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Abstract: - This article reveals the detailed analyses of the uniform stability and the transient stability of an
adaptive sliding-mode load-torque observer. Using the Lyapunov’s direct method, the stability can be
concluded only in some time intervals during transient state. Using the LaSalle’s invariance principle, it can be
concluded that by the end of the transient state the observer definitely enters the stable steady-state.
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Notation Lists:

a,b,c mechanical parameters of the motor-
load system,

a,b online estimated mechanical
parameters,

a,, by, 'I:LO initial values of the estimated
mechanical parameters,

B, viscous friction coefficient (N-m-s/rad),

€uas Cyp errors of the estimated rotor flux,

e, error of the estimated rotor speed

obtained from the double estimation,
h integral of the e,

equivalent current proportional to the

eq > eq
electromagnetic torque, and the
corresponding estimated current,
respectively,

lsg > Isp two-phase stator currents (A) in
horizontal and vertical axes,
respectively,

J, moment of inertia (kg-m?),

Kia » Kip » ki integral gains,

Koa » Ko » Koy proportional gains,

K; electromagnetic torque constant (N-m /A),

Ky surface gain,

p number of motor poles,

S, surface signal,

t time (s),

Te electromagnetic torque of the motor (N-m),

T, fL actual load-torque (N-m) and online

estimated load-torque, respectively,
\Y Lyapunov function,
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a,p subscripts indicating the horizontal and
the vertical axes, respectively, of the
stator reference frame,

Aa, Ab errors of the mechanical parameters
obtained from online estimation,

Al error of the equivalent current proportional
to the electromagnetic torque,

AT, error of the estimated load-torque,

Aw, error of the estimated rotor speed,

0, correction signal,

T integration time-constant,
&, ¢y, Ay cOrrection gains,
Wra» W,p estimated rotor flux (Wh),

o, , o,  rotor speed (rad/s), and estimated rotor
speed, respectively,

! double estimated rotor speed (rad/s), and

20 At equivalent quantity of the rate of change

of load-torque with respect to time (N-m).

1 Introduction

Control community has been familiar with the
sliding-mode approach for many years. New
developments in control can usually be found, e.g.
control of buck converters [1], position servo control
[2, 3], minimum energy control of PMSM drives [4],
etc. Not many applications in observer development
can be found. Recently, researchers [5] have
published their work on the development of a
sliding-mode observer, and [6] has presented an
adaptive flux observer considered linear. For motor
operation in general, load-torque dynamic is not
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usually known. Acquiring the load-torque needs an
expensive transducer as a common practice. An
alternative is to use a good load-torque observer for
an economical reason. Even though the recent work
[5] confirms steady-state stability, it is questionable
whether the observer still performs stably well
during the transient state. So far, there has not been
a previous work answering this question. This article
provides an extension of our previous work to
explain the uniform stability and transient stability
analyses. The analysis has applied the Lyapunov’s
direct method, the Lyapunov’s theorem under
relaxation, and the LaSalle’s invariance principle.
Simulation results are also presented.

2 Adaptive Sliding-Mode Load-

Torgue Observer — A Brief Review
The load-torque observer of our previous work
delineated in Fig. 1 operates in a cascade connection
with a speed observer that provides the estimation of
the rotor flux and speed of an induction motor. The
load-torque observer has the estimated rotor speed

and the equivalent current (i,, = is¥ v —saWrp)
proportional to the electromagnetic torque of the
motor (T, = Kqig) as its inputs. The observer
performs an online estimation according to (1)

~n _

o (1)

dwf +bly, +CT_ +6,

in which @/ is the double estimated rotor speed, &,

b are the estimated mechanical parameters, T, is
the estimated load-torque, and &, is the correction
signal. This ¢, is to compensate for the estimation
errors. The equation (2) expresses the integral of the
error resulted from the double estimated rotor speed.
The equation (3) expresses the surface signal in
which k; > 0 is the surface gain

h =-—e

o o ),

A
= o -,

©F

S, = €,—

w

kShm

The composition of the correction signal is as
shown in (4) in which ¢, ¢, and A; are the
correction gains
G = P, + Puksh,+ Aq 4.

The surface signal, s, , must converge to zero,
and hence six logical rules designed are as follows

ISSN: 1109-2777

666

Wirote Sangtungtong and Sarawut Sujitjorn

if s,e, >0 then ¢ > |a+ky,

if s,e, <0 then ¢ < —|a+ks,

if s,h,>0 then ¢, >0,

if s,h, <0 then ¢, <0,

if s,>0 then A; > |f5], and

if s,<0 then A; < —[fy (5).

According to these rules, the terms
a=-(B/J) <0, b=(p/23,)K; >0,
f; = aAw, +bAiy, —[d(Aw, )/dt]
and Ay, = igze,, -
unknown since e

Is, €,5 - The last two terms are
v €yp» AN Ao, = 0, —w, are
unreachable. Three Pl adaptive laws for &, b, and

'fL are shown in (6)-(8), respectively

t
a=a, +kpa®a+kiaj®a(r)dr (6),
0
~ ~ t
b = by +kyp®, +kp [©,(r)dr (7),
0
~ ~ t
T =T —Kyus, - kilfsw(f)df (8).
0

According to the equations (6)-(8), the terms
0, = 0,(s,,d!) = als

@)
® = 0,(s, i)

r r°w >
S
Kpa » Kop » Koy are the proportional gains (positive), ki,

eq w >

, ki, , ki are the integral gains (positive), &, 60 and
'I:LO are the initial estimated values of the terms a,

A~

b and 'fL, respectively. To conduct the stability
analysis, it is assumed that the mechanical
parameters are almost constant (4 ~ 0, b ~ 0 and
TL ~ 0), and the Lyapunov function can be written
asin (9)

V = L(Aa-kkpa@a)z+L(Ab+kpb@b)2
2K;, 2Ky
_L(ATL—k S

pl o >

)Z+%s 0

2
(9),

where Aa = a—a, Ab = b-b,and
AT, =T -T_ are the errors of the estimated
mechanical parameters, and the online estimated
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load-torque, respectively. Furthermore,
—(p/23,) <0, and henceforth the time

derivative of the Lyapunov function is expressed by
(10)

v = (a+k3_¢3) S,€0 ¢4k Swhw+(f3_A3)S

@

(10),

where (@a+Kk;— ¢3)s,6, < 0, —@kss,h, < 0 and
(f;— Ay)s,, < 0. The equations (9) and (10) suggest
that if the actual load-toque is continuously constant,
the load-torque observer always remains stable

because V is negative semi-definite. The analysis
follows in the next section.

3 Uniform Stability of the Proposed

Observer

The whole system comprising a plant (an induction
motor, its mechanical load, and the speed observer)
and the load-torque observer shown in Fig. 1 is
classified as non-autonomous. Stability analysis of
the system can be conducted according to the
Lyapunov’s theorem under relaxation [7]. Regarding
this, three error expressions of online parameter
estimations can be written as

Aa = Aa+k;,0,-k,0, (112),

Every composition in the right-hand side of the
correction signal in the equation (4) can be rewritten
as

8(s,) =

PsSw
|¢3|

|¢4I| <l ko, |A3||S—‘”

Sy

(14),

(U [0 (,U (U

where ¢3 - |¢3|Sgn 2] {u |¢3|| “ (u
®

w|

(() [U

= Il |

¢4 = |¢4|Sgn 2] w

As = [Asfsgn(s, )
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A o, Kbl N
el b s,

The equation (15) denotes the time derivative of
the surface signal,

®s = e’

w W

$, = (a+ky)e, +Aad] + Abiy, +CcAT, + f,

(2]

_ 50
(15).

The surface signal in the equation (3) is rewritten
as

e, =S,+kh, (16).

By substituting the equation (16) into the
equation (15), the time derivative of the surface
signal becomes

s, = (a+ky)s, +(a+ks)ksh, +Aad) .
+ Ably +CAT, + 3=, (7).

Afterwards, the terms Aa, Ab, AT, ,and &, in the
equation (17) are substituted by the equations (11) to
(14) and then the resultant equation is rearranged
into the form of

Sw = {a+ k3 —Ps _kpa(&\):)z _kpbi\e%q +Ckpl }Sw
+(a+k3)k3hw+(Aa+kpa®a)a3;’
+(Ab+kpb®b)feq +C(AT,_ —kp,sw) + f,

(18).

Differentiating three Pl adaptive laws in the
equations (6) to (8) and rewriting them gives

Aa+k,,0, = —a+k,,0, = —k;,0, (19),
AT, —kys, = T, —ky$, = kys, 21).

Thereafter, the last four equations (18)-(21) are
collected into a single form of

n=Ftx) (22),
where

X =

[s, Aa+k,0, Ab+k,0, AT —k,s, |
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is regarded as a state vector.
Anyone can comfortably choose

- 1 1 1 c

7, = min , — and
mx _ o101 1 ¢

& 2 2k 2k, 2k, )

Such choice generally exhibits a certain boundary of
the Lyapunov function along

7l <V o< 5|l 23),

where | x| =+ 4 % =0, and

|z ||2 is a strictly non-decreasing quadratic scalar

function. Thus, at a point in time, real value of the
Lyapunov function is always bounded within this
sector. Moreover, the time derivative of the
Lyapunov function can be expressed as the next
equation (24) and the inequality (25), respectively,

V = —{|¢3||swew|— a+ks)s,e }—k3|¢4||swhw
—([Asllso] = 1:5,) =k ;a0% —k©F
+ckplsw <0
(24),
V < —(|Ay]s, |- fss,) < 0 (25).

From the inequality (25), one can conclude that
the proposed load-torque observer is uniformly
stable.

4 Analysis

Considering the expression (10), if the load-torque is
not steady (T, = 0), the term T, will appear in the

relation. The expression (10) becomes (26)
indicating that the time derivative of the Lyapunov
function can be either positive or negative

v = (a+k3_¢3)swew_¢4k Swhw+(f A3)S

2]

a ki(ATL - kpl Se )TL

(26).

Considering an infinitesimal time interval tto t +
At, the time rate of change of load-torque (p,) during
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the transient state is assumed constant, i.e. T, ~ p,

or T (t+ At) = T/ (t) + pAt for a very small

positive value of At — 0. The derivative of the
Lyapunov function can be rewritten as

Vi(t+At) = V(t+At)

—%[TL(t +AL) T (t+AL) —kys, (t+ AL

xT_(t+At)
(27),
where
V(t+At) =V = (a+k;—d;)s,e, — ks, h,
+(f3 = A3)s, — K@ =k, ®F +ckys2 < 0

is the time derivative of the Lyapunov function
when the load-torque is constant. By substituting the

terms T_(t+At) = p, and T,(t + At) into (27), and
re-arranging the terms, one could obtain (28)

cAt , cQ

V(t+At) = —=—p, +V(t+At)  (28),
ki| kI|

where
o, =o/(T.(t)T.s,)

= To(t) T (t+At) —kys, (t+At) .

One could obtain the two inequalities (29) and
(30), respectively from rearranging the (28). The

inequality (30) is useful for the determination of
stability of the observer in such a way that the rate

of change of load-torque (2T, At ~ 2p,At) must be

bounded within the region indicated by the relation
(31)

—CAtp? —cQ, py + KV (t+At) < 0 (29),
2 Q) Ki o

+—p, ——VI({t+At) <0 30),

P At P AL ( ) (30)

-Q - ,f Qf+4k“ﬂ < 2p,At
c
<-Q Qf+4k"—AtV
c

The relation (31) expresses the transient stability
4k, AtV

(31).

condition, in which Q7 + is the
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1/ 4k AV is the lower
bound, and -Q  + ,/ is the upper

bound. Within a period of tlme and under the
positive discriminant, if the inequality (31) is true,
V in (26) is negative. Thus, the load-torque
observer is stable. However, if the inequality (31)
becomes false, i.e.

discriminant, —

c

2plAts—QL—,/Qf+4k"—AN, V in (26) is
C

positive. Then, the stability conclusion cannot be
drawn. A negative discriminant may lead the
inequality (32) to become false

(pl + 7 [Qf + 4k”CAt\7] <0 (32).

An unconcluded situation again occurs because V
in (26) is positive. Practically, only some certain
time intervals are subjected to the bounds. The
existence of the bounds depends on the load
characteristics, and the observer gains. Once the
discriminant is successively negative or the actual
load-torque is consistently constant, the bounds
become meaningless.

The equation (33) represents the error due to the
observer, and assuming that it is satisfied with the
Lipschitz’s condition [8]

2pAt > —Q + or

Q, jz 1
2At)  4(At

. ~p o
€, = ae, +Aawy + Abi,,

(2]

+CAT, + f; =9, (33).

Whenever all the observer gains are properly

adjusted such that T| f3(t) —J,(t)[dt < oo, and the
0

quantities of Aa , Ab , and AT, converge to a very
small constant & ¢ — 0 as t — oo, the dynamic
system (33) becomes asymptotically autonomous
[9]. Hence, a nonempty set =. governing the
derivative of the Lyapunov function to be negative
semi-definite in transient and steady states is
expressed as
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Ec = { e, € R | 3Aa,3Ab,3AT,,3AL, p, # O,
4k, AtV
_— 2>

| 2pAt+Q, | < o Qfﬁ”(“TAtV bu

{ew e % | 3Aa,3Ab,3AT,, T, =0,

<0}

2
Qp +

T, =0,V
(34),

where R is a set of real numbers. Whenever |e | is
bounded, there is a nonempty, compact, and
invariant set confined inside Z.. While the load and
motor set rotates at a constant speed, and the load-
torque is also constant, the load-torque observer is
operating in a steady state mode as well as V is a
decreasing function of t so long as V < 0. Thus, V
declines until V. — 07, and thereby V becomes
constant. The equations (9) and (10) represent this
case, i.e. t —» o andhence s,— 0, e,—> 0,0, >
0, ® — 0 while Aa, Ab and AT, converge to a
fixed tiny constant resulting in a compact set Z, as
follows

Z, =1e e R|JAa,IAb,IAT,, T, =0,
| { 2] ‘ L L

T, =0,e, 0,6 >0,V >0 |
(35).

Whenever the trajectory e, lies in Z,, it is equal
to 0 exactly and also V = 0. So far, Z, is an invariant
set because the trajectory is yet trapped inside Z,
until the rotor speed varies again due to either T, or
T, changing. Through the inequality (30), at the
Ky _ o
CAt
temporarily, V also equals zero momentarily.
Therefore, a set 5 governing the derivative of the
Lyapunov function to be zero in both transient and
steady states is written as

. Q
instance of p, # 0, when pf +?:pI -

—
—
—

o = 1€, € % | 3Aa,3Ab,3AT,,3AL, py = O,
4k, AV

2pAt+Q | = 4 Qf+4k"TAtv } U

2
Qp +

—
—
—

(36).
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According to the LaSalle’s theorem of invariant
set [8], if E,c E;c E; then e, e E. movestoe,
€ E, as t - oo. Therefore, the invariant set =,
possesses the property of asymptotic stability.
Hence, the load-torque observer converges to a
stable region by the final stage of the transient
period, and becomes surely stable throughout the
steady state period.

5 Simulation Results
The load-torque observer of our previous work
performs an online estimation by acquiring from the
speed observer the estimated rotor speed, and the
equivalent  current  proportional to  the
electromagnetic torque of an induction motor
coupled with an inertia load. The motor and two
observers form an open-loop system. According to
direct-on-line starting, at the initial instant of time (t
= 0) the motor previously de-energized at standstill
is connected directly to a 220 V, 50 Hz three-phase
ac supply. All initial conditions of state variables of
both the motor-load system and the observers are
zeroed. A first-order low-pass filter having 7.95-Hz
cut-off frequency is used to denoise the estimated
speed signal. The surface gains k; and k, of the
speed observer, and k; of the torque observer are
equal to 5. The correction gains for the speed
observer are |¢,,| = |¢ 4 = 290, |4, = |44 = 1, and
Al = |Ad = 10, whereas those of the torque
observer are |@| = 6, |#,| = 1, and |A4| = 0.2. The PI
gains of the adaptive laws of the speed observer are
set to kg, = ki = Ky, = ki = Ky = Ky = 0.00001, k=
10, and k ; = 800 while those of the adaptive laws of
the torque observer are set to k,, = k;, = 0.000001,
Kop = kip = 0.001, k;; = 2, and k;, = 40, respectively.
The results in Figs 2 and 3 show that very large
errors of the estimated rotor speed and flux only
occur at the beginning of the estimation process.
After about 0.5 seconds, the estimated load-torque
converges to the actual value as shown by Fig. 4
with its magnified picture shown in Fig. 5. When the
speed observer more accurately estimates the rotor
speed and flux, the load-torque estimation is
likewise wvalid. Although the actual load-torque
changes in a step-ramp manner at the starting and
during the constant speed operation of the motor, the
observer still satisfactorily tracks this load as shown
in Fig. 5. During the ramp period, the load-torque
estimation is more erroneous than the one during the
constant period as shown in Fig. 6.
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Fig. 2 Errors of the estimated rotor speed.
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Fig. 3 Errors of the estimated rotor flux.
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Fig. 4 Actual and estimated load-torques.
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T; . T, (N-m)

PR SR R N |

1 2 3 4 H 6 7 8 a@ 1 1

Time (sec)

Fig. 5 The vertical axis of Fig. 4 magnified within
0-11 N-m.

AT, (N-m)

Time (sec)

Fig. 6 Errors of the estimated load-torque.

The set = contains an invariant set because |e,)
is bounded. Fig. 7 illustrates the waveform of |e|.
Figs. 8 and 9 indicate that the nonzero equivalent
quantity of the load-torque derivative (2pAt) is
outside the bounds during the time 5.0-5.12 seconds
while the discriminant is progressively positive (e,
¢ Zc). As a result, the derivative of the Lyapunov
function becomes positive and V grows positively
during this time interval as illustrated in Figs. 10 and
11. This means that the observer’s stability cannot
be concluded momentarily. Thereafter, the quantity
2pAt is within the bounds temporarily and the
observer becomes stable for a certain period of time.
Once the actual load-torque is constant (T, = 0 and

T, = 0), the quantity 2pAt locates within the

bounds again, and the observer resumes its stability
(e, € E¢). The derivative of V becomes negative

definite (V < 0) and further remains negative semi-
definite (V < 0) throughout the steady-state

ISSN: 1109-2777
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operation of the observer. Consequently, V becomes
a non-increasing functionande, € E. > e, € E,. In
the meantime, the estimated load-torque is nearly
equal to the actual value as shown in Figs. 5 and 6.
In addition, the results shown in Figs. 12 to 16
illustrate some similar situations during the time
7.9-9.4 seconds. In steady state, the trajectory e,
sinks within =, as indicated by V becoming constant
as shown in Figs. 17 and 18.

(8]

l(’,_\_ (rad/sec)

0.05)

LI]

4.9 H 21 52 53 54 55 26 &7 58 9

Time (sec)

Fig. 7 |e,| during transient state and approaching
steady state (4.9-5.9 seconds).

045

L35

Discriminant

4.9 H 21 52 53 54 55 26 &7 58 9

Time (sec)

Fig. 8 Discriminant of the quantity 2pAt (4.9-5.9
seconds).
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Fig. 9 Rate of change of load-torque, upper and

Time derivative of V (dV/dt)

Fig.

Lyapunov function (V')

Fig.

lower bounds (4.9-5.9 seconds).
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10 Time derivative of the Lyapunov function in

(26) (4.9-5.9 seconds).
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The Lyapunov function in (9) (4.9-5.9
seconds).
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le,| during transient state and approaching
steady state (7.9-9.4 seconds).
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Discriminant of the quantity 2pAt (7.9-9.4
seconds).
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Fig. 15 Time derivative of the Lyapunov function in

(26) (7.9-9.4 seconds).
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Fig. 16 The Lyapunov function in (9) (7.9-9.4

seconds).
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Fig. 17 The Lyapunov function in (9) throughout
the simulation time of 11 seconds.
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Fig. 18 |e | throughout the simulation time of 11
seconds.

6 Conclusions

During the transient state, the adaptive sliding-mode
load-torque observer is stable in the Lyapunov’s
sense for some time intervals, while during some
intervals the stability cannot be concluded. The
observer’s uniform stability is guaranteed for
steady-state period. Based on the Lyapunov’s direct
method, the above conclusion has been drawn using
the quadratic inequality describing the stability
without the knowledge of the load-torque dynamic
as a priori. The LaSalle’s theorem of invariant sets
has been applied to confirm that the observer, by the
end of the transient state, certainly enters the stable
steady-state. To make the load-torque observer
become widely accepted for industrial practice, its
transient stability and accuracy problems must be
solved carefully.
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Appendix:

Derivation towards the equation (10).
Multiplying both sides of the equation (15) by s,,and
rearranging the resultant equation lead to

5,8, = (a+k,;)s,e, +Aads, + Abi,s

[0 [0 0] eq-w

+CAT.s, + f;s, —S,9,

S0dw = S{u{(a+k3)ew+f3_50}

[0 0]

+Aaa@|s, + Abi,s, +CATS,

»
(2
Il

w.w Sw{(a+k3)ew+f3_5o}

(37).
+Aa®, + Ab®, +CcAT,s,,
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Then, differentiating the equation (9) with
respect to time yields

V = (255

[0

)
+—[2(Aa+k C] )(Aa+k Q) )]

+—[ (Ab+ kpb®b)(Ab+ kpr)b)]
2

)( AT, - kplsw)]

a2t

+i(Aa+ kpa®a)(Aa+ kpaé)a)
ia

+ 2 (Ab+k,0, )(Ab+k,6,) (38).
ib
C

(o s o

V =53

[0 0]

_kplsw)

Three errors due to the online mechanical
parameter and load-torque estimations as well as
their derivatives are written together as follows:

Aa =a-a, Ab =b—6, and AT, =TL—'I:L, as
well as Aa ~ -4, Ab ~—b, and AT ~-T,
owing to a = 0, b ~ 0, and T_ ~ 0. Then, three

Pl adaptive laws through the equations (6)-(8) are
rearranged into

—-Aa ~ a

kpa®a + kia®a '

_ATL = fL = —kyS, —KiS,

Three derivatives in the relevant equations above
become

Aa = — kpa®a - kia®a ’

So far, the three above derivatives are rewritten
into
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Aa+k,0, = —k,0, (39),
A-I;L - kplsru = kiISa) (41)

Thereafter, substituting the last three equations
(39)-(41) and the term s_ s, from the equation (37)

into the equation (38) brings about

V = swsw+ki(Aa+kpa®a)(—kia®a)
ia
1
+—(Ab+kpb®b)(—kib®b) ,
ib
c
_k_(ATL _kplsw)( ki|5w)
il
V =s,8,-0,(ra+k,0,)
~0,(Ab+k,,0,) —cs, (AT —kys,)
V =s,$,-Aa0, —k,,0; - AbO,
—kgp®; —CAT.s, +ckp s> '
V =s,$, —Aa®, — Ab®, —CAT, s,
~Ka®2 — K, @ +ckpyS2 ’
V =s, {(a+ks)e, + f,—5,} +Aa®, + AbO,
+CAT. s, —Aa®, —Ab®, —CAT,s, ,
—kpa®2 —k,O5 + k2
v = Sa){(a+k3)ew+ f3_50} _kpa®§
—kpp®; +ckys2 <0 ’
Vo=s,{(a+ks)e, + fy—(de, +diksh, +Aq)
~ K@% — k@ + k2 < 0 ’
v = (a+ k3 _¢3)swew _¢4k3swh(u +(f3 _AS)S(U

(42).

Finally, the equation (42) is identical with the
one (10).
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Derivation towards the equation (26).
Whenever the load-torque is not constant (T, # 0),
the derivative of the error due to the load-torque

estimation becomes AT, = T_—T, and is rewritten

as AT, =T, +k,$

oS, +Kqis,, and then

AT —kp$, =T +k;s, (43),

respectively. Afterwards, the last expression in the
right-hand side of the equation (38) is substituted

from the equation (43). This expression would be
rewritten as

—ki(ATL —Kys, (AT, —Kys,)

pl
il

—i'(ATL - kp,sw)('l;L + ki,sa,)

_ki(ATL - kDISa))(ATL _kplsw)
il

_L(ATL - kplsa))TL _CSQ(ATL B kplsa))
il

_ki(ATL - kplsw)(ATL - kp'sfu)
il
plsi

= —CAT,s, +ck —ki(ATL—kp,sw)TL

(44).

Thereafter, by substituting two expressions from
the equations (39)-(40), the term s, s, from the

equation (37), and the expression from the equation
(44) into the equation (38), this procedure brings
about

V = (a+k;—d)s,e, —dkss, h, +(f5—As)s
—kpa®2 =k, ®F +ckpys2

w

_ki( AT, —ky Sw)TL
” (45).

Eventually, the equation (45) is identical with the
one (26).
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Derivation towards the equation (27).

When the time derivative of the Lyapunov function
is evaluated at a point of time t + At, the equation
(26) would be rewritten in a form of

—L(TL —'I:L—kplsw)'l;L ,

V =V

V(t+At) = V (t+At)

_ki_[TL(t +AL) =T, (t+AL) —kps, (t +At)]

xT, (t+At)
(46).

Finally, the equation (46) is identical with the
one (27).

Derivation towards the equation (28).
By substituting the two terms T, (t + At) = T.(t) +

pAt and T, (t+At) = p, into the equation (27) and

then rearranging the resultant equation, these
procedures yield

V(t+At) = V(t+At)
_ki[TL(t) +pA=T,(t+At) _kplsw(t+At)]pl ,
il
V(t+At) = V(t+At)
‘kipl{[T (t) ~To(t+at) —kp,sw(t+At)] ,
il
+ oAt |
V(t+At) = V(t+At) _Ck_Atplz
il
_kL[TL(t) ST+ AL) —kys, (t+ A1) o
il
V(t+At) = V (t+At) _MPI _Ck_At e
il il
Vit-at) = —Ck—At .2—CE2L V(t+at) @)
il il

Eventually, the equation (47) is identical with the
one (28).
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Derivation towards the solution of the
inequality (30).

When the quadratic inequality (30) is arranged into
type of completing the square, it could be written as

2 2 .
+&pl + & — & _ﬁ\T(t_FAt)
At 2At 2At CAt '

<0

2

M Giiea <o ,
cAt

4k, At
4c(At)

o Y 1 [, 4kAt- }
Sl S S o) 12V (t+At)|[ <0,

Vit+a)<o

2 Qg
ZAJ aaty

P
2pAt+Q ) 1 o2+ 4k,|At
24t A !
<0
@pat+Q 1 [Qz Ak At o }
4(Aty aatPlt ,
<0
(2p|At+QL)2—(Qf+4k”At\7j 0 ,
C
2
(2p|At+QL)2—( Qi+4k"At\7j <0 ,
C
(2p,At+QL— Qf+M\7J
C
k (48).
x[ZplAt+QL+ QE+M\TJSO
C

The either of two solutions taken from the above
inequality is
c

2plAt+QL+,/Qf Ml S 0 or
C

2pAt+Q, — | O + T2 < 0 together with
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2pAt+Q — ‘/ Q? + 4 AtV > 0 together with
2p,At+QL+1/QZ Mty <o)
c

These solutions could be rewritten as

2p At < —Q +.[ Q2 + 4kc V' together with
2pAt > —Q) — Qﬁ+4k2At\7 or

2pAt 2 —Q +,| O + @4 together with
2pAt < —Q — [ Q2 + 4kgm :
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where Q2 + 120V > 0. However, owing to

V o

c

<-q, o2 4k”At\7
c
thus the relation
4k At ~—
-Q - Qﬁ+LV < 2p,At
c
4k At —
<-Q + | QF+—1V
c

is the correct solution of the inequality (30). It is
corresponding to the relation (31).
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