
On Using B+-Tree for Efficient Processing for the Boundary 
Neighborhood Problem 

 
AZZAM SLEIT 

Department of Computer Science, King Abdulla II School for Information Technology 
University of Jordan,  

P.O. Box 13898, Amman 11942,  
JORDAN 

azzam.sleit@ju.edu.jo 
 

 
Abstract: - A spatial data set is a collection of spatially referenced objects. The boundary neighborhood problem 
(i.e. BN problem) in spatial database systems is defined as finding all boundary neighbors for a given object 
based on special dimensions. This problem arises in several applications mainly in GIS systems such as finding 
all countries that surround a given lake or sea. Spatial objects can be represented and indexed by their minimum 
bounding rectangles (i.e. MBR’s) which give rough indication for the existence of an object. This paper 
proposes a solution for the BN problem, based on indexing the space using B+-tree.  
 
 
Key-Words: -  B+-tree, Boundary Neighborhood Operator, Spatial Database, Rectangular Object 
 
1  Introduction 
Management of spatial data is a requirement for 
various fields.  Space of interest can be two 
dimensional geographical planes such as a 
geographic information systems, man-designed 
space like a layout of a VLSI design or conceptual 
information space like an electro-magnetic field. 
Systems of spatial data types or spatial algebras 
capture the abstractions for points, lines, rectangles 
and regions that provide the basis for modeling the 
structure of geometric entities in space together with 
their relationships, properties and operations.  The 
key function of all spatial systems is the ability to 
query the database for specific relationships between 
objects especially topological relations such as the 
nearest, intersection and adjacency. The processing 
of such queries depends on the efficiency with which 
the objects are stored and indexed and how the query 
utilizes the stored objects. 
A point in space may represent the location of an 
object in space. Cities can be modeled as points in 
space while lines can be viewed as the basic 
abstraction for moving through space, or 
connections such as roads, rivers, or cables. Regions 
can be considered as the abstraction for objects 
having extent in 2d-space such as countries, lakes, or 
parks. Rectangles are often used in approximating 
regional spatial objects to serve as the minimum 
rectilinear enclosing objects or more commonly 
called the minimum bounding rectangles (i.e. 
MBRs) [4]. In such a case, the approximation gives 

a rough indication for an object existence within the 
MBR. A spatial query is then processed in two steps 
[5]. Firstly, a filter step employs an index to retrieve 
all MBRs that satisfy the query and possibly some 
false hits. Secondly, a refinement step uses the exact 
geometry of the objects to dismiss the false hits. 
Consequently, proposing that the spatial system 
represents and indexes regional objects in a two-
dimensional space as MBRs, we define the boundary 
neighborhood problem (BN) as finding all MBRs 
which surround and touch the MBR of a particular 
object. Providing an efficient solution for large 
databases of MBRs has obvious applications in areas 
such as Geographic Information Systems, VLSI, and 
wireless computing. 
Several indexing structures have been proposed to 
facilitate accessing regions in multi-dimensional 
space. The quad-tree [7, 13, 14] which is one of the 
oldest methods used to index spatial data is a 
generalization of binary search tree to higher 
dimensions. It represents recursive subdivision of 
space into subspaces using iso-oriented hyper 
planes. In quad-tree variants, each interior node has 
four descendants, each corresponds to a rectangle. 
The rectangles are referred to using the compass 
points: NW, NE, SW, and SE quadrants. The 
decomposition of the space is performed until the 
number of points in a rectangle is smaller than a 
given threshold. Consequently, quad-trees are not 
necessarily balanced. This decomposition turns out 

WSEAS TRANSACTIONS on SYSTEMS
  

Azzam Sleit

ISSN: 1109-2777 711 Issue 7, Volume 7, July 2008



to perform well when data is uniformly distributed, 
which is rarely the case with real life data.  
R-trees [2, 3] and its variants are MBR-based data 
structures for indexing spatial databases. It is a 
hierarchical data structure similar to B+-tree [1, 8, 
12]. Each internal node of R-tree has a large fanout 
in order to guarantee a minimum height of the tree. 
The maximum fanout of a node is determined by the 
size of the disk page, where the tree is stored. Each 
internal node corresponds to the bounding boxes of 
the rectangles stored in the descendant nodes. Leaf 
nodes contain the MBRs of the actual objects in the 
database.  Bounding boxes in internal nodes may 
overlap, but each input rectangle is represented in 
only one node at each level of the tree [6]. Like 
B+-tree, R-tree is perfectly balanced with logm n 
height, where m is the minimum fanout of an 
internal node, and n is the number of objects stored. 
SB+-tree [9, 10, 11] is a balanced point and region 
access structure. Each dimension of the space is 
indexed by an independent SB+-tree. When a query 
is processed, only the SB+-trees corresponding to the 
dimensions referenced by the query are searched and 
the output is produced in terms of the outcome of the 
individual searches. Internal nodes in the SB+-tree 
have only keys and pointers to children. Leaf nodes 
have pointers to data blocks. Each data block 
contains tuples of the form (objid, relation_type, 
status, pr). objid is the object identifier, 
relation_type is the object type, status denotes the 
extent status of the object at the specific data 
point(i.e. start, end, or continue) and pr points to the 
actual object in the database. Similar to R-tree, SB+-
tree is a secondary-memory resident structure which 
makes both of them appropriate for database 
systems.  

The following section provides a formal definition 
for the BN problem. Section 3 proposes a solution 
for the BN problem using B+-tree. Section 4 
analyzes the performance of the proposed solution 
and compares it with that using SB+-tree. Section 5 
evaluates experimentally the solution using the US 
Census Bureau; i.e. the Tiger Collection. The paper 
is concluded in section 6. 
 
2 The Boundary Neighborhood 
Operator  
The Boundary Neighborhood Operator (BNO) is 
defined as the set of objects that spatially bound the 
query object as per the following definition. 
 

 
 

Definition 
Let s be a query MBR rectangular object, 
s.startX and s.endX are the start and end 
coordinates of the object s in the X-axis, 
while s.startY and s.endY are the start and 
end coordinates of the object in the Y-axis. 
R is the object type. The Boundary 
Neighborhood Operator BNO(R,s) is defined 
as the set of objects x1, x2, …, xn, where s, xi 
Є R such that  
( 
   (xi.startX = s.endX AND ([xi.startY, 
xi.endY] ∩ [s.startY, s.endY] ≠ Ф)) OR 
   (xi.endX = s.startX AND ([xi.startY, 
xi.endY] ∩ [s.startY, s.endY] ≠ Ф)) OR 
   (xi.startY = s.endY AND ([xi.startY, 
xi.endY] ∩ [s.startY, s.endY] ≠ Ф)) OR 
   (xi.endY = s.startY AND ([xi.startY, 
xi.endY] ∩ [s.startY, s.endY] ≠ Ф))  
) for i= 1, 2, …, n 

 
 This operator can be utilized to find all countries 
that have borders with a specific country, or all 
countries that are adjacent to a particular sea. Fig. 1 
gives an example of a map of countries labeled as 
C1, C2, …, C14 and seas labeled as S1, S2, and S3. 
The countries that have borders with C1 can be 
obtained using the operator BNO(COUNTRY, 
‘C1’) which outputs {C3, C5, C7, C10, C11, 
C12}. However, BNO(SEA, ‘C12’) generates all 
seas that are adjacent to country C12; namely, 
{S2, S3}. 

 
 
 
 
 
 
 
 
 
 

Fig. 1: An example of countries and seas labeled as 
Ci’s and Sj’s, respectively 

 
3 Proposed Solution 
The B+-tree index is a balanced page-oriented tree 
which consists of two types of nodes; namely, index 
and data nodes. The index nodes of a B+-tree 
correspond to the internal nodes while the data nodes 

C1 

C10 

C11 C8 S3 C13 

C12 

C7 

C5 C3 

C9 S2 

S1 C14 

C2 

C4 
C6 

WSEAS TRANSACTIONS on SYSTEMS Azzam Sleit

ISSN: 1109-2777 712 Issue 7, Volume 7, July 2008



point to actual data objects. Data nodes are linked 
together, from left to right. A B+-tree is said to be of 
order M if every node has from M/2 to M subtrees. 
The root may have from two to M substrees. The 
leaves of the tree are at the lowest level of the tree 
(i.e. level 1) while the root is at the highest level. 
The number of levels in the tree is the height of the 
tree. A non-leaf node with j keys contains j+1 
pointers to children. A <pointer, key, pointer> is 
termed an index entry. Key values of a node are kept 
in sorted order. Thus, a B+-tree is a multi-level index 
with the topmost level being the single root page and 
the lowest level consisting of the set of leaf pages. 
Leaf nodes have pointers to data blocks which have 
tuples of the form (objid, pr), where objid is the 
object id and pr is a pointer that points to the spatial 
database.  A search, insertion or deletion operation 
starts searching the root to find the page at the next 
lower level that contains the subtree having the 
search key in its range. The next lower level page is 
searched, and so on, until a leaf is reached. The leaf 
is then searched and the appropriate action is 
performed. Operations can be unsuccessful; for 
example, a search may not find the required key. As 
keys are inserted or deleted, the tree grows or 
shrinks in size. When an updater tries to insert into a 
full leaf page or delete from a leaf page with d 
entries, a page split or page merge may occur. Fig. 2 
displays an example of B+-tree of degree 2. 

 

 

Fig. 2: An example of B+-tree of degree 2. 
 

We propose a solution for the BN problem based on 
the divide and conquer paradigm. The BN problem 

in the two-dimensional space is divided into 4 sub 
problems; each handles the neighbors related to one 
of the four margins of the MBRs included in the 
space. The scope of the BN subproblems is to 
capture the X-axis/Y-axis starting/ending 
coordinates for all MBRs. Consequently, we use 
four B+-trees; each tree indexes the objects 
according to one of the four margins, StartX, EndX, 
StartY and EndY as follows: 

 
• SartX B+-tree indexes the MBRs in space 

based on their minimum x-values. 
• EndX B+-tree indexes the MBRs in space 

based on their maximum x-values. 
• SartY B+-tree indexes the MBRs in space 

based on their minimum y-values. 
• EndY B+-tree indexes the MBRs in space 

based on their maximum y-values. 
 

Fig. 4 displays a sample space with the four StartX , 
EndX , StartY and EndY B+-trees. To find the 
neighbors of the right side of the query object, we 
need to search the StartX B+-tree for the objects that 
start at the same X margin that the query object 
ends. To find the neighbors of the left side of the 
query object we search the EndX B+-tree for the 
objects that end at the same X margin that the query 
object starts. To find the neighbors to the Lower side 
of the query object we need to search the EndY B+-
tree for the objects that end at the same Y margin 
that the query object starts. Likewise, in order to find 
the neighbors to the Upper side of the query object 
we need to search the StartY B+-tree for the objects 
that start at the same Y margin that the query object 
ends. The proposed solution is divided into two steps 
[5]. Firstly, a filter step employs an appropriate 
index to retrieve all objects that satisfy the query and 
possibly some false hits [15, 16]. Then, a refinement 
step uses the exact geometry of the objects to 
dismiss the false hits [17]. Fig. 3 is the pseudo code 
for the proposed algorithm. 

 
 
 
 
 

 
 
 
 
 
 
 

WSEAS TRANSACTIONS on SYSTEMS Azzam Sleit

ISSN: 1109-2777 713 Issue 7, Volume 7, July 2008



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Algorithm: Boundary Neighborhood of object q and set R(i.e. BNO(R, q)) 
Input:  
1.  StartX[N] : Pointer to the  Start X B+-Tree of size N . 
2.  EndX[N] :  Pointer  to the   End X B+-Tree of size N . 
3.  StartY[N] : Pointer  to the   Start Y B+-Tree of size N . 
4.  EndY[N] : Pointer  to the   End Y B+ Tree of size N . 
5.  q    :  query rectangular object. 
 
Output: {x1,x2,..xn}:xi Є R , xi and q are neighbors. 
 
Assumptions:  BPlusGetNeighbors is a B+-Tree search function that returns an array 
having all objects that are indexed at a certain key. 
 
{ 
 rightSideNeighborsArray   BPlusGetNeighbors(StartX[N] , q.endX)         
 leftSideNeighborsArray     BPlusGetNeighbors (EndX[N] , q.startX ) 
 upperSideNeighborsArray  BPlusGetNeighbors (StartY[N] , q.endY )       
 lowerSideNeighborsArray  BPlusGetNeighbors (EndY[N] , q.startY)       
 
 for each xi in  rightSideNeighborsArray   
        if (xi.startY<= q.startY <= xi.endY ) OR (xi.startY<= q.endY <= xi.endY) 
 Add(resultArray, xi) . 
        end if  
 end for 
 
 for each xi in  leftSideNeighborsArray             
        if (xi.startY<= q.startY <= xi.endY ) OR (xi.startY<= q.endY <= xi.endY) 
 Add(resultArray, xi) . 
        end if 
 end for 
 
 for each xi in  upperSideNeighborsArray          
         if (xi.startX<= q.startX <= xi.endX ) OR (xi.startX<= q.endX <= xi.endX) 
 Add(resultArray, xi) . 
         end if 
 end for 
 
 for each xi in  lowerSideNeighborsArray  
         if (xi.startX<= q.startX <= xi.endX ) OR (xi.startX<= q.endX <= xi.endX) 
 Add(resultArray, xi) . 
        end if 
 end for 
} 
Return resultArray

 
Fig. 3: BNO Algorithm 

 
Fig. 4 displays a sample space with fifteen MBRs 
representing countries and the corresponding B+-
trees for StartX, EndX, StartY, and EndY. Assuming 
that we would like to retrieve all MBRs which have 

borders with f (i.e. MBR(f) = [5, 6, 3, 7], f.startX=5, 
f.endX=6, f.startY=3 and f.endY=7),  
BNO(COUNTRIES, f) is executed. The following is 
a trace for the algorithm. 

WSEAS TRANSACTIONS on SYSTEMS Azzam Sleit

ISSN: 1109-2777 714 Issue 7, Volume 7, July 2008



 
resultArray = [] 
 
StartX B+-tree is searched for border 
point f.startX=6, which produces 
rightSideNeighborsArray= [h, i, j] 
 
During the filtering step: the Y-extents 
of objects h, i, and j are compared with 
those of f outputting west border MBRs. 
 
resultArray= [h, i] 
 
EndX B+-tree is searched for border 
point f.endX=5, which produces 
leftSideNeighborsArray= [b, c, e] 
 
During the filtering step: the Y-extents 
of objects b, c, and e are compared with 
those of f adding the east border MBRs 
[c, e] to the previous contents of 
resultArray. 
 
 
resultArray= [h, i, c, e] 
 

StartY B+-tree is searched for border 
point f.endY=7, which produces 
upperSideNeighborsArray= [j, k] 
 
During the filtering step: the X-extents 
of objects j and k are compared with 
those of f adding the north border MBRs 
[j, k] to the previous contents of 
resultArray. 
 
resultArray= [h, i, c, e, j, k] 
 
Finally, EndY B+-tree is searched for 
border point f.startY=3, which produces 
lowerSideNeighborsArray= [j, k] 
 
During the filtering step: the X-extents 
of objects j and k are compared with 
those of f adding the south border MBRs 
[g] to the previous contents of 
resultArray. 
 
resultArray= [h, i, c, e, j, k, g] 
 

Consequently, BNO(COUNTRY, f) = [h, i, c, e, j, k, 
g] which represents the countries that have borders 
with f. 

 
 

 
 
 

12 

 
11 

 
 

 
 

 
8 

 
7 

 
6 

 
 

 
3 

 
 

 
1 

 
0 

 
 0             2                     5       6                                     11   12 
 

Fig. 4: Sample Space of Fifteen Countries with Corresponding B+-trees of Degree 2. 
 
 
4 Cost Analysis and Estimated 

Performance Comparisons 
Operations on trees are dependent on the nature of 
the trees, which leads to time complexity that is 
proportional to their height. B+-tree a secondary-
memory resident data structure designed such that 
each node fits in exactly one page (i.e. I/O block) on 

disk. Therefore, the performance of operations 
utilizing B+-trees is measured in terms of number of 
disk accesses. A leaf/internal node can hold keys and 
pointers depending on the size of the I/O block 
configured for the specific database and operating 
system. Fig. 5 lists parameters which will be used in 
our analysis. 

WSEAS TRANSACTIONS on SYSTEMS Azzam Sleit

ISSN: 1109-2777 715 Issue 7, Volume 7, July 2008



 
Sym
bol 

Interpretation 

N Number of objects in the space. 
M Order of the B+-tree, which is number 

of index entries that fit in one page or 
I/O Block. 

F Fullness factor which is the average 
number of index entries in the nodes of 
the tree 

P Pointer size 
K Key Size 
G Page Size 
Tb Size of one leaf node tuple in B+-tree 
U Number of leaf node tuples that can fit 

in one page. 
 

Fig. 5: Analysis Parameters 
 

Internal nodes in the B+-tree are organized in the 
form <P1, K1, P2, K2,…., Pm, Km, Pm+1>, and a 
B+-tree with M degree has a maximum of M 
separators or Keys; 

 
(M * K) + (M+1) * P ≤ G  
M ≤ (G - P) / (K + P)     (1) 

 
The maximum height for N objects indexed by a B+-
tree happens when all N objects are indexed at 
different points. If we assume that all internal nodes 
have their full capacity which is M, this leads to a 
tree of height O(logM(N / M )). Therefore, operations 
will be proportional to O(logM(N / M )). However, 
internal nodes will be partially full and the fullness 
factor will play a role in defining the height of the 
tree. With a fullness factor F, operations have 
number of IOs proportional to                     

 
logM*F(N / (M * F) )              (2) 

The proposed algorithm to find all neighbors uses 
four B+-trees to index the objects. It searches the 
four trees to solve the BN problem. Assuming that 
we have N objects in the space with an average 
fullness factor of F for all trees, the number of 
required disk accesses to find the boundary objects 
of an MBR is given by:  

 
4 * logM*F(N / (M * F))               (3) 

 
There is another part in the complexity of BN 
problem which is the complexity to access the data 
block indexed at a certain leaf node. A data block 
holds tuples in the form (Objid, Pointer) in addition 
to two pointers; one points to the data block 

associated with the next indexing point and the other 
points to the data block associated with the previous 
indexing point.  We have 

 
(U * Tb) + (2 * P) ≤   G 
U ≤   (G – (2 * P) ) / Tb              (4) 

 
Consequently, the maximum number of tuples in a 
data block that can fit in one page is (G – (2 * P)) / 
Tb. In the following, we discuss best, worst and 
average case time complexities to access the data 
blocks. 

 
Best Case Performance: 
The best case happens when all rectangles are 
stacked either on the X axis or Y axis. Assuming 
that the N objects are stacked with respect to the X 
axis, the maximum number of neighbors for any 
object is two. In this case, the StartX and EndX B+-
trees have one data block with N tuples four each. 
However, the StartY and EndY B+-tree have N data 
blocks each with only one tuple. Therefore, the 
maximum number of data-block I/Os required to 
solve the NB problem in this case is two. 

 
Worst Case Performance: 
The worst case happens when all (N – 1) objects are 
neighbors to the query one. The StartX and EndX 
B+-trees have two data blocks for each. The first data 
block has one tuple while the second has N- 1 tuples. 
The StartY and EndY B+-trees have N-1 data blocks 
for each of which N-2 blocks have one tuple while 
one data block has two tuples. To access the data 
block we need  
    

[(((N-1) * Tb) + (2* P)) / G]           (5) 
 
Average Case Performance: 
The average case happens when all objects have the 
same number of boundary neighbors except for the 
objects that are at the edges of the space. Assuming 
that each object is a square with equal sides O and 
the data space is normalized to [0 , O×SQRT(N)] 
where N is the number of objects in the space. This 
space is approximated by a grid of size SQRT(N) × 
SQRT(N) and has the following four properties: 

 
If Xs is a point in the X axis, Xs  Є [0,O 
× SQRT(N)) , Xs mod O equals zero -> 
we have SQRT(N) objects stacked over 
the X axis start at Xs. 
 

WSEAS TRANSACTIONS on SYSTEMS Azzam Sleit

ISSN: 1109-2777 716 Issue 7, Volume 7, July 2008



If Xe is a point in the X axis, Xe Є (0,O × 
SQRT(N)] , Xe mod O equals zero -> we 
have SQRT(N) objects stacked over the X 
axis and end at Xe. 
 
If Ys is a point in the Y axis , Ys  Є [0, O 
× SQRT(N)) , Ys mod O equals zero -> 
we have SQRT(N) objects stacked over 
the Y axis and start at Ys. 
 
If  Ye is a point in the Y axis , Ye Є (0, O 
× SQRT(N)] , Ye mod O equals zero -> 
we have SQRT(N) objects stacked over 
the Y axis and end at Ye. 

 
Let's take the indexing point ip=i in the X-axis 
direction. We need to estimate the size of the data 
block associated with ip=i. All objects that pass 
through the line X=i will appear in i.datablock. The 
worst case happens if X ≠ 0 and X ≠ O × SQRT(N). 
In this case, we have SQRT(N) objects starting at 
X=i and SQRT(N) objects ending at X=i. The data 
block pointed to by ip in the StartX B+-tree holds 
SQRT(N) tuples at the ip while the EndX B+-tree 
holds SQRT(N) tuples at ip. To access the data 
block in one of the trees we need [((SQRT(N) * Tb) 
+ (2* P) ) / G ] IOs. To access the four data blocks in 
the four B+-trees, we need: 

 
4 * [( (SQRT(N) * Tb) + (2* P) ) / G ]  (6) 

 
Analytical Performance Comparison: 
This section compares the performance of B+-tree 
versus SB+-tree with respect to the BN problem. 
Both types are paged secondary-memory structures. 
The SB+-tree is used as a solution for many spatial 
operations such as join, region overlap, distance and 
direction. Our proposed solution uses four B+-trees 
whereas two SB+-tree are required to solve the BN 
problem (one SB+-tree for the X axis and another for 
the Y axis). The comparison assumes a spatial grid 
of SQRT(N) × SQRT(N). Using SB+-tree, we have 
SQRT(N) indexing points for the X axis and 
SQRT(N) indexing points for the Y axis. The height 
of the SB+-tree will be logM*F((SQRT(N) + 1) / (M * 
F)). Responding to a BNO query requires traversing 
the SB+-trees four times. Therefore, the required 
number of I/Os is:  

 
4 * logM*F( (SQRT(N) + 1) / (M * F)) (7) 

 
The second step is to estimate the size of the data 
bock that is indexed at an indexing point ip=i in the 

X-axis direction. Data blocks in SB+-trees have three 
pointers; one points to the data block associated with 
the next indexing point, the second points to the data 
block associated with the previous indexing point 
and the third points to the overflow data block 
associated with the same indexing point. We have 
SQRT(N) objects starting at X=i and SQRT(N) 
objects ending at X=i. All 2*SQRT(N) objects are in 
the data block pointed to by ip. Accordingly, the 
number of I/Os required to access the data block is 
[(2* SQRT(N) * Tsb + ( 3 *  P )) / G], where Tsb is 
the size of a tuple in the SB+-tree. To solve the BN 
problem, the number of I/Os required to access the 
data blocks is given by: 
 

4 *  [( 2* SQRT(N) * Tsb  + ( 3 * P )) / G ]     (8) 
 
Consequently, the total number of I/Os required to 
solve the BN Problem using SB+-tree is: 
 

4 * ( logM*F (SQRT(N) + 1) / (M * F) +  
[(2*SQRT(N) * Tsb+( 3 *P ) ) /G ] )               (9) 

 
However, the total number of I/Os required to solve 
the BN problem using B+-tree is: 
 

4 * ( logM*F( (SQRT(N) )/(M * F)) +  
[(SQRT(N)*Tb+(2*P )) /G ] )            (10) 

 
Consequently, the estimated performance of B+-tree 
is at least 50% better than that of the SB+-tree when 
solving the BN problem. 
 
5 Experimental Results 
In this section, we experimentally study the 
performance of B+-tree with respect to the BN 
Problem. The performance of B+-tree is compared 
with that of SB+-tree since both of them are 
secondary-memory structures which are appropriate 
for databases. We have implemented the algorithms 
for the BN problem in Java, and the experiments 
were conducted using the US Census Bureau; i.e. the 
Tiger Collection. The response time were obtained 
in terms of the number of IO pages needed to 
perform the query. Each experiment was repeated 
several times for various objects in the space and the 
average number of I/O’s was calculated. Fig. 6 
demonstrates the performance of B+-tree versus SB+-
tree in solving the BN problem. For these particular 
experiments, datasets were picked randomly from 
the Tiger database in order to compare both 
structures for various numbers of objects in the 

WSEAS TRANSACTIONS on SYSTEMS Azzam Sleit

ISSN: 1109-2777 717 Issue 7, Volume 7, July 2008



space. B+-tree consistently demonstrates 
performance superiority over SB+-tree for various 

disk page sizes and large input space.  

 
512B Page Size

0

10

20

30

40

50

60

70

80

50000 100000 200000 400000

Number of Pbjects

N
um

be
r o

f D
is

k 
IO

s

B+-Tree

SB+-Tree

 

1 K Page Size

0

5

10

15

20

25

30

35

40

45

50000 100000 200000 400000

Number of Objects

N
um

be
r o

f D
is

k 
IO

s

B+-Tree

SB+-Tree

 
 

2 K Page Size

0

5

10

15

20

25

50000 100000 200000 400000

Number of Objects

N
um

be
r o

f D
is

k 
IO

s

B+-Tree

SB+-Tree

 

4 K Page Size

0

2

4

6

8

10

12

14

16

50000 100000 200000 400000

Number of Objects

N
um

be
r o

f D
is

k 
IO

s

B+-Tree

SB+-Tree

 
 

Fig. 6: Performance of B+-tree versus SB+-tree in terms of number of objects for various page sizes 
(experimental). 

 
 
 
Fig. 7 illustrated the ratio (number of IO’s using B+-
tree/ number of IO’s using SB+-tree) in terms of 
number of objects in the space for various database 
page sizes. Our results show that both structures 
have similar performance for smaller number of 
objects and smaller page size. However, B+-tree 
displays superiority over SB+-tree when the number 
of objects increases in space. This is attributed to the 
higher efficiency of B+-tree at the data blocks level 
when the density of objects in space increases. Fig. 8 
compares experimental results versus the previously 
suggested average-case analysis of B+-tree presented 
in the previous section. The fullness factor was taken 
to be 0.67. The proposed solution has a minimum 
threshold for number of IOs which equals to 8 IOs; 

four IOs to search through the four B+-trees and four 
IOs to access the four data blocks in the trees. 

 
The minimum threshold occurs when: 

 
[logM*F( (SQRT(N) )/(M * F) <= 1] AND 
[(((SQRT(N))×Tb)+(2*P))/G  <=1 ]           (11) 

 
 
 
 
 
 
 

 

WSEAS TRANSACTIONS on SYSTEMS Azzam Sleit

ISSN: 1109-2777 718 Issue 7, Volume 7, July 2008



B+Tree / SB+Tree ( Disk Access Ratio)

0

0.2

0.4

0.6

0.8

1

1.2

50000 100000 200000 400000

Number of Object

B
+T

re
e 

/ S
B

+T
re

e 
( D

is
k 

A
cc

es
s 

R
at

io
)

512 B

1 K

2 K

4 K

 
 

  Fig. 7: I/O Ratio of B+-tree versus SB+-tree in terms 
of number of objects for various page sizes 

(experimental). 
 
 
 
The situation in (11) experimentally occurs for small 
number of objects relative to page size. Analytical 
and experimental results tend to coincide for page 
sizes 2 and 4. 

 

 
 

Fig. 8: Estimated versus Analytical Performance 
of B+-tree 

 
 
6 Conclusion 
The boundary neighborhood (BN) problem has not 
received much attention in the literature. Most 
spatial indexing structures tend to perform well 
when solving the window operation. This paper 
presentes a solution for the BN problem using B+-
tree, which is widely acceptable as the indexing 
structure for conventional and non-conventional 
databases. The proposed solution is based on two 
steps. Firstly, a filter step which employs the index 
to retrieve all MBRs that satisfy the query and 
possibly some false hits. Secondly, a refinement step 

uses the exact geometry of the objects to dismiss the 
false hits. Experimental results show the superiority 
of B+-tree over SB+-tree in solving the BN problem. 
B+-tree out performs SB+-tree by at least 50% in 
terms of number of pages to be accessed. Although, 
the proposed solution was discussed for 2-
dimensional space, it can be utilized for higher 
dimensions. Finally, the BN problem can be further 
investigated as a spatial join operation. 
 
References: 
[1] D. Comer, The ubiquitous B-tree, ACM 
Computing Surveys, Vol. 11, 1979, pp. 121-137. 
[2] A. Guttman, R-trees: a dynamic index structure 
for spatial searching. In Proc. ACM 
SIGACT-SIGMOD Conf. Principles Database 
Systems, 1984, pp. 569-592. 
[3] T. Sellis, N. Roussopoulos, N., and C. Faloutsos, 
The R+-tree: a dynamic index for multi-dimensional 
objects, In Proceedings of the Thirteenth 
International Conference on Very Large Databases 
(VLDB), 1987, pp. 507-518. 
[4] H. Samet, Hierarchical Representations of 
Collections of Small Rectangles, ACM Computing 
Surveys, Vol. 20, No. 4, 1988. 
[5] J. A. Orenstein, Redundancy in Spatial 
Databases, In Proceedings of the ACM SIGMOD 
Int’l Conf. Management of Data, 1989, pp. 294-305. 

Long Beach Data subset (Tiger Collection); N= 50000 

[6] R. H. Guting, An Introduction to Spatial 
Database Systems. VLDB Journal, Vol. 3, 1994, pp. 
357-399. 
[7] H. Samet, Spatial data structures, Modern 
Database Systems (ACM Press and Addison-
Wesley), 1995, pp. 361-385. 
[8] W. G. Aref and H. Samet, A Window Retrieval 
Algorithm for Spatial Databases Using Quadtrees, In 
Proceedings of the 3rd ACM Workshop on 
Geographic Information Systems, 1995, pp. 69-76. 
[9] A. Ibrahim and F. Fotouhi, Indexing and 
retrieving point and region objects, SPIE, 2670, 
1996, pp. 321-336. 
[10] A. Ibrahim, F. Fotouhi, and S. Hasan, The SB+-
tree: an efficient index structure for join spatial 
relations, International Journal of Geographical 
Information Science, Vol. 11, No. 2, 1997, pp. 163-
182. 
[11] A. Ibrahim, F. Fotouhi, and A. AL-Badarneh, 
Efficient Processing of Spatial Selection and Join 
Operations using SB+-tree, International Database 
Engineering & Applications Symposium, 1997, pp. 
279-288. 
[12] B. C. Ooi and K. L. Tan, B-trees: bearing fruits 
of all kinds, In Proceedings of the 13th Australasian 
Database Conference, IEEE CS Press, 2002. 

0 
2 
4 
6 
8 

10 
1IOs 2 
14 
16 
18 

# of 

Experimental

512B 1K 4K 2K
Page Size 

Analytical

WSEAS TRANSACTIONS on SYSTEMS Azzam Sleit

ISSN: 1109-2777 719 Issue 7, Volume 7, July 2008



 

[13] H. Samet, Depth-first k-nearest neighbor 
finding using the MaxNearestDist estimator, In 
Proceedings of the 12th International Conference on 
Image Analysis and Processing, Mantova, 2003, pp. 
486- 491. 
[14] H. Samet, Foundations of Multidimensional and 
Metric Data Structures. (Morgan-Kaufmann), 2006. 
[15] M. Wu, C. Lin, and C. Chang,  A Color Re-
Indexing Scheme using Genetic Algorithms,  
WSEAS Transactions on Systems, Vol. 5, No. 6, 
2006, pp. 1309- 1314. 

[16] P. W. C. Prasad, A. Assi, B. Mills, Binary 
Decision Diagrams: A Mathematical Tool for the 
Path-Related Objective Functions, WSEAS 
Transactions on Systems, Vol. 5, No. 12, 2006, pp. 
2868-2875. 
[17] J. Ferreira, M. Crisostomo, and A. P. Coimbra, 
Walk Control of a Biped Robot using Neuro-Fuzzy, 
WSEAS Transactions on Systems, Vol. 5, No. 12, 
2006, pp. 2892-2898. 

 
 

WSEAS TRANSACTIONS on SYSTEMS Azzam Sleit

ISSN: 1109-2777 720 Issue 7, Volume 7, July 2008




