The nodes in network are connected by directed 

arcs, which may be thought of as causal or influence 

links. The parent of node Xi are the nodes with direct 

edges pointing to Xi, indicated by pa(Xi).  

Each node has associated with it a probability 

distribution, which, for each combination of the 

variables of parent nodes (called a conditioning case), 

gives a probability of each value of the node variable. 

The probability distribution for a node with no 

predecessors is the prior distribution. The relationship 

between any set of state variables can be specified by 

a joint probability distribution. 

Every variable in BN is assumed to be 

independent of its nonparents nondescendants given 

its parents, implying the following joint probability 

distribution [45]: 
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That is, a BN represents a unique joint distribution 

that factorizes as Expression (1). Every variable is 

thus associated with a single conditional distribution 

Pr(Xi|pa(Xi)).  

Figure 1 shows an example of BN, in which the 

associated probability distributions are Pr(A), Pr(B), 

Pr(C|A, B), Pr(D|A), Pr(E|C), Pr(F|E), Pr(G|D, E).   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. A example of Bayesian network. 
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     BNs have been used in a variety of applications 

including medical diagnosis [1, 2], technical support 

troubleshooters [32], decision-theoretic systems to 

interpret live telemetry [31], genetic research [22], 

speech recognition systems [52], data compression 

methods [16], and diagnostic systems in industrial 

plants [47]. Such approaches involve determining the 

structure of the network; supplying the prior 

probabilities for root nodes and conditional 

probabilities for other nodes; adding or retracting 

evidence about nodes; repeating the inference 

algorithm for each change in evidence.  

Given a BN, the computation of a posterior 

probability distribution is usually called an inference. 

That is, we select a set of query variables XQ and a 

set of observed variables XE, and we must compute 
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Evidence can be specified about the state of any 

of the nodes in the network: root nodes, leaf nodes or 

intermediate nodes. Evidence of specific values of 

some nodes is incorporated into decision-making by 

belief updating of other nodes of interest, the query 

nodes. We assume that XQ and XE are disjoint, and 

we note that in Expression (2) the values of variables 

in XE are observed and therefore fixed. 

Some algorithms can compute the expression (2) 

exactly, named exact algorithms, and can be 

classified in two groups: algorithms based on 

conditioning, and algorithms based on clustering ─ 

with a “third group” represented by Pearl’s 

propagation algorithm for polytrees, the only 

polynomial exact inference algorithm for BN [48]. 

 

• The cutset conditioning algorithm, also known as 

the loop cutset algorithm, exploits the fact that 

edges out of a node are “broken” if the node is 

observed. The algorithm selects a set of nodes 

(the loop cutset) that, once observed, “breaks” 

every cycle in a graph. Every instantiation of the 

cutset is then considered; for each one of them, 

Pearl’s propagation algorithm is employed. The 

result is an algorithm that uses a relatively small 

amount of memory, but takes exponential time on 

size of the loop cutset. 

• In clustering algorithms, variables are grouped in 

potentially large clusters, a junction tree is built, 

and a propagation scheme on junction trees 

produces inferences. The Lauritzen-Spiegelhalter 

algorithm [37] and Shafer-Shenoy algorithm [50] 

are two different ways to organize this 

propagation. Many variants of clustering methods 

have appeared since these two basic algorithms 

were derived [27]. A few algorithms also proceed 

by “grouping” variables but are not directly 

related to the Lauritzen-Spiegelhalter or the 

Shafer-Shenoy algorithms: the family of Variable 

Elimination (VE) algorithms, Li and 

D’Ambrosio’s SPI algorithm [38], Shachter’s arc-

reversal / node-reduction algorithm [49], and 

differential inference algorithms [15] are 

examples. VE is an algebraic scheme for exact 

inferences in BN. The idea of the algorithm is to 

multiply the sets of density in the sequence 

provided by the ordering process and attempts to 

eliminate variables as soon as possible to maintain 

intermediate products at a manageable size [12]. 

 

Although polynomial time inference algorithms 

exist for singly connected networks, the general 

problem of computing exact inferences in Bayesian 

networks is NP-hard [10].  

In many real-world domains, approximate 

schemes may be used for inferences. Rather than the 

exact calculation of Expression (2), representative 

samples of variables can be generated to provide an 

approximation [44]. Approximate algorithms for BN 

inference can be divided in a few groups [28].  

 

• Stochastic approximations are widely used in 

large and dense networks. Methods are generally 

divided into forward sampling and MCMC 

methods, and they display poor performance 

when probability values are extreme [26]. Gibbs 

Sampling (GS) is a stochastic simulation 

algorithm and uses the total conditional 

probability of each variable to generate the 

samples to obtain approximated probabilities.   

• Model simplifications range from the removal of 

weak dependencies to cardinality reduction in 

probability distributions [8]. Simplifications may 

also affect secondary structures such as junction 

trees, as demonstrated by the mini-buckets 

framework [20]. 

•  Partial instantiation algorithms approximate the 

summation in Expression (2) using only a number 

of terms. Examples are bounded conditioning 

[30], and term computation [13], Poole’s conflict-

based [46] and Henrion’s search-based methods 

[29]. Stratified Simulation (SS) was initially 

suggested by Bouckaert [5], who presented 

several variants. These algorithms give more 

representative samples and, due to the possibility 

of efficient implementation, are faster than the 

previously known simulation algorithms [5]. The 

most commonly used version chooses a 

WSEAS TRANSACTIONS on SYSTEMS Carlos Eduardo Bognar and Osamu Saotome

ISSN: 1109-2777 733 Issue 7, Volume 7, July 2008



deterministic sample consisting of equally spaced 

sample values. 

• Loopy propagation uses Pearl’s propagation 

algorithm in network with cycles, attempting to 

gradually improve the quality of inferences [42]. 

  

However, the problem of approximating the 

probability, given the evidence, when a constant 

error-bound is required, has also been proven to be 

NP-Hard [14]. Given the NP-hard complexity results, 

one of the major challenges in applying BNs in real-

world applications is the design of efficient inference 

approaches for very large probabilistic models.  

In the last decade, researchers have investigated a 

new tactic for knowledge processing [17][18][19]. 

Several algorithms are used to arrive at a solution 

with better quality than a single algorithm working 

alone. Each algorithm has strengths and weaknesses 

in each case.  

When several algorithms may be applied to solve 

some inference instance, it is important to decide 

which algorithm should be used to achieve the best 

results. The algorithm selection problem is originally 

formulated by Rice [48]. Later it has been mainly 

applied to the selection of problem-solving method in 

scientific computing [34], specifically to the 

performance evaluation of numerical softwares.    

The algorithm selection problem asks the 

following question: which algorithm should be 

selected to solve this problem instance? 

Algorithm or problem-solving technique selection 

has been studied in various fields, including data 

compression [35], machine learning [7], planning 

[23] and Constraint Satisfaction Problem (CSP) [41]. 

In some works the knowledge representation of the 

“metareasoner” is often a set of rules, a statistical 

models or machine leaning approaches. 

Researchers in AI have long realized that great 

efficient gains can be achieved by allocating a portion 

of costly computational resources to meta-level 

deliberation about the best way to solve a problem. In 

the particular field of BN inference, the quality of 

approximate inferences varies from each problem 

instance, because the input data manipulated contain 

characteristics that affect the performance of the 

algorithms, such as BN structure, parameters 

distribution and characteristics of the queries. If these 

features of the data can be associated together, they 

can be used to predict the performance of algorithms 

for that information, in metareasoning process.   

     To perform metareasoning, this paper proposes a 

method for BN characterization and associates these 

characteristics together, applying multivariate 

analysis. Based on experimental data, the proposed 

method creates the prediction models for VE, GS and 

SS algorithms. The models are used to predict the 

performance and select these algorithms in future 

inference tasks.  

      In section 2, we review some approaches used in 

metareasoning. In section 3, the proposed method is 

presented. Results comparing prediction models are 

presented in section 4. Section 5 shows the 

conclusions. 

 

2   Metareasoning Approaches 

In AI context, an agent acting in the world generally 

needs to spend some time and other resources on 

deliberation, to assess the quality of the various plans 

of action available to it. To find the absolutely 

optimal plan, an agent generally needs to perform a 

very large amount of deliberation: it has to consider 

all the relevant implications of all the relevant facts 

that it knows, and, if the agent is able to gather 

additional information, it also has to take all relevant 

information gathering actions.  

Metareasoning may be defined as the process of 

reasoning about reasoning itself and it is composed of 

both meta-level control of computational activities 

and the introspective monitoring of reasoning to 

evaluate and to explain computation. Meta-level 

control is the ability of an agent to efficiently trade 

off its resources between object level actions 

(computations) and ground level actions to maximize 

the quality of its decisions. Figure 2, taken from Cox 

and Raja [11], illustrates the three different levels of 

doing (plans of action), reasoning (deliberation 

actions), and metareasoning. 

 

 

 

 

 

 

 

 

 
Figure 2. The three levels of doing, reasoning, and 

metareasoning. 
 

Conitzer [9] reported that optimal metareasoning 

is not computationally feasible in general, and it is 

important to consider approximation methods, 

heuristics and anytime algorithms that find close-to-

optimal solutions to the metareasoning problem, or 

algorithms that find the optimal solution fast under 

certain conditions, as well as more involved meta-

metareasoning approaches.  

Artificial Intelligence researchers proposed 

Multiple Method (MM) approaches to perform 

inferences tasks in large Bayesian networks [25]. MM 
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involves a number of different algorithms, each of 

which is capable of generating solutions having 

different characteristics [24]. When these algorithms 

are combined to work in Bayesian inferences, the 

main problem that arises is related to the quality of 

results. If possible, the exact schemes are preferred. 

When exact algorithms could not be applied, 

approximated approaches must be used and its results 

depend on some problem instances. In order to decide 

which algorithm will provide the highest quality 

results, when multiple methods are applied, a 

metareasoning process may be implemented.  

In many real world situations, an algorithm 

selection is performed manually by certain experts 

who have a strong theoretical understanding of the 

computational complexities of various algorithms and 

are very familiar with their behaviors. The difficulty 

of automatic algorithm selection is largely due the 

uncertainty in the input problem space, the lack of 

understanding the working mechanism of algorithm 

space, and the uncertainty factors of implementations 

and run-time environments [28].  

    Zilberstein [51] initially investigates the main 

control problems that arise when a system is 

composed of several algorithms. This problem relates 

to optimal management of uncertainty and precision.  

    Jitnah and Nicholson [36] studied a metareasoning 

method based on BN characterization, such as 

number of nodes, instantiated nodes and the queried 

nodes. The measured characteristics were used to 

predict which algorithm would provide better 

performance in terms of execution time and accuracy 

of results on the given problem. Measures taken from 

the network were related to the number of nodes and 

arcs, the connectedness, path lengths, overall 

skewness of the conditional probability distributions 

and the maximum and average number of states, of 

parents and the Markov blanket size of any node. 

Based on these characteristics and utility curves, 

performance profiles were created applying Simple 

Regression Analysis (SRA).  

    Borghetti [4] also studied this problem and 

demonstrated that some individual BN characteristics 

may be useful to predict the quality of results. In his 

work, individual characteristics were analyzed and 

performance profiles were created. 

    Guo [28] proposed a method to perform 

metareasoning in Most Probable Explanation 

problems, based on certain parametric and structural 

characteristics of networks. The prediction models 

were used to select the algorithm that probably 

offered the best performance and were obtained by 

machine learning techniques.  

    In our proposed method, an alternative approach is 

used. Multiple characteristics of BN are considered 

and combined using multiple regression analysis to 

create the prediction models for inference algorithms 

in metareasoning problems. Once the prediction 

models have been created, the metareasoning process 

can selects the algorithm for some inference instance 

that may provide best quality of results (exact or 

approximate probabilities).       

  

3   The Proposed Method 
Herein a method is presented for using performance 

data gathered off-line to predict future behavior of 

algorithms on new instances. First, it is necessary to 

know whether exact methods may be used for the 

specific inference task. If not, the predicted relative 

error of inferences, when approximated methods are 

applied, allows selecting the algorithm that is most 

likely to have better performance in some inference 

instances. To predict the performance, mathematic 

relations must be developed, describing how the 

values of multiple characteristics (independent 

variables) influence the results.   

     Initially, a set of “Relevant Characteristics” (RC) 

are identified and samples must be randomly 

generated, exhibiting a variety of values over all of 

these RC. Consequently, performance data are 

gathered on networks when RC varies. These data are 

used to create the prediction models of algorithms, 

obtained by multivariate analysis. Finally, these 

models are used in the metareasoning process to 

select the appropriate algorithm for the task. The 

details are described as follows. 

 

3.1 Selecting Relevant Characteristics 
This process identifies a set of characteristics that 

may affect algorithm performance. To be “relevant”, 

a characteristic must be related to different 

performance of algorithms when its domain is 

modified.  

    These characteristics must also be easily computed, 

because if the time to compute takes as long as 

executing the inference algorithm, it would be unwise 

to invest the time to compute it.  

     Each characteristic examined in this paper was 

proposed in previous publications [4, 28, 36], 

nonetheless, it should be pointed out that this method 

may be applied to analyze other relevant 

characteristics. The selected characteristics are:  

  

• Number of Nodes (X1). This characteristic is 

easy to compute and represents the number of 

random variables in BN. 

 

• Connectedness (X2). Connectedness is 

defined by Expression (3), where L denotes 
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the number of edges and N denotes the 

number of nodes. 
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• Maximum Number of States (X3). 
Maximum number of states found on a node, 

considering all nodes. 

 

• Maximum CPT Size (X4). A node’s CPT 

size is the number of cells in its Conditional 

Probability Table, which is the product of the 

state space of its parents, multiplied its own 

state space. 

 

• Maximum Number of Parents (X5). It 

corresponds to the maximum number of 

parents of a node, considering all nodes on 

BN. 

 

• Number of Roots (X6). A root is a node 

without parents. 

 

• Average Skewness (X7). Skewness is a 

metric proposed by Jitnah and Nicholson [36] 

and it is computed for each random variable, 

representing the asymmetry of its CPT. 

Borghetti [4] defined the Expression (4) to 

compute skewness: 
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where v=(V1,…Vm) is the CPT for a node and 

n0 represents the number of states of this 

node. 

 

• Maximum Skewness (X8). The maximum 

skewness occurs when members of tables are 

either 0.0 or 1.0.  

 

• Number of Interactions (X9). The number 

of simulation executed by each approximated 

method. 

 

• Evidence Proportion (X10). Let the number 

of evidence nodes be n_evid and number of 

nodes is X1. The evidence proportion is 

simply 
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Note that the number of interactions (X9) and 

evidence proportion (X10) represent the 

characteristics of inferences tasks and is useful in 

prediction models. 

 

3.2 Gathering Performance Data   
After choosing which features are likely to affect the 

performance of algorithms, the next step must gather 

networks that exhibit a range of values for each 

characteristic.  

It is important to have a method that generates 

BNs uniformly; that is, we would like to guarantee 

that averages taken with generated networks produce 

unbiased estimates.  

The generation methods must also be flexible in 

the sense that constraints on generated networks can 

be added with relative ease. For example, it should be 

possible to add a constraint on the maximum number 

of parents for nodes, the average number of children, 

or the maximum number of states. Ad hoc methods 

are usually concocted for a particular set of 

constraints, and it is hard to imagine ways to add 

constraints to them.  

Finally, the method must generate “realistic” 

networks, however hard it may be to define what a 

“real” Bayesian network is. A reasonable strategy is 

to look for properties that are commonly used to 

characterize BNs, and to allow some control over 

them.    

In this experiment, the random generation of BN 

instances with controlled parameter values was based 

on the Markov-chain method, to “walk” randomly in 

the space of all possible networks that satisfy the 

constraints. This feature was implemented by 

BNGenerator [3], a program that generates random 

BNs, guaranteeing that the distribution of generated 

networks is asymptotically uniform.  

BNGenerator was used to create 150 networks for 

the estimation sample. To generate BNs with specific 

constraints, an ergodic Markov chain was constructed 

with uniform limiting distribution, such that every 

state of the chain is a DAG satisfying the constraints.  

The BNGenerator accepts specification of number of 

nodes, maximum node degree, maximum number of 

edges, and maximum heuristic width. The software 

also performs uniformity test using χ
2

test.   

The parameters specified in generation process 

were based on some real BNs and to simulate 

instances where exact algorithms could not be 

executed, the generation process considered higher 

WSEAS TRANSACTIONS on SYSTEMS Carlos Eduardo Bognar and Osamu Saotome

ISSN: 1109-2777 736 Issue 7, Volume 7, July 2008



values in its parameterization. Table (1) shows the 

domain values of generated networks. 

 
Table 1. Domain values of generated BNs. 

 

Domain X 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8

Min 2 0.01 2 8 2 1 0.10 0.10

Max 300 0.80 13 1048576 10 10 0.99 0.99
 

 

 

     The next phase collects performance data for each 

algorithm. The VE, GS and SS algorithms were 

executed individually on each BN and provided a set 

of solutions. The evidence proportion (X10) was 

randomly defined from 0.0 to 0.3.  

When exact method could be executed, BN 

characteristics were recorded. In instances where a 

VE algorithm could not be executed due to memory-

overflow error, approximate methods were applied. 

    In each run of a specific approximate algorithm, 

the number of interactions was randomly defined 

from 1,000 to 100,000 and relative errors of 

inferences were collected. The relative errors were 

calculated for each state of each variable, from its 

approximate probabilities distribution and the exact. 

Therefore, the average relative errors, considering all 

states of all variables were calculated and recorded in 

a database.  

      Database samples used in multivariate analysis 

must consider two assumptions: (1) no outliers and 

(2) normal distribution of dependent variables.  

     An outlier is an observation that is numerically 

distant from the rest of the data. Statistics derived 

from databases that include outliers will often be 

misleading. However, a small outlier number is 

expected in normal distributions. The rejection of 

suspect observations must be based on an objective 

criterion, such as the Dixon´s Q-Test [21]. 

     The Kolmogorov-Smirnov (KS) and Lilliefors tests 

were applied for normality testing [39]. The two-

sample KS test is one of the most useful general 

nonparametric method and goodness of fit used to 

determine whether the underlying one-dimensional 

probability distribution differ from a hypothesized 

distribution (normal).  

     The results of KS test showed that the distributions 

of relative errors were not normal (2-tailed = 0.003 

for GS and SE). In such situations mathematical 

transformations may be useful.  

In statistics, the power transform is a family of 

transformations that map data from one space to 

another using power functions. This is a useful data 

(pre)processing technique used to reduce data 

variation, make the data more normal distribution-

like, and improve the correlation between variables 

and for other data stabilization procedures.  

The Box-Cox transformation [6] is one particular 

way of applying a power transform that has 

advantageous properties. The power transformation is 

defined as a continuously varying function, with 

respect to the power parameter λ, in a piece-wise 

function form that makes it continuous at the point of 

singularity (λ = 0). For all arguments y > 0, the 

analytic form of the power transform function is 

expressed as  
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The Box-Cox transformations were applied to 

database samples and the distributions of relative 

errors of approximations became normal (2-tailed = 

0.526 for GS and 0.491 for SE). 

             

3.3 Obtaining Prediction Models 
In the next step, mathematical relations must be 

obtained and used in the decision process for 

selecting which algorithm will run under specific 

instances. Once the relation has been created, it can 

be used to predict which algorithm will perform 

better in a given instance.  

In this approach, the relations combine the effects 

of multiple characteristics on the results of exact and 

approximate algorithms, which may be done by 

Logistic Regression (LR) and Multiple Regression 

Analysis (MRA).  

     LR is a form of regression used when the 

dependent is a dichotomy or logit variable, predicted 

on the basis of independents.  

The proposed approach applies maximum 

likelihood to estimate the probability that the exact 

algorithm may be executed, based on (X1,… , X5). 

Equation (7) shows the generic expression, where 

P(Yexact) is the probability that VE may be executed 

and (β0,…, βn) are regression parameters. 
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    Table (2) summarizes the logistic model, showing 

the regression coefficients, the standard error (SE) 

and Wald statistics to test each coefficient. The 

coefficients are significant at level 0.01. Some 

statistics related to goodness of fit are also listed.  
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Likelihood is the probability that observed values 

of the dependent may be predicted from observed 

values of independents. The (-2LL) is its log and is 

the basis for tests in logistic regression. Additionally, 

Cox and Snell R
2
 [40], Nagelkerke R

2
 [43], Hosmer 

and Lemeshow [33] and percent of correct 

classifications are listed.  

 
 Table 2. Logistic regression model (estimation sample). 

 
Cox & Snell Nagelkerke %Correct

Variable (B) SE Wald Signif. (R
2
) (R

2
) Chi-Quad Signif. Classif.

Constant 14,346 5,495 6,816 0,010

X 1 -0,154 0,059 6,853 0,010

X 2 17,264 16,951 1,037 0,308

X 3 -0,813 0,339 5,75 0,016

X 4 0,000 0,000 1,624 0,203

X 5 -1,218 0,832 2,144 0,043

(-2LL)

0,953 95,8%

Coefficients Hosmer and Lemeshow

18,722 0,667 0,897 2,685

 
 

    When P(Yexact)>0.5, VE algorithm must be selected 

by metareasoning process. Otherwise, approximate 

methods are applied, based on prediction models 

calculated by Multiple Regression Analysis (MRA).  

The general purpose of MRA is to estimate the 

strength of a modeled relationship between one or 

more predicted variables and the predictors. For this 

propose, MRA was used to predict the relative error 

provided by an approximate algorithm, considering 

the values of all predictors (X1…, X10).  

Equation (8) shows a mathematical relation 

obtained by MRA, where Y denotes the relative error, 

a is the intercept and bi denotes the regression 

parameter, which reflects the partial effect of the 

associated independent variable Xi to prediction of the 

dependent. 

 
              XbXbaY nn

+++= ...
11
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    Table (3) summarizes the model and shows 

regression coefficients βi for each independent 

variable and its standard errors (SE).  

 
Table 3. Multiple regression models. 

 

(Constant) 19,669 3,894 -0,173 0,300

X1 -0,080 0,009 0,001 0,001

X2 -4,760 1,130 -0,245 0,087

X3 0,108 0,083 0,015 0,006

X4 -5,20E-05 0,001 6,32E-06 0,001

X5 0,182 0,162 -0,034 0,012

X6 -0,507 0,085 -0,008 0,007

X7 -4,523 2,461 0,865 0,189

X8 -10,707 5,011 -0,212 0,386

X9 6,90E-05 0,001 -2,60E-07 0,001

X10 2,288 1,799 0,841 0,138

Stratified Simulation
Predictors

Gibbs Sampling

(R
2

) SEE

0,769 0,101810,735 1,32275

(R
2
) SEEβ

Standard 

Error
β

Standard 

Error

 
 

The R-squared (R
2
), also called multiple 

correlation, is the percent of variance in the 

dependent explained jointly by the independents. It 

can also be interpreted as the number of errors made 

when using the regression model to guess the value of 

the dependent, in ratio to the total errors made using 

only the dependent’s mean as a basis for estimating 

all cases. 

 

4   Experimental Results 
To assure that the regression models are appropriate 

for metareasoning problems, this section presents 

some experimental results.  

To allow for comparing the proposed approach 

with different metareasoning strategies [5, 36], 

individual characteristics were also mapped in 

mathematical equations, applying simple regression 

analysis (linear and non-linear) to estimate prediction 

models for GS and SE.  

     In this phase, 110 networks were randomly 

generated, over a variety of values for all 

characteristics and metrics of these characteristics 

were collected.  

Initially, the values of network characterization 

and logistic regression models were used to predict 

when the VE algorithm should be used, considering 

this test sample. Table (4) shows the main statistics, 

including the percent of variation in estimation and 

test samples. 
 

Table 4. Logistic model applied to a new sample. 

 
Cox & Snell Nagelkerke %Correct

(R
2
) (R

2
) Chi-Quad Signif. Classification

0.953

Hosmer and Lemeshow
(-2LL)

18.722 95.8%

16.998 0.607 0.863 2.628 0.956 91.8%

0.667 0.897 2.685

-2.2% 0.3% -4.2%-10.1% -9.9% -3.9%

 
 

    For the test sample, the logistic model could 

correctly classify 91.8% of all observations. That is, 

in only 9 of 110 observations, the predictions of VE 

execution were incorrect. In Guo´s approach [28], 

60,0% of total observations were correctly classified 

by machine learning techniques.  

In 40 test sample observations, a VE algorithm 

could not be executed because out-of-memory error. 

In these cases, the metareasoning process selected the 

GS or SS algorithms to perform inference tasks, based 

on multiple regression models and BN 

characterizations. The relative errors of approximate 

inferences were calculated for each node on BN and 

the average relative errors were calculated 

considering the entire networks. 
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    To allow for comparing with different 

metareasoning strategies, simple linear regression 

analysis (SRA) and non-linear regression (NLR) were 

applied to obtain alternatives prediction models. For 

SRA and NLR, only independent variables with 

significant correlations were considered.  

Table (5) shows the correlations, where “(*)” 

represents significance at the 0.01 level (2-tailed).   

 
Table 5. Estimate correlations. 

 
 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

Rel. Error (GS) .205(*) -0.0967 0.0233 0.02612 0.1298 -0.092 .203(*) 0.14413 -.465(*) 0.02255

Rel. Error (SS) .418(*) -.407(*) 0.1606 0.03057 0.1104 -0.181 .353(*) 0.11809 -.342(*) .423(*)  
 

    Based on correlation results, alternative prediction 

models were obtained by SRA and NLR (power 

function), considering (X1, X7 and X9). All the 

prediction models were applied in metareasoning 

process for test sample (the 40 remaining 

observations). The results are shown in table (6), 

where “*” are incorrect classifications.   

 
Table 6. Comparing different prediction models. 

 

(1=GS) (2=SS) Selected (MRA) (SRA X1,X7,X9 ) (NLR X1 ) (NLR X7 ) (NLR X9 )

1 0.0073 0.0016 2 1* 1* 1 2 1*

2 0.1181 0.0121 2 2 1* 2 1* 1*

3 0.0531 0.0729 1 1 1 2* 1 1

4 0.0471 0.1089 1 2* 1 2* 2* 1

5 0.0865 0.0004 2 1* 1* 2 2 1*

6 0.0370 0.0036 2 2 1* 2 1* 1*

7 0.0891 0.0144 2 2 1* 2 1* 1*

8 0.0174 0.0004 2 2 1* 2 1* 1*

9 0.0147 0.0529 1 1 1 2* 1 1

10 0.0260 0.0081 2 2 1* 2 1* 1*

11 0.0193 0.1089 1 1 1 2* 2* 1

12 0.1332 0.2601 1 1 1 2* 1 1

13 0.0230 0.0004 2 2 1* 2 1* 1*

14 0.0263 0.2809 1 1 1 2* 2* 1

15 0.0294 0.0625 1 1 1 2* 2* 1

16 0.0192 0.0676 1 2* 1 1 1 1

17 0.0392 0.1764 1 2* 1 2* 1 1

18 0.0320 0.0049 2 2 1* 2 1* 1*

19 0.0324 0.0320 2 2 1* 1* 1* 1*

20 0.0676 0.0505 2 2 1* 1* 1* 1*

21 0.0121 0.0196 1 1 1 1 1 1

22 0.0286 0.0529 1 1 1 1 1 1

24 0.0439 0.1296 1 1 1 1 1 1

25 0.0174 0.1521 1 1 1 1 1 1

26 0.0475 0.0784 1 2* 1 1 1 1

27 0.0144 0.0167 1 1 1 1 1 1

28 0.0309 0.0841 1 2* 1 1 1 1

29 0.0477 0.0729 1 2* 1 1 1 1

30 0.0501 0.0961 1 1 1 1 1 1

31 0.0841 0.0298 2 2 1* 1* 1* 1*

32 0.0484 0.0411 2 2 1* 1* 1* 1*

33 0.0092 0.0032 2 2 1* 1* 1* 1*

34 0.0215 0.1936 1 1 1 1 1 1

35 0.0164 0.2916 1 1 1 1 1 1

36 0.0389 0.2916 1 1 1 1 1 1

37 0.0204 0.0576 1 1 1 1 1 1

38 0.0092 0.1089 1 1 1 1 1 1

39 0.0180 0.0900 1 1 1 1 1 1

40 0.0505 0.1024 1 1 1 1 1 1

77.5% 62.5% 65.0% 60.0% 62.5%

(*) Represents classification error

#
Observed Relative Error Predicted (Meta-Inference)

% Correct Classification

 
     

In table (6), the last row represents the percentage of 

correct classification made by metareasoning process, 

considering each prediction model. It is possible to 

see that better results were obtained when multiple 

regression models were applied. The percentage of 

correct classifications were 77.5% for multiple 

regression analysis, 62.5% for simple regression 

analysis using X1, X7 and X9 as predictors, 65.0% for 

non-linear regression (power function) using X1, 

60.0% for non-linear regression (exponential 

function) using X7 and 62.5% for non-linear 

regression (power function) using X9 as predictor.    

 

5   Conclusion 
A number of exact and approximate BN inference 

algorithms exist. Each algorithm exploits different 

characteristics of the problem instances and works 

better for some classes of problem. This paper 

presents a method for Bayesian metareasoning to 

select an algorithm to perform the inference task, 

based on multiple characterizations of the networks. 

We have attempted to provide a relatively broad 

description of some factors involved in using this 

method, while keeping the exposition as simple and 

didactic as possible. Our goal was to propose a 

method that can add flexibility to probabilistic 

reasoning, getting into issues of metareasoning 

techniques. 

We certainly make no claims that metareasoning 

is the only way to perform inferences in large and 

dense Bayesian networks. This approach is useful 

when there are bounded resources, such as execution 

time and memory restrictions. Given the large 

number of factors involved in such inferences, it is 

likely that no optimal algorithm exists, whatever is 

meant by optimal; we should instead focus on 

metareasoning strategies to select the appropriate 

algorithm for the task.   

The experimental results show that multivariate 

analysis may be applied in metareasoning processes 

and is useful to predict the accuracy of selected 

approximate algorithms.  

     The benefits of this approach are that it is easy to 

understand and also provides a very clear indication 

as to which algorithm should be used based on 

prediction models. The metareasoning process 

rapidly computes using simple mathematical 

equations to predict the results.  

     While this research shows that predicting 

performance based on multiple domain characteristics 

is plausible, there are limitations to this approach. 

This method requires a suite of domain instances to 

be run for each algorithm so that the performance 

data can be generated and prediction models 

calculated. Furthermore, if any of the algorithms are 

modified, the entire test suite must be re-run. The 

development of new BN generators, specifically for 

this purpose, may improve the results. 

    The method is experimental in nature. No number 

of experiments is adequate to prove a theory; 

however, statistical analysis of large samples can 

show trends. At a higher level, multivariate analysis 
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may be used in predicting the performance of any 

algorithm that has a performance profile that varies 

with changes in the characteristics of its input.  With 

the capability of predicting the performance of 

multiple algorithms, the method presented may 

determine which algorithm will perform the best for a 

specific problem.  

    Future studies will be necessary to develop new 

efficient metareasoning approaches. Other 

multivariate techniques may be studied and applied to 

select the best algorithm for each instance, such as 

multivariate analysis of variance and covariance and 

discriminant analysis. However, integrating various 

kinds of inference algorithms into one unified system 

has been shown to be plausible and multiple 

regression analysis may be used for this goal. 

 

References: 

[1] Andreassen, S., Horvorka, R., Benn, J., A Model-

Based Approach to Insulin Adjustment, 

Proceeding of the 3
rd

 Conference on Artificial 

Intelligence in Medicine, 1991, pp. 239-248.  

[2]Beinlich, I.,  Suermondt, H.J., Chavez, R.M., 

Cooper, G.F., The ALARM Monitoring System: 

A Case Study with Two Probabilistic Inference 

Techniques for Belief Networks, Proceeding of 

the 2
nd

 European Conference on Artificial 

Intelligence in Medicine, 1989, pp. 247-256.  

[3] http://www.pmr.poli.usp.br/ltd/soft/BNGenerator 

[4] Borghetti, B.J., Inference Algorithm Performance 

and Selection under Constrained Re-sources, MS 

Thesis,  AFIT/GCS/ENG/96D-05, 1996. 

[5] Bouckaert, R., A Stratified Simulation Scheme for 

Inference in Bayesian Belief Networks, 

Proceeding of the 10th Conference on 

Uncertainty in Artificial Intelligence, 1994, pp. 

110-117.  

[6]Box, G. E., Cox, D. R., An Analysis of 

Transformation, Journal of the Royal Statistical 

Society 26, 1964, pp. 211252. 

[7] Brodley, C., Addressing the Selective Superiority 

Problem: Automatic Algorithm/Model Class 

Selection, Proceeding of the 10th International 

Conference on Machine Learning, 1993, pp. 17-

24.  

[8] Cano, A., Moral, S., Using Probability Trees to 

Compute Marginals with Imprecise Probabilities, 

International Journal of Approximate Reasoning, 

29, 2002, pp. 1-46.  

[9] Conitzer, V., Metareasoning as a Formal 

Computational Problem, Proceeding of the 23rd 

Conference on Artificial Intelligence, 2008, pp. 

29-33.  

[10]Cooper,G.F., The Computational Complexity of 

Probabilistic Inference using Bayesian Belief 

Networks, Artificial Intelligence 42, 1990, pp. 

393-405. 

[11] Cox, M. T., and Raja, A.,   Metareasoning: A 

Manifesto, Technical report BBN TM-2028, BBN 

Technologies, 2007. 

[12]Cozman, F. G.,   Generalizing Variable 

Elimination in Bayesian Networks, Technical 

report, University of São Paulo, 2000. 

[13]D’Ambrosio, B., Incremental Probabilistic 

Inference, Proceeding of the 9th Conference on 

Uncertainty in Artificial Intelligence, 1993, pp. 

301-308.  

[14]Dagum, P., Luby, M., Approximating 

Probabilistic Inference in Bayesian Belief 

Networks is HP-Hard, Artificial Intelligence, 60, 

1993, pp. 141-153 . 

[15]Darwiche, A., Any-Space Probabilistic 

Inference, Proceeding of the 16th Conference on 

Uncertainty in Artificial Intelligence, 2000, pp. 

133-142.  

[16]Davies, S., Fast Factored Density Estimation and 

Compression with Bayesian Networks. PHD 

Thesis, School of Computer Science, Carnegie 

Mellon University, 2002. 

[17] Dean, T., Solving Time-Dependent Planning 

Problems, Technical report CS-89-03, Brown 

University, 1989.   

[18] Dean, T., Deliberation Scheduling for Time-

Critical Sequential Decision Making, In Proc. of 

the 9th Conference on Uncertainty in Artificial 

Intelligence, 1993, pp. 181-188. 

[19] Dean, T., Planning under Time Constraints in 

Stochastic Domains, Artificial Intelligence, 76, 

1995, pp. 195-199. 

[20] Dechter, R., Mini-buckets: A General Scheme 

for Generating Approximations in Automated 

Reasoning in Probabilistic Inference, 

Proceeding of the 15th International Joint 

Conference on Artificial Intelligence, 1997, pp. 

1297-1302.  

[21] Dixon, W.J., Introduction to Statistical Analysis, 

McGraw Hill, Boston,1983.    

[22] Dwarkadas, S., Schaffer, A., Cottingham, R.W., 

Cox, A.L., Keleher, P., Zwaenepoel, W., 

Parallelization of General Linkage Analysis 

Problems, Human Heredity, 44, 1994, pp. 127-

141. 

[23] Fink, E., How to Solve it Automatically: 

Selection among Problem Solving Methods, In 

Simons, R. G., Veloso, M. M.and Smith, S., 

Editors, Proceeding of the 4th International 

Conference on Artificial Intelligence Planning 

Systems, 1998, pp. 128-136.  

[24] Garvey, A.J., Lesser, V.R., Design-to-Time 

Real-Time Scheduling, IEEE Transactions on 

WSEAS TRANSACTIONS on SYSTEMS Carlos Eduardo Bognar and Osamu Saotome

ISSN: 1109-2777 740 Issue 7, Volume 7, July 2008



Systems, Man and Cybernetics, 23, 1993, pp. 

1491-1502. 

[25] Garvey, A.J., Lesser, V.R., A Survey of 

Research in Deliberative Real-Time Artificial 

Intelligence, Real-Time Systems, 6, 1994, pp. 

317-347. 

[26] Gilks, W.R., Richardson, S., Spiegelhalter, D.J., 

Markov Chain Monte Carlo in Practice, 

Chapman and Hall, 1996. 

[27] Guo, H., Hsu, W., A Survey of Algorithms for 

Real-Time Bayesian Network Inference, 

Proceeding of AAAI/KDD/UAI-2002 Joint 

Workshop on Real-Time Decision Support and 

Diagnosis Systems, 2002, pp. 1-12.  

[28] Guo, H., Algorithm Selection for Sorting and 

Probabilistic Inference: A Machine Learning-

Based Approach. PHD Thesis, Kansas State 

University, 2003. 

[29] Henrion, M., Search-Based Methods to Bound 

Diagnostic in Very Large Belief Nets, 

Proceeding of the 7th Conference on 

Uncertainty in Artificial Intelligence, 1991, pp. 

14-150.  

[30] Horvitz, E., Suermondt, H.J., Bounded 

Conditioning: Flexible Inference for Decisions 

under Scarce Resources, Proceeding of the 5th 

Conference on Uncertainty in Artificial 

Intelligence, 1989, pp. 182-193.  

[31] Horvitz, E., Barry, M., Display of Information 

for Time-Critical Decision Making, Proceeding 

of the 11th Conference on Uncertainty in 

Artificial Intelligence, 1995, pp. 286-305.  

[32] Horvitz, E., Breese, J., Heckerman, D., Hovel, 

D., Rommelse, K., The Lumiere Project: 

Bayesian User Modeling for Inferring the Goals 

and Needs of Software Users, Proceeding of the 

14th Conference on Uncertainty in Artificial 

Intelligence, 1998, pp. 256-265.  

[33] Hosmer, D.W.,  Lemeshow, S., Applied Logistic 

Regression, John Wiley & Sons, 1989. 

[34] Houstis, N. E., Catlin, A. C., Rice, J. R., 

Verykios, V. S., PYTHIA-II: A Knowledge 

Database System for Managing Performance 

Data and Recommending Scientific Software, 

TOMS, 26 (2), 2000, pp. 227-253. 

[35] Hsu, W. H., Zwarico, A. E., Automatic 

Synthesis of Compression Techniques for 

Heterogeneous Files, Software: Practice and 

Experience , 25 (10), 1995, pp. 1097-1116. 

[36] Jitnah, N., Nicholson, A.E., Belief Network 

Inference Algorithms: a Study of Performance 

Based on Domain Characterization, Technical 

report TR-96-249, Nonash University, 1996. 

[37] Lauritzen, S.L., Speigehalter, D.J., Local 

Computations with Probabilities on Graphical 

Structures and their Application to Expert 

Systems, Journal of Royal Statistics Society , 50 

(2), 1988, pp. 157-224. 

[38] Li, Z., D’Ambrosio, B., Efficient Inference in 

Bayesian Networks as a Combinatorial 

Optimization Problem, International Journal of 

of Approximate Reasoning, 11, 1994. 

[39] Lilliefors, H., On the Kolmogorov-Smirnov Test 

for Normality with Mean and Variance 

Unknown, Journal of the American Statistical 

Association 62, 1967, pp399-402.  

[40] Loynes, R.M., On Cox and Snell´s General 

Definition of Residuals, Journal of the Royal 

Statistical Society 31, 1969, pp. 103-106. 

[41] Minton, S., Automatically Configuring 

Constraint Satisfaction Programs: A Case Study, 

Constraints, 1(1/2), 1996, pp. 7-43. 

[42] Murphy, K.P., Weiss, Y., Jordan, M.I., Loopy 

Belief Propagation for Approximate Inference: 

An Empirical Study, Proceeding of the 15th 

Conference on Uncertainty in Artificial 

Intelligence, 1999, pp. 467-475.  

[43] Nagelkerke, N.J., A Note on a General 

Definition of the Coefficient of Determination, 

Biometrika, 78, 1991, pp. 691-692. 

[44] Pearl, J., Evidential Reasoning using Stochastic 

Simulation of Causal Models, Artificial 

Intelligence, 32, 1987, pp. 245-257. 

[45] Pearl, J., Probabilistic Reasoning in Intelligent 

Systems: Networks of Plausible Inference, 

Morgan Kaufmann, 1988.  

[46] Poole, D., Probabilistic Conflicts in a Search 

Algorithm for Estimating Posterior Probabilities 

in Bayesian Networks, Artificial Intelligence, 

88, 1996, pp. 69-100. 

[47] Ramos, F.T., Mikami, F., Cozman, F.G., 

Implementação de Redes Bayesianas em 

Sistemas Embarcados, Proceeding of the 

IBERAMIA/SBIA 2000 Workshops (Workshop 

on Probabilistic Reasoning in Artifficial 

Intelligence), 2000, pp. 65-69 (in Portuguese).  

[48] Rice, J. R., The Algorithm Selection Problem, 

Advances in Computers , 15, 1976, pp. 65-118. 

[49] Shachter, R.D., Evaluating Influence Diagrams, 

Operations Research, 34(6), 1986, pp. 873-882. 

[50] Shafer, G., Shenoy, P.P., Probability 

Propagation, Annals of Mathematics and 

Artificial Intelligence 2, 1990, pp. 327-352. 

[51]Zilberstein, S., Algorithm Operational 

Rationality through Compilation of Anytime 

Algo-rithms, PHD Thesis, University of 

California at Berkeley, 1993. 

[52] Zweig, G., Russell, S.J., Speech Recognition 

with Dynamic Bayesian Networks, Proceeding 

of AAAI/IAAI, 1998, pp. 173-180.  

WSEAS TRANSACTIONS on SYSTEMS Carlos Eduardo Bognar and Osamu Saotome

ISSN: 1109-2777 741 Issue 7, Volume 7, July 2008




