
On the Optimal Multirate Control of Networked Control Systems 
 

ZHANG XIANG, XIAO JIAN 
Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle 

Ministry of Education 
School of Electrical Engineering 
Southwest Jiaotong University 

Post Box 144#, Southwest Jiaotong University, Chengdu 
CHINA 

maglevzx@163.com 
 
 

Abstract: - Optimal multirate control of the networked control systems is investigated in this paper. Under p – 
to – wσ communication sequence that sensors access communication medium and m – to – wρ communication 
sequence that actuators access communication medium, the plant of networked control system acts as a linear 
periodic time-varying system. Using lifting technology, a linear periodic time-varying system is transformed 
into a linear periodic time-invariant system and the linear quadratic performance index of a linear periodic 
time-varying system is transformed into that of a linear periodic time-invariant system. Controllability and 
observability of transformed system are analyzed. An optimal state feedback control and an optimal output 
feedback control are given. The simulation results show that the optimal multirate control strategies proposed 
in this paper are feasible. 
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1  Introduction 

The networked control system (NCS) is a 
special kind of control system ― distributed control 
system, in which multiple sensors and actuators are 
connected to a centralized controller via a shared 
communication medium. The main difference to a 
conventional control system is that controller, 
sensors and actuators transmit information and 
control signal through a shared communication 
medium[1-4]. Samples of the controlled variable, 
captured by the sensor device, are encapsulated into 
a frame, which is sent to the controller after the link 
is granted. In the same way, control actions 
calculated by the controller have to be sent across 

the shared medium, to be applied to the plant. A 
NCS with m sensors, p actuators and a controller is 
shown in Fig.1. 

In a NCS, communication parameters must be 
considered. An important problem that has received 
significant attention in the NCS literature must deal 
with the joint selection of a policy for managing 
controller-plant communication and a feedback 
controller that satisfies performance or stability 
requirements for the closed loop system. In recent 
years, communication and control co-design for 
NCS is studied widely. The communication polices 
of NCS are classified in two categories: static 
scheduling and dynamic scheduling. Under static 
scheduling, the medium access order of different 

Fig. 1  A NCS with m inputs and p outputs 
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sensors and actuators is determined off-line by a 
periodic “communication sequence”. Under dyna- 
mic scheduling, the medium access order of sensors 
and actuators is determined on-line, based on state 
feedback. If a periodic communication sequence has 
been chosen, the problem that there exists a 
stabilizing constant feedback controller is NP-hard；
If the controller is given in advance, only uncoupled 
plants exist a stabilizing communication sequence 
[5-11]. Communication and control co-design could 
solve the previous problem. Adopting co-design 
method, the problem of pole-placement output 
feedback stabilization had been solved in [12]. In 
this paper, communication and control co-design 
and multirate method are employed to study optimal 
control of NCS. 

The remainder of this paper is organized as 
follows: In section 2, we discuss problem 
formulation that a linear time-invariant (LTI) plant 
subject to medium access constraints is modeled to 
a linear time-varying (LTV) system. For discussing 
in the range of LTI system, we use “lifting” 
technology to transform a linear period time- 
varying system into a linear time invariant system, 
in section 3. Controllability and observability of the 
linear time invariant system given in section 3 are 
analyzed in section 4. In section 5, the quadratic 
performance index transformation is given. With the 
quadratic performance index given in section 5, an 
optimal state feedback control law and an optimal 
output feedback control law are given in section 6 
and section 7, respectively. Lastly, a simulation 
example is given. 
 

 

2  Problem formulation 
Consider the NCS shown in Fig.1, and the 

dynamics of the plant is given by the continuous 
time LTI system 

x& 0(t) = Acx0(t) + Bcu0(t) 
y0(t) = Ccx0(t)           (1) 

where x0(t)∈Rn, u0(t)∈Rm and y0(t)∈Rp are the 
plant’s continuous states, inputs and outputs, 
respectively. Suppose that T is the sample period, 
then the discrete time description of (1) is 
represented by 

x0[(k + 1)T] = Adx0(kT) + Bdu0(kT) 
y0(kT) = Cdx0(kT)          (2) 

where 

Ad = TAce , Bd = ∫
T tA Bdtc

0
e , Cd = Cc. 

x0(kT)∈Rn, u0(kT)∈Rm and y0(kT)∈Rp are the 
plant’s discrete states, inputs and outputs, res- 

pectively. The communication medium connecting 
the sensors and the controller has wσ output 
channels (1 ≤ wσ < p). At any one time, wσ of the p 
sensors can access these channels to communicate 
with the controller. At the input side, the m actuators 
share wp input channels (1 ≤ wp < m), i.e., the 
controller can only communicate with wp of the m 
actuators at any one time. 

For i = 1, …, p, use the binary-valued function 
σi(kT) denote the medium access status of sensor i 
at discrete time kT, i.e., σi(kT): Z # {0, 1}, where 1 
means “accessing” and 0 means “not accessing”. 
The medium access status of the p sensors over time 
can be represented by the “p – to – wσ communi- 
cation sequence” varied with period NT, σ(kT) = 
[σ1(kT), … , σp(kT)]T. We have 

yi(kT) = σi(kT)y0i(kT), "i. 
For i = 1, …, m, use the binary-valued function 

ρi(kT) denote the medium access status of sensor i at 
discrete time kT, i.e., ρi(kT): Z # {0，1}, where 1 
means “accessing” and 0 means “not accessing”. 
The medium access status of the m sensors over 
time can be represented by the ”m – to – wρ 
communication sequence” varied with period MT, 
ρ(kT) = [ρ1(kT), … , ρm(kT)]T. We have 

u0i(kT) = ρi(kT)ui(kT), "i. 
Given a communication sequence η(kT)，Mη(kT) 

is defined as follow 
Mη(kT) ≜ diag(η(kT))         (3) 
At the sensors side, if y(kT) denote the input 

signal used by the controller and y0(kT) denote the 
output signal generated by the plant, at time kT, we 
have 

y(kT) = Mσ(kT)y0(kT)          (4) 
At the actuators side, if u(kT) denote the output 

signal generated by the controller and u0(kT) denote 
the input signal used by the plant, at time kT, we 
have 

u0(kT) = Mρ(kT)u(kT)         (5) 
From the previous discussion, because of 

introducing network communication, we can see 
that the plant has been changed and has turned into 
the original plant plus communication network. The 
new plant has inputs u(kT) and outputs y(kT). Mσ(kT) 
in (4) and Mρ(kT) in (5) are time-varying. We can 
describe the new plant as “extended plant” 
combining the dynamics of (1) with the medium 
access status of all sensors and actuators. From (2) 
– (5), we can describe the extended plant as the 
LTV system 

x[(k + 1)T] = Ax(kT) + B(kT)u(kT) 
y(kT) = C(kT)x(kT)            (6) 

where 
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A = Ad, B(kT) = BdMρ(kT), C(kT) = Mσ(kT)Cd. 
 
 
3  System transformation 

The input matrix B(kT) in (6) is varied with 
period MT and the output matrix C(kT) in (6) is 
varied with period NT. Because the input and the 
output of the plant given in (6) possess multirate 
characteristic and we employ T as system sample 
period, the plant given in (6) will be a LTV system. 
In other words, If we employ T as basic sample 
period to control system (6), the digital controller 
will be a periodically time-varying system. For 
discussing the previous system in the range of LTI 
system, we use “lifting” technology and a linear 
period time-varying system is transformed into a 
linear time invariant system. 

Supposed that the period of B(kT) is Tu and the 
period of C(kT) is Ty, then we have the follows 

Tu = MT, Ty = NT 
Let q be the least common multiple of M and N, 

i.e. 
    q = LCM(M, N) 
and let T0 = qT, then T0 is the system cycle period, 
i.e., frame period. 

We define extended input vector ue(kT0) and 
another form u *

e (kT0), extended output vector 
ye(kT0), extended state vector xe(kT0) as follows, 
respectively. 
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⎥
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By appropriate elementary row transformation, 

we can transform ue(kT0) into u*
e (kT0). Making use 

of xe(kT0), u*
e (kT0), ye(kT0) and supposed that T0 is 

the sample period, the discrete time model of the 
extended plant is represented by 

xe[(k + 1)T0] = Aexe(kT0) + B *
e u *

e (kT0) 
ye(kT0) = Ce1xe(kT0) + Ce2xe[(k + 1)T0]   (7) 

where 

Ae =
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⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

qA

A
A

00

00
00

L

MMM
L
L

2
, 

B *
e = [B *

1  B *
2  … B *

m ], 

B *
j =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
**

/
*

/

**

*

1)1(

12

1

jMqjMjq

jj

j

BBB

BB
B

L

OMM

L

L

0
00

, 

B *
1j =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
+

00

00
00

L
MMM

L

L

j

jj

j

ξ

Abb
b

, 

B *
jk =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

+−

+−

00

00
00

L

MMM

L

L

j
Mk

j
Mk

j
Mk

A

A
A

ξ

ξ
ξ

)1(

2)2(

1)2(

. 

with k = 2, …, q/M, 
ξj = bj + Abj + … + AM -1bj, 
bj is the j-th element of B, 

Ce1 =
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By the elementary row transformation trans- 
forming ue(kT0) into u *

e (kT0), we rearrange B *
e ’s 

columns order and transform B *
e  into Be. Based on 

the previous transformation, the following model is 
derived 

xe[(k + 1)T0] = Aexe(kT0) + Beue(kT0) 
ye(kT0) = Ce1xe(kT0) + Ce2xe[(k + 1)T0]   (8) 
Obviously, because x(kT0 + jT) is only related 

to the input u(kT0 + iT) (i ≤ j), Be in (8) is a block 
lower triangle matrix. There exists the following 
form 
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Be =

⎥
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Although (8) using frame period T0 gives a LTI 
space state model of the plant given by (6), it is not 
convenient in use. Because the dimension of the 
state xe(kT0) in (8) is high, it is very difficult to 
analyze system and design controller. We discuss 
how to reduce the dimension of the state xe(kT0) in 
(8). 

We substitute the state equations of (8) with 
respect to xe[(k + 1)T0] in the output equations of (8) 
and derive 

ye(kT0) = Ce1xe(kT0) + Ce2xe(kT0) + Ce2Beue(kT0) 
    = (Ce1 + Ce2)xe(kT0) + Ce2Beue(kT0) 
    = Cmxe(kT0) + Dmue(kT0) 

We define Cm and Dm as follows 
Cm = Ce1 + Ce2Ae, 
Dm = Ce2Be. 

Cm and Dm have the following form 

Cm =
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Thus, the state space model given by (8) can be 
rewritten as follows 

xe[(k + 1)T0] = Aexe(kT0) + Beue(kT0) 
ye(kT0) = Cmxe(kT0) + Dmue(kT0)       (9) 
The matrix Ae in (8) has n(q – 1) zero eigen- 

values and these eigenvalues correspond to the no 
observable modes. These modes correspond to the 
previous n(q – 1) elements of the extended state 
vector xe(kT0). The extended output vector ye(kT0) is 
not related to the previous n(q – 1) elements of the 
extended state vector xe(kT0), too. For reducing 
system dimension, we delete these elements from 
xe(kT0). The state space model given by (9) can be 
simplified as follows 

x[(k + 1)T0] = Arx(kT0) + BMue(kT0) 
ye(kT0) = CMx(kT0) + DMue(kT0)      (10) 

where 
Ar = Aq, BM = [Bq1 Bq2 … Bqq], 

CM =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−1qCA

CA
C

M , DM = Dm. 

BM is the last n rows of Be and CM is the last n 
columns of Cm. 

Obviously, the dimension of the state space 
model described by (10) is n, and it is same as the 
dimension of the original plant described by (2) 
using T as the sample period. 

In the state space model described by (10), it is 
not all elements of ue(kT0) that correspond to the 
input vector u at the sample time, and it is not all 
elements of ye(kT0) that correspond to the input 
vector y at the sample time, too. For simplifying the 
state space model given by (10), We delete all 
elements not corresponding to at the sample time 
from ue(kT0) and obtain u*

r (kT0), i.e. 

u *
r (kT0) =
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According to the order of sample instant, we 
rearrange u *

r (kT0) as ur(kT0). If Tu1≤Tu2≤···≤ 

Tum≤2Tu1, ur(kT0) is as follow 

ur(kT0) =
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In matrix BM and DM, we delete the columns 
corresponding to the elements deleted from ue(kT0) 
and obtain matrix Br and DR, respectively. We 
rewrite (10) as the following form 

x[(k + 1)T0] = Arx(kT0) + Brur(kT0) 
ye(kT0) = CMx(kT0) + Drur(kT0) 
We delete all elements not corresponding to at 

the sample time from ye(kT0) and obtain yr(kT0), too. 
In matrix CM and DR, we delete the rows 
corresponding to the elements deleted from ye(kT0) 
and obtain matrix Cr and Dr, respectively. We can 
simplify the state space model given by (10) as 
follow 

x[(k + 1)T0] = Arx(kT0) + Brur(kT0) 
yr(kT0) = Crx(kT0) + Drur(kT0)     (11) 
So, the extended plant, described by (6), whose 

inputs varied with period MT and outputs varied 
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with period NT is transformed into the discrete time 
model described by (11), sampling with frame 
period T0. 
 
 
4  Controllability and observability 

Before introducing optimal control of the 
discrete time model given by (11), it is necessary to 
analyze controllability and observability of model 
(11), in this section.  

Firstly, we discuss controllability and reachabi- 
lity of the state space model given by (9). Because 
the matrix Ae in (9) is singular, if reachability of 
system (9) holds, controllability of system (9) holds, 
but, if its controllability holds, its reachability do 
not completely holds. The dimension of state space 
model described by (9) is ne, which is equal to qn. 
According to the related conclusions in linear 
system theory, we have the following conclusion. 
Conclusion 1 The sufficiency and necessity con- 
dition that system (9) is not completely reachable is 
that there exists a non-zero row vector θT which 
satisfies 

θTAe = λθT, θTBe = 0      (12) 
Proof: Sufficiency 

If θT satisfies (12), then 
θTAeBe = λθTBe = 0 
  Å 
θTA 1−en

e Be = θTA 2−en
e Be = ··· = λ 1−en θTBe = 0 

i.e., θT[Be, AeBe, …, A 1−en
e Be] = 0, 

thus, system (9) is not completely reachable. 
Necessity 

If system (9) is not completely reachable, it 
can be decomposed by controllability as follows 

eÂ = ⎥⎦
⎤

⎢⎣
⎡

c

ccc
A
AA

0 , eB̂ = ⎥⎦
⎤

⎢⎣
⎡

0
cB  

where eÂ = PAeP
-1, eB̂ = PBe, Ac is the reachable 

part of Ae and cA  is the unreachable part of Ae. Let 
Tθ̂ = [0 zT], and zT satisfies 

    zT
cA = λzT 

i.e., zT is the left eigenvector corresponding to the 
eigenvalue of cA , then 

eÂθ̂ T = [0 λzT] = λ Tθ̂ , 

eB̂θ̂ T = 0. 
Let θT = Tθ̂ P, then θT satisfies (12).      
    According to the above discussion, it is easy to 
derive the following criterion relating to reachabi- 
lity of system (9). 
Criterion 1 The sufficiency and necessity con- 

dition that system (9) is completely reachable is 
    rank[zI – Ae, Be] = ne,  ∀z ∈ C    (13) 
Proof: If (13) holds, then there exist not a non-zero 
row vector θT and a scalar λ that (12) holds. Oppo- 
sitely, if there exists not a non-zero row vector θT 
that (12) holds, then (13) must hold.        

Obviously, (12) holds, then, λ corresponding to 
θT is a no controllable mode of Ae. 

Then, we discuss controllability of (11) which 
system (9) is simplified to. According to the above 
discussion, we have the following theorem. 
Theorem 1 Consider the discrete time plants given 
by (2) and controllability of the discrete time model 
given by (11). If λ is a no controllable mode of the 
discrete time plants given by (2), λq must be a no 
controllable mode of (11). If system (2) is 
completely controllable and at least there exists a 
subscript j that T

iθ bj ≠ 0 and 

    1 + λi + 2
iλ + ··· + 1−ujq

iλ ≠ 0     (14) 
hold, with respect to the eigenvalues λi (i = 1, 2, …, 
n) of the system matrix A of (2) and the left 
eigenvectors λi corresponding to, then the discrete 
time model described by (11) is completely 
controllable. 
Proof: If λ is a no controllable mode of (2), there 
exists a non-zero row vector θT that 

θTA = λθT, θTbj = 0,  j = 1, 2, …, m   (15) 
hold. Obviously, from (10), 
    θTAr = θTAq = λqθT      (16) 
holds. 

On the other hand, according to the above 
discussion in section 3, each non-zero column in Be 
has the following forms 

j
qq ξA uj− , j

qq ξA uj2− , …, ζj, 

ζj = bj + Abj + ··· + j
q bA uj 1− ,  j = 1, 2, …, m. 

Thus, each non-zero element in the row vector θTBe 
has the following forms 

j
qq ξA uj−Tθ , j

qq ξA uj2T −θ , …, θTζj, 
 j = 1, 2, …, m. 

From (15), we have 
θTζj = θT(bj + Abj + ··· + j

q bA uj 1− ) 

= (1 + λ + 2λ + ··· + 1−ujqλ )θTbj, 
Å 

j
qq ξA uj−Tθ = ujqqλ − (1 + λ + 2λ + ··· + 1−ujqλ ) 

θTbj,  j = 1, 2, …, m   (17) 
According to (17), if (15) holds, then 

θTBe = 0 
holds. 
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From(16), λq is a no controllable mode of sys- 
tem (10). As the no controllable modes of system 
(11) are same to those of system (10), λq is a no 
controllable mode of system (11), too. On the other 
hand, If system (2) is completely controllable and 
supposed that λi is a arbitrary eigenvalue of A and θT 
is the left eigenvector λi corresponding to, then there 
exist several subscripts j that T

iθ bj ≠ 0 holds. Fur- 
thermore, if (14) holds, then 

θTBe ≠ 0 
holds. 

Because λi is arbitrary, system (10) is com- 
pletely controllable, i.e., system (11) is completely 
controllable.           

Lastly, we discuss observability and constructi- 
bility of the state space model given by (9). Similar 
to controllability and reachability, because the 
matrix Ae in (9) is singular, observability and 
constructibility of system (11) ought to be 
investigated, respectively. Similar to reachability, 
we have the following conclusion relating to 
constructibility of (9). 
Conclusion 2 The sufficiency and necessity con- 
dition that system (9) is not completely construc- 
tible is that there exists a non-zero row vector θT 
which satisfies 

Aeθ = λθ, Ceθ = 0       (18) 
Proof: The proof of conclusion 2 is completely 
similar to the proof of conclusion 1.      

Using conclusion 2, it is easy to derive the 
following criterion relating to observability of (9). 
Criterion 2 The sufficiency and necessity con- 
dition that system (9) is completely observable is 

    rank ⎥⎦
⎤

⎢⎣
⎡ −

m

e
C

AzI = ne,  ∀z ∈ C    (19) 

Proof: The proof of criterion 2 is completely 
similar to the proof of criterion 1.      

Using criterion 2, it is easy to derive the 
following theorem. 
Theorem 2 System (9) isn’t completely observable, 
and 0 must be a no observable mode of (9). 
Proof: According to criterion 2, we can construct 
the following matrix. 

⎥⎦
⎤

⎢⎣
⎡ −

m

e
C

AzI =

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

−1

2

I

I
I

q

q

CA

CA
C

Az

Az
Az

L

MMMM
L
L
L

MMMM
L
L

000

000
000
000

00
00

   (20) 

Obviously, if z = 0, the rank of the matrix shown in 
(20) is less than ne.         

    Besides eigenvalue Aq, matrix Ae in (9) in- 
cludes ne – n = (q – 1)n zero eigenvalues, which are 
all the no observable modes of system (9). Then, we 
analyze observability of simplified system given by 
(11). Using criterion 2, it is easy to derive the 
following theorem. 
Theorem 3 Consider the discrete time plants given 
by (2) and observability of the discrete time model 
given by (11). The following conclusions hold. 

If system (2) has a no observable mode λ, then 
λq must be a no observable mode of system (11). 

If system (2) is completely observable, then 
system (11) is completely observable. 
Proof: According to the above discussion in section 
3 and the definition of CM in (10), Cr in (11) has the 
following form. 

    Cr = ⎥⎦
⎤

⎢⎣
⎡
H
C  

where the submatrix C is compose of the rows in 
CM corresponding to the elements of the output 
sample instants of ye(kT0) and the submatrix H is 
compose of CA, CA2, ···, CAq –1 being appropriately 
deleted some rows. 

Suppose that λ is a no observable mode of 
system (2), there must exists a non-zero vector θ 
which satisfies 

Aθ = λθ, Cθ = 0       (21) 
So, we have 
    Arθ = Aqθ = λqθ       (22) 
On the other hand, if (21) holds, then 

CAθ = λCθ = 0, 
CA2θ = λ2Cθ = 0, 
  Å 
CAq –1θ = λq –1Cθ = 0 

hold. Consequently, 
Hθ = 0  

hold. Thus, we have 

    Crθ = ⎥⎦
⎤

⎢⎣
⎡

θ
θ

H
C = 0       (23) 

i.e., λq is a no observable mode of system (11). 
On the other hand, if there exists not a vector θ 

that (23) holds, there exists not a vector θ that (22) 
and (23) hold simultaneously. Thus, if system (2) is 
completely observable, system (11) is completely 
observable.            
 
 
5  Quadratic performance index 

transformation 
Optimal control is a main kind of control 

method. The center of optimal control is: with given 
conditions and for certain plants, a control law is 
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decided by some predefined performance indexes. 
Under this control law, the closed-loop system has 
optimal value. Appropriately selecting each weight 
matrix in the performance indexes given by system, 
several requirements on system, for example, 
rapidity, precision, stability, sensitivity, and so on, 
are satisfied. In this section, according to the multi- 
rate characteristic of the extended plan described by 
(6) and based on the state space model given by 
(11), we give a discrete form of integrator 
performance index. 

Consider linear quadratic optimal control 
problem of the continuous time plant given by (1). 
Supposed that the quadratic integrator index of the 
system represented by (1) is given as follow 

Jc = ∫ +
ft

cccc dttRttQt
0

TT )]()()()([ uuxx   (24) 

where Q is a semi-definite constant matrix and R is 
a definite constant matrix. If a zero-order-holder is 
employed and the sample period is the basic sample 
period T, the discrete form for (24) is given as 
follow 

JT = ∑
=

+
TN

kT
JJ MkTkTQkT

0

TT )(2)()([ xxx  

         )]()()( T kTRkTkT J uuu +    (25) 
where, weight matrix QJ , MJ and RJ are given as 
follows, respectively. 

    QJ = ∫
T

dttQt
0

T )()( αα , 

MJ = ∫
T

dttQt
0

T )()( βα , 

    RJ = ∫
T

dttQt
0

T )()( ββ + TR, 

α(t) = eAt, β(t) = ∫
t

Bdττ
0

)(α . 

Using two extended vector ue(kT0) and xe(kT0), 
the quadratic integrator index (25) can be 
equivalently transformed into the following form 
with sample period T0 (frame period) 

JM = ∑
=

++
MN

kT
eee TkQTk

0
00

T

0

])1[(])1[({ xx  

)(])1[(2 00
T kTMTk eee ux ++  

)}()( 00 kTRkT ee
T
e uu+     (26) 

where 

Qe =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

J

J

J

Q

Q
Q

L
MMM

L
L

00

00
00

, 

Me =

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

− 000
000

0
000
000

L

L
MMM

L
L

Jr

J

J

J

MA
M

M
M

T1)(

, 

Re =

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−−−−−

−

−

Jq

Jq

J

qqJ

RP
RP

RP
PPPPPR

000
000

000

L

MMMMM
L

L

1

2

13212

, 

with 
Pk = B T

qk (A 1-
r )T MJ,  k = 1, …, q 

Ar and Bqk stated by (10). 
The special structure of the first column in 

weight matrix Me and the special structure of the 
first row and the first column in weight matrix Re 
are produced by a cross-term x T

e (kT0)MJue(kT0). 
Employing the state space model given by (10), we 
have the following expression 

x(kT0) = A -1
r {xe[(k + 1)T0] – BMue(kT0)} 

Then, there exsits the following equation 
x T

e (kT0)MJue(kT0) 

= {xe[(k + 1)T0] – BMue(kT0)}
T(A -1

r ) TMJue(kT0) 
= x T

e [(k + 1)T0](A -1
r ) TMJue(kT0) – u T

e (kT0)B T
M  

(A -1
r ) TMJue(kT0) 

According to the above expression, the special 
structure of the first column in weight matrix Me 
and the special structure of the first row and the first 
column in weight matrix Re are produced. The 
performance index JM defined in (26) corresponds 
to the multirate model described by (8).  

Because the dimension of state vector xe(kT0) 
in (8) is high, computation is high. Thus, we 
simplify the model described by (8) and derive 
simplified model given by (10). For utilizing (11), 
u(kT0) and x(kT0) substitute ue(kT0) and xe(kT0) in 
(25), respectively. We discuss how to implement 
this transformation. From (10), we can derive as 
follow 

xe[(k + 1)T0] = Aexe(kT0) + Beue(kT0) 
           = Aexe(kT0) + Brur(kT0) 

   =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

qA

A
A

M

2

xe(kT0) + Brur(kT0) 

= AEx(kT0) + Brur(kT0)   (27) 
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where AE =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

qA

A
A

M

2

. 

    Making use of (27), we can derive the 
following form 

x T
e [(k + 1)T0]Qexe[(k + 1)T0] 

= xT(kT0)A T
E QeAEx(kT0) + 2xT(kT0)A T

E Qe 
Brur(kT0) + u T

r (kT0)B T
r QeBrur(kT0)   (28) 

    x T
e [(k + 1)T0]Meue(kT0) 

= x T
e [(k + 1)T0] M rur(kT0) 

= xT(kT0)A T
E M rur(kT0) + u T

r (kT0)B T
r M rur(kT0)

            (29) 
Using (28) and (29), the performance index JM 

can be rewritten as follow 

Jr = ∑
=

+
MN

kT
rr MkTkTQkT

0
0

T
00

T

0

)(2)()([ xxx  

)]()()( 00
T

0 kTRkTkT rrrr uuu +   (30) 
where 
    Qr = A T

E QeAE, Mr = A T
E M r + A T

E QeBr, 
    Rr = B T

r QeBr + 2B T
r M r + R r. 

    From the quadratic index given by (30), the 
plant described by (11) can be optimized. With 
linear quadratic performance index given by (30), 
utilizing current method, optimal control of the 
plant given by (11) can be solved, effectively. 
 
 
6  Optimal state feedback 

In this section, with linear quadratic perfor- 
mance index given by (30), we discuss optimal 
control problem of the plant described by (11). We 
have the below-mentioned theorem. 
Theorem 4 finite-time optimal control problem 

According to the quadratic index given by (30), 
the plant described by (11) has optimal control law 
as follow 

ur(kT0) = –[Kr(k) + R 1-
r M T

r ]x(kT0)   (31) 
where, Kr(k) is solved by the following recursion 

Kr(k) = [Rr + B T
r Sr(k + 1)Br]

–1B T
r Sr(k + 1) rA~  

               (32) 
and matrix Sr(k) is solution of discrete time Riccati 
equation as follow 

Sr(k) = rQ~ + T
rA~ Sr(k + 1) rA~ - T

rA~ Sr(k + 1)Br[Rr 

+ B T
r Sr(k + 1)Br]

–1B T
r Sr(k + 1) rA~   (33) 

with boundary condition 
Sr(NM) = 0            (34) 

The optimal performance index function is 
Jmin = xT(0)Sr(0)x(0)           (35) 

where 

rQ~ = Qr - MrR 1-
r M T

r , rA~ = Ar - BrR 1-
r M T

r . 
Proof: Let u r(kT0) = ur(kT0) + R 1-

r M T
r x(kT0), 

then, the state equation of (11) is equivalent to 
x[(k + 1)T0] = rA~ x(kT0) + Br u r(kT0)   (36) 

and the quadratic index given by (30) is equivalent 
to 

rJ~ = ∑
∞

=

+
0

0
T

00
T

0

)()()([
kT

rrr RkTkTQkT ux~x  

u r(kT0)]        (37) 
Because the performance index rJ~  has no 

cross-item, according to the conclusion with respect 
to finite-time linear quadratic optimal control of 
discrete time system, we can obtain the optimal 
control law (31).                

Now, with the below-mentioned quadratic 
performance index 

J = ∑
∞

=

+
0

0
T

00
T

0

)(2)()([
kT

rr MkTkTQkT xxx  

)]()()( 00
T

0 kTRkTkT rrrr uuu +   (38) 
we discuss infinite-time linear quadratic optimal 
control for the plant given by (11). Utilizing the 
above-mentioned method and appropriately defining 
extended vectors and weighed matrices, the con- 
tinuous time performance index 

Jc = ∫
∞

+
0

TT )]()()()([ dttRttQt cccc uuxx   (39) 

can be discretely transformed into the performance 
index J given by (38). The below-mentioned theorem 
gives solution to the infinite-time linear quadratic 
optimal control (ITLQOC) problem. 
Theorem 5 infinite-time optimal control problem 

According to the quadratic index given by (30), 
the plant described by (11) has infinite-time optimal 
control law as follow 

ur(kT0) = –[Kr + R 1-
r M T

r ]x(kT0)      (40) 
where 

Kr = [Rr + B T
r SrBr]

–1B T
r Sr rA~      (41) 

and matrix Sr(k) is solution of algebra Riccati equa- 
tion as follow 

Sr = rQ~ + T
rA~ Sr rA~ - T

rA~ SrBr[Rr + B T
r SrBr]

–1B T
r  

Sr rA~           (42) 
Proof: Let u r(kT0) = ur(kT0) + R 1-

r M T
r x(kT0), then, 

the state equation of (11) is equivalent to 
x[(k + 1)T0] = rA~ x(kT0) + Br u r(kT0)  

and the quadratic index given by (37) is equivalent 
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to 

rJ~ = ∑
∞

=

+
0

0
T

00
T

0

)()()([
kT

rrr RkTkTQkT ux~x  

u r(kT0)]        (43) 
Because the performance index rJ~  has no 

cross-item, according to the conclusion with respect 
to infinite-time linear quadratic optimal control of 
discrete time system, we can obtain the optimal 
control law (40).                

Based on the above-mentioned theorem 4 and 
theorem 5, we can obtain design arithmetic of the 
quadratic optimal state feedback controller for the 
plant described by (11). For the infinite-time linear 
quadratic optimal control (ITLQOC) problem, 
although the regulator given by (40) is linear 
time-invariant, the state-feedback gain is time- 
varying at each sample time in frame period. 
 
 
7  Optimal output feedback 

We discuss the optimal output feedback control 
law which substitutes the optimal state feedback 
control law given by (31) and (40), in this section. 
For sampleness, we only discuss the optimal output 
feedback control law which substitutes the linear 
time-invariant optimal state feedback control law 
given by (40). 

We introduce the external reference inputs r(t), 
where r(t)∈Rv and the sample period of r(t) are as 
follow 

Trj = qrjT (j = 1, 2, …, v). 
Thus, the extended reference inputs can be defined 
as follow 

    re(kT0) =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+

+

]1)([

)(
)(

0

0

0

TqkT

TkT
kT

-u

u
u

M
. 

In re(kT0), we delete the elements not corresponding 
to the sample time (kT0 + iTrj) of the reference 
inputs and obtain vector rr(kT0). With the reference 
inputs rr(kT0), the state feedback control law given 
by (40) can be rewritten as follow 

ur(kT0) = Kcrr(kT0) – Kx(kT0)     (44) 
where 

K = Kr + R 1−
r M T

r . 
Corresponding to the state feedback control law 
given by (44), the output feedback control law is as 
follow 

ur(kT0) = Lrrr(kT0) – Lyyr(kT0)     (45) 
Because of causality condition, Ly must be a 

block lower triangle matrix. We substitute the 
output equation of (10) into (44) and can derive 

ur(kT0) = Lrrr(kT0) – Ly[Crx(kT0) + Drur(kT0)] 
(46) 

We define 
    W = (I + LyDr)

 –1         (47) 
Then, equation (46) is equivalent to 

ur(kT0) = WLrrr(kT0) – WLyCrx(kT0). 
Obviously, if Lr and Ly satisfy 

WLr = Kc        (48) 
WLyCr = K        (49) 

respectively, the output feedback control law given 
by (45) is equivalent to the state feedback control 
law given by (44). Equation (48) can be rewritten as 
follow 
    Ly(Cr – DrK) = K       (50) 
In (49), we solve Ly which satisfies causality 
condition. We substitute Ly into (48) and can derive 

Lr = (I + LyDr)Kc       (51) 
Because of causality condition, Lr must be a block 
lower triangle matrix, too. Because Ly and Dr are 
block lower triangle matrix, Lr is a block lower 
triangle matrix while Kc is a block lower triangle 
matrix. If accurate solution of Ly can not be solve, 
linear least squares can be utilized to solve 
approximate solution of Ly. 
 
 
8  Simulation example 

Suppose that plant is as follow 
x& (t) = Ax(t) + Bu(t) 
y(t) = Cx(t) 

where  

A = ⎥⎦
⎤

⎢⎣
⎡

− 5.05.0
00 , B = ⎥⎦

⎤
⎢⎣
⎡

21
11 , C = ⎥⎦

⎤
⎢⎣
⎡

12
21 . 

Design the discrete time output feedback 
control law which demands the linear quadratic 
performance index 

J = ∫
∞

+++
0

2
2

2
1

2
2

2
1 )0.10.1( dtuuxx  

to be optimal. Where, system sample period is T = 
0.1s and the initial value of the states are given as 
x(0) = [1.0 1.0]T. System samples y1(t), y2(t) and 
outputs u1(t) at the first sample instant. Also, 
samples y2(t) and outputs u2(t) at the second sample 
instant. 

According to (12), the discrete time descrip- 
tion of the plant is represented as follow 

x[(k + 1)T] = Fx(kT) + Gu(kT) 
y(kT) = Cdx(kT) 

where 

F = ⎥⎦
⎤

⎢⎣
⎡

0.951230.04877
01 , G = ⎥⎦

⎤
⎢⎣
⎡
0.00246

10. , 

    Cd = ⎥⎦
⎤

⎢⎣
⎡

12
21 . 
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As q = LCM(Tu, Ty) = 2, frame period T0 = qT 
= 0.2s. Suppose that sample period is T0, the 
discrete time model of the plant is 

x[(k + 1)T0] = Arx0(kT0) + BruT0(kT0) 
y(kT0) = Crx(kT0) + DruT0(kT0) 

uT0(kT0) = ⎥⎦
⎤

⎢⎣
⎡

+ )(
)(

02

01
TkTu

kTu  

where 

Ar = ⎥⎦
⎤

⎢⎣
⎡

0.904840.09516
01 , Br = ⎥⎦

⎤
⎢⎣
⎡

0.197540.1
1010 .. , 

Cr =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

0.951232.04877
12
21

, Dr =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

00.3
00
00

. 

From (12), we can obtain 

QJ = ⎥⎦
⎤

⎢⎣
⎡

0.095160.00238
0.002380.10008 , 

MJ = ⎥⎦
⎤

⎢⎣
⎡

0.009590.00484
0.005320.00516 , 

    RJ = ⎥⎦
⎤

⎢⎣
⎡

0.011640.00099
0.000990.01067 . 

From (17), we can obtain 

Qr = ⎥⎦
⎤

⎢⎣
⎡

0.181270.00906
0.009060.20062 , 

Mr = ⎥⎦
⎤

⎢⎣
⎡

0.009130.01411
0.005790.01589 , 

    Rr = ⎥⎦
⎤

⎢⎣
⎡

0.011640.00149
0.001490.01267 . 

From (26), (27) and (30), we solve the output 
control gain 

    Ly = ⎥⎦
⎤

⎢⎣
⎡

9.086685.21083-0
01.868970.70120- . 

The zero-input state response of the closed- 
loop control system is shown in Fig.2. As shown in 
Fig.2, by the control of the designed controller, the 
response of the closed-loop control system is 
asymptotically stable. We obtain a quite satisfactory 
control result. 

 
 

 
9  Conclusion 

Optimal multirate control of the networked 
control system is mainly studied in this paper. Using 
“lifting” technology, a linear periodic time-varying 
system is transformed into a linear periodic time- 
invariant system, the linear quadratic performance 
index of a linear periodic time-varying system is 
transformed into that of a linear periodic time- 
invariant system. An optimal state feedback control 
and an optimal output feedback control are given. 
The simulation results show that the optimal output 
feedback control law proposed in this paper is 
effective. 

Proposed multirate solutions in this paper have 
been extensively tested in simulation environment. 
In the future, a practical experiment will be need to 
test proposed multirate solutions in this paper. In 
addition, the selection of control and communica- 
tion policies in robust will be investigated. 
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