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Abstract: - This paper introduces a coarse-to-fine algorithm for 3D registration that uses an alternative 3D Shape 
Representation: CIRCON (Cylindrical Image of Radial CONtours). Two point clouds can be aligned using their 
corresponding circon images for searching for correspondences. In order to accelerate this search, a coarse-to-
fine approach based on wavelet image decomposition will be applied to the circon images. This permits to 
reduce, for each resolution level, the amount of indexes to be evaluated. The information obtained by the surface 
matching process is then used for calculating a coarse transformation (translation and rotation) between both 
surfaces; in such a way that two point clouds whose relative pose is unknown can be aligned. 
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1   Introduction 
In recent years, several areas of computer vision have 
been dedicated to finding a solution to problems of 
industrial scope. As a consequence, certain 
applications, such as computer-aided manufacturing 
or bin-picking, have made necessary the use of 3D 
information of the parts in order to be automated. If 
this 3D information is acquired by using a laser 
scanner or similar methods, a range image is obtained 
for every scan. Therefore, it will be indispensable to 
have at our disposal a set of range images in order to 
build a complete 3D model of a part.  
If no information about the Euclidean transformation 
that relates the range images is available, a method 
for recovering it will be needed. This problem of 3D 
registration problem has given rise to many surface 
matching algorithms that use either intrinsic or 
extrinsic surface properties in order to find a 
correspondence between two point clouds whose 
relative pose is unknown.  
The intrinsic properties relate the surface to itself 
whereas the extrinsic ones relate it to the coordinate 
frame in which the surface is expressed. Both types 
of properties give rise to different approaches.  
On the one hand, the extrinsic algorithms, such as 
ICP and its variants [1],[2], can obtain a very accurate 
alignment but this depends on a coarse initial 
transformation where the algorithm is initialized. On 
the other hand, the intrinsic algorithms can obtain the 
Euclidean transformation that aligns the two point 
clouds with no need for previous coarse alignment. 
These surface matching algorithms depends on the 
chosen characteristics (such as spin images, 

geometric histogram, surface signatures, harmonic 
shape images, etc). All these methods extract the 3D 
shape descriptors from both surfaces in order to 
compare them. If many correspondences are found, 
then a coarse transformation that aligns them in a 
proper way can be calculated.  
 In the following sections a coarse-to-fine algorithm 
for surface matching is presented (Section 3 and 4) 
that uses an alternative 3D shape representation 
(Section 2). The results provided by this process 
allow obtaining directly a coarse transformation 
between the two surfaces (Section 5). 
 
2   CIRCON: 3D Shape Representation 
 
2.1 3D Shape Representations 
Diverse types of coordinates are used by some well-
known shape representations in different ways in 
order to index different geometric properties. Next, a 
concise description of the most important ones is 
made. A more complete analysis can be found in [7]. 
 
2.1.1 Spin Images  
This representation extracts features based on 
horizontal and perpendicular distances from regions 
around an interest-point. These features are 
represented using smoothed 2D histograms known as 
spin-images [3]. 
 
2.1.2 Geometric histograms 
The angles between normals and perpendicular 
distances are extracted as features from the regions. 
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These features are accumulated in smoothed 2D 
geometric histograms [4]. 
 
2.1.3 Surface signatures  
This representation uses the whole surface around the 
interest-point. Distance and angular features are 
extracted from the region and are represented using 
2D signatures [5]. 
 
2.1.4 Harmonic shape image 
Features based on curvature are extracted from the 
regions to create 2D representations known as 
harmonic shape images [6]. 
 
2.2 Cylindrical coordinates 
Our 3D shape representation is based on cylindrical 
coordinates, hence a brief review of their expressions 
may be necessary. 

 
As it can be inferred from Fig.1, cylindrical 
coordinates (r,θ, z) are related to Cartesian 
coordinates (x,y,z) by, 
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Note that (2) is undefined at r=0. 
 
2.3 Description 
As is shown in Fig.2, the generation process of this 
3D shape representation can be visualized as a plane 
that is rotated around the surface normal at one point 
P0 of the object, producing a slice for each angle θi 
being considered. The contours of these slices are 
coded and stored in a matrix.  

 

Fig.2. Generation of the 3D shape representation. 
 

 
The first step is referring all the points in the point 
cloud to a coordinate frame whose origin is situated 
in P0.  
If a transformation based on cylindrical coordinates is 
defined, given a 3D point Pk belonging to a slice i 
(angle θi) and whose Cartesian coordinates are (xk, yk, 
zk), these could be transformed by using the following 
expressions: 
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where ρθ is the angular resolution, ρr the radial 
resolution and ρz the height resolution; ci,j is the 
matrix element that belongs to i row and j column. 
 

 

  

Fig. 3. CIRCON matrix.  The arrows shown in the figure 
indicate the increasing direction for angle and radius. 

Fig. 1. Cylindrical coordinates. 
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By applying this transformation to all the slices, the 
results can be stored in a matrix, as is shown in Fig.3. 
This matrix can be visualized as an image (see Fig.4), 
where the row indexes indicate the number of angular 
section (slice) whereas the columns indexes code the 
radius and the image grey levels code the heights.  
The matrix will have ns=2π/ρθ rows, one for each 
prefixed rotation angle.  
 
 

 
 
 

Fig. 4. CIRCON of an alternator cover 
(ρθ=2.5º, ρr=ρz=0.5mm). 

 
2.4 Properties 
An example of the resultant image of applying this 
transformation to the 3D points belonging to an 
arbitrary pose of an alternator cover is shown in 
Fig.4. The 3D data shown were obtained by the 3D 
vision system presented in [8], whereas the 
resolutions being used can be seen in the footnote.  
It is interesting to note that the last and the first rows 
of the image keep continuity in the grey levels 
respectively. This is logical since the sequence of 
slices is closed. Hence, this is a kind of cylindrical 
image. Moreover, every row represents the object 
contour belonging to that radial plane (slice). 
Consequently, the name we have chosen for this 3D 
shape representation is CIRCON (Cylindrical Image 
of Radial CONtours). 
This 3D shape representation has the following main 
properties: 
-- it is object-centred. 
-- it can be used for global or local representation. 
-- it is robust to clutter and occlusion. 
-- it compress the 3D shape, making it more 
manageable. 
-- the shape of the object can be recovered (though 
sampled). 
A more detailed description can be found in [8]. 
 
3   Coarse-to-fine Algorithm Based on 
Wavelet Decomposition 
 
3.1 Surface Matching 

The main stage that has to be accomplished before 
calculating the transformation that aligns the two 
point clouds is the search for correspondences 
between them, namely, the surface matching. 
Since the goal of this process is to obtain the best 
matching between two point clouds SA and SB 
corresponding to two different views of the same 
object, a global matching is performed, i.e., the 
circon images are generated using all the points on 
both point clouds. If the goal were not 3D registration 
but 3D object recognition in the presence of clutter, 
the matching should be local. nr

The results obtained by this process are used later for 
calculating a coarse transformation that aligns both 
surfaces. 
The main drawback of the basic algorithm described 
in [9] was the difficulty to reduce the amount of 
indexes (io,jo) to be tested using the basic block 
diagram of the surface matching process shown in 
Fig. 5.  
Given two circon images, A and B, corresponding to 
different scans of the same object; in order to search 
correspondences between the two point clouds, the 
image A must be transformed by using a pair of 
indexes (io,jo). The result of this transformation (see 
Subsection 4.1.) is another image, denoted by A(io,jo), 
that will be compared to B by means of a similarity 
measure (see Subsection 4.2.). The resultant values 
Ms will be used later for choosing the best 
correspondence between the two point clouds. 
 
 
 
 
 
 

 
 
 
 
3.2 Wavelet Decomposition 
The approach presented in this paper uses wavelet 
decomposition in order to reduce progressively, in a 
coarse-to-fine way, the amount of indexes to be 
verified. 
This method consists basically of decomposing the 
two circon images by using the Discrete Wavelet 
Transformation (DWT) [10]. 
This two-dimensional transformation leads to a 
decomposition of approximation coefficients at level 
L in four components: the approximation at level 
L+1, and the details in three orientations (horizontal, 
vertical, and diagonal). In turn, the approximation 
AL+1 can be decomposed in another four components, 
as is shown in Fig. 6. 

A A(io,jo) Ms Transform 
CIRCON 

Similarity 
Measure

B 

(io,jo)

Fig. 5. Basic block diagram of the surface matching process. 
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The wavelet family that has been chosen for our 
experiments is the Haar wavelets [11], since these 
produced the best results for the surface matching 
algorithm which is explained in the next paragraph. 
 
 
3.3 A Coarse-to-fine Approach 
Given two views of the same object, whose initial 
misalignment is shown in Fig. 7, this coarse-to-fine 
algorithm tries to reduce the amount of information to 
be tested by using a multi-level processing. Firstly, 
two circon images (A, B) are generated in the closest 
point to the centroid of the point clouds (see Fig. 8). 
Following that, the two images obtained are 
decomposed into N levels and the N approximations 
AL and BL are taken to be processed as shown in 
Fig.9. The upper views of their corresponding 3D 
shapes are shown in Fig.10 (note that shape recovery 
is one of the properties of the circon images). 
Next, correspondences are evaluated for the level-N 
images using the block diagram shown in Fig. 4 for 
every pixel in the image AN that belongs to the object 
represented. The resultant similarity values permit to 
discard those correspondences (and hence, their 
associated Euclidean transformations) that do not 
reach a minimum of similarity. 
In turn, the same evaluation will be repeated for the 
level-(N-1) images but it will be only applied to the 
indexes (io,jo) that correspond to the pixels that have 
not been eliminated in the previous step. In such a 
way that, in every step, the possible correspondences 
are reduced progressively (see Fig. 11). Finally, a 
small group of correspondences will have been 
obtained; these will be verified in order to know 
which of them produces the best alignment between 
the two point clouds SA and SB (Subsection 4.4).  

 
 
 
 

 
4   Details of the Algorithm 
 
4.1 Transformation of a circon image 
In order to find correspondences between the point 
clouds, a transformation of one of the two 
corresponding circon images has to be performed. 
This transformation modifies the original circon, 
producing a new one that will be compared with the 
other circon image. 
Suppose that, as is shown in Fig. 5, circon A is to be 
transformed. If two indexes (io,jo) are provided, this 
transformation modifies all the matrix elements and 
their original positions by centering the circon in the 
3D point corresponding to the pixel with row index io 
and column index jo in the image.  

AL+1 DH
L+1 DV

L+1 DD
L+1 

AL+2 DH
L+2 DV

L+2 DD
L+2 

Fig. 7. Initial misalignment. 
Fig. 6. Image decomposition using Discrete Wavelet Transformation. 

POINT CLOUD A POINT CLOUD B 

CIRCON A CIRCON B 

Fig. 8. CIRCON images corresponding to the two scans shown 
of the same object. 
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The transformation comprises three steps. Firstly, the 
following expressions are applied to all the pairs (i,j) 
in the matrix.  
 

( )( ) ( )( )( )1cos1cos' −⋅⋅−−⋅⋅⋅= oorij ijijx θθ ρρρ  (7) 
( )( ) ( )( )( )1sin1sin' −⋅⋅+−⋅⋅⋅−= oorij ijijy θθ ρρρ  (8) 

 
The new position (i’,j’) of the pixel aij will be 
calculated by (1) and (2), whereas the pixel value by, 

oo jiijji ccc −=''      (9) 
The next step will be to refer the new circon to the 
surface normal at the 3D point where it is centered 
now. The normal is calculated by fitting a plane to the 
3D points obtained from the neighboring pixels. 
Hence, the data from the matrix will be rotated by 
using the following matrix: 
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Finally, the last k rows will be moved to the 
beginning of the matrix. This produces, since the 
image is cylindrical, a counter-clockwise rotation 
about the surface normal of ρz·k radians.  
The resultant matrix of applying these three steps will 
be denoted by A(io,jo). 

 
4.2 Similarity Measure 
Before any calculation is made, the minimum values 
of both matrices (A(io,jo) and B) have to be equal.  
Let the minimum of both matrices be 

( )( )BjiAm oo ,,min=         (12) 
Hence, if aij=min(A) then aij=m. In the same way, if 
bij=min(B) then bij=m.   
Then, the similarity measure is defined as 
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POINT CLOUD B 

Fig. 10. Upper views of the 3D reconstructions corresponding 
to the images shown in Fig.9. 

POINT CLOUD A 

LEVEL 3 

LEVEL 2 

LEVEL 1 

LEVEL 3 
(ns=16) 

LEVEL 2 
(ns=32) 

LEVEL 1 
(ns=64) 
 

A3 

A0 B0 

B1 A1 

B3 

Fig. 9. Wavelet Approximations for three resolution levels of the two 
circon images. The two last images correspond to the original ones. 

LEVEL 0 
(ns=128) 

A2 B2 

LEVEL 0 
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where the mean values A and B are given by 
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This is a weighted correlation coefficient. The 
weights are assigned to be the column index of the 
pixel being evaluated in both images. Therefore, both 
a pixel aij and bij will have a weight wij=j. In this way, 
the pixels far from the central point are better 
weighted, since they represent a larger area of the 
object. However, if aij=m and bij=m then wij=0. 
Furthermore, if aij=m and bij≠m (or vice versa), then  
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where I and U are respectively the intersect set and 
the union set of indexes defined as 
 

( ) ( ) ( ){ }mbmajiI ijij ≠≠=  and   ,    (17) 
( ) ( ) ( ){ }mbmajiU ijij ≠≠= or    , 

   (18) 
 
 
4.3 Removal of non-valid correspondences 
Once all the object indexes have been evaluated for 
the lowest resolution level, there will be a similarity 
value Ms and a self-rotation parameter k for each 
possible correspondence. Therefore, these results can 
be displayed as images, as is shown in Fig. 11. 
The indexes whose similarity value does not 
overcome a certain threshold τL will not be evaluated 
for the following resolution level.  
Since approximations of the original images are used, 
this threshold will have a different value for each 
level L according to the expression: 
 

( ) (max)1 S
L

L M⋅= ητ     (19) 
 
where η1 is the percentage of MS(max) corresponding to 
the level 1 (in our experiments η1=0.95). 
However, when the resolution is low it is possible 
that some good correspondences are eliminated. In 
order to preserve their corresponding indexes a lower 

threshold τL’ is applied to the neighbours of the 
pixels that have overcome the previous threshold. If 
their similarity value is bigger than this new 
threshold, these pixels will be also considered for the 
next resolution level. 
The expression is the same as (19), but in this case 
the value of η1’ is lower (in our experiments, 
η1’=0.8). 
Finally, the indexes that have been chosen are 
converted to the new resolution level. Note that the 
number of rows and columns depends on the 
resolution level. 
As can be seen in Fig. 11, the amount of indexes to 
be verified is reduced progressively. This permits to 
accelerate the search for correspondences. 
 

LEVEL 3 

LEVEL 2 

LEVEL 1 

LEVEL 0 

Fig. 11.  Maps of similarity values and self-rotation indexes. 

 
4.4 Verification of the best matches 
Once the indexes corresponding to the last resolution 
level have been evaluated, the ten (at the most) 
transformed circon images with the highest similarity 
measures are chosen for verification. An example is 
shown in Fig. 12. The first image corresponds to the 
original circon A, whereas the ten next ones are its 
transformed circon images A(io,jo) with the highest 
Ms. The last one corresponds to circon B, the image 
that they were compared with. 
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 Table 1 
 VERIFICATION RESULTS 

circon Ms Md 
A(10,20,43) 0.2346     0.0027 
A(12,18,43) 0.2377     0.0484 
A(10,20,46) 0.2417     0.0027 
A(10,20,47) 0.2438     0.0027 

0.2460     0.0573 A(12,18,47) 
A(12,18,44) 0.2461     0.0510 
A(10,20,45) 0.2474     0.0027 
A(12,18,45) 0.2509     0.0491 
A(10,20,44) 0.2524     0.0027 
A(12,18,46) 0.2546     0.0550 

 
 
 

The following expression is evaluated for each of 
these ten images: 
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This allows to verify if the distance between both 
surfaces is sufficiently small and to determine which 
of the circon images provides the best alignment. 
The values of Md are comprised between 0 and 1. If 
both images were exactly equal, then Md=1.  
Note that the pairs of pixels whose distances are 
smaller than dw+tol will have a weight equal to 1/tol, 
whereas the weights for the rest will be inversely 
proportional to the distance between both pixels. 
Accordingly, this formula gives a higher importance 
to the pixels whose distance is very small. In the 
verification results shown in Table 1, dw=1 and 
tol=0.1. 

 
 
The circon with the highest Md will be considered 
that produces the best alignment between the two 
surfaces SA and SB. In Table 1, A(12,18,47) has 
Md=0.0573, i.e., the best alignment is produced when 
the matrix indexes are is=12, js=18 and the self-
rotation index is ks=47. 
 
 
5   3D Registration 
One interesting property of this 3D representation is 
that, once the best correspondence is determined, the 
3D transformation between both surfaces depends on 
the indexes (is,js) and the number of rows ks that were 
shifted to maximize the similarity value. 

Fig. 12. The ten circon images with the highest similarity 

 
5.1 Euclidean Transformation 
The two following expressions allow calculating the 
transformation (translation vector and rotation 
matrix) that aligns both point clouds SA and SB.  
Translation vector: 
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Rotation matrix: 
 

( ) nsZC RkRR = ⋅     (22) 
 
where Rn is the matrix obtained in (10) and, 
 

(
( )

) ( )
( ) ( )

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⋅⋅
⋅⋅

−=
100
0cossin
0sincos

ss

ss

sZ kk
kk

kR θθ

θθ

ρρ
ρρ

 (23) 
 

WSEAS TRANSACTIONS on SYSTEMS C. Torre-ferrero, S. Robla, E.G. Sarabia and J.R. Llata

ISSN: 1109-2777 661 Issue 7, Volume 7, July 2008



 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=Δ

d
t 0

0

a) 
b) 

c) 

 
     (24)  

 
  
 And the correction of the rotation matrix ΔR will be 

calculated using (10) with the normal vector 
obtained. 

 
  
 
 

Fig. 14.  Plane fitted for calculating the correction of the 
Euclidean transformation. 

 
 
 
 
 
 
 
 
 
 
 
 
 

  
Fig. 13. Refinement of the Euclidean transformation. Consequently, the corrected translation vector is as 

follows: 
 
 

 5.2 Refinement of the Transformation 
tRtt CCC Δ⋅+= −1

CC RRR

    (25) As a consequence of the rough calculation of the 
surface normals and also due to the wavelet 
decomposition of the circon images, after applying 
the Euclidean transformation calculated, the 3D point 
clouds are not sufficiently close from each other (see 
Fig. 13a). For that reason, it will be necessary to 
refine the Euclidean transformation obtained in the 
previous subsection.  

 
And the rotation matrix: 
 

     (26) ⋅Δ=
 
The results of these corrections are shown in Fig. 13c. 
However, all the 3D points shown in Fig.13 are 
expressed in the coordinate frame centered at the 
interest-points used to calculate the circon images 
(see Fig. 8). Therefore, it is necessary to consider 
these additional transformations in order to obtain the 
final alignment between the initial point clouds 
shown in Fig.7. 

However, the 3D point clouds are quite similar if 
seen from above (Fig. 13b), since the resultant 
images found by transformations have a high 
similarity value and hence, the percentage of overlap 
will be also high. Therefore there will be a sufficient 
number of correspondences to calculate the 
correction of the Euclidean transformation. The 
translation vector and the rotation matrix will be 
obtained by fitting a plane to the 3D point cloud 
whose z-coordinates are the differences between the 
z-coordinates corresponding to the overlapped pixels 
in the image (see Fig.14). 

Let tA and RA be the translation vector and rotation 
matrix that allow expressing in the interest-point 
frame the coordinates of a point in SA expressed in the 
original frame. In the same way, tB and RB permit a 
similar transformation for the point cloud SB. 
Consequently, the final Euclidean transformation T 
that aligns roughly both point clouds has the 
following expression: 

The plane equation will be calculated by Principal 
Component Analysis; thus, the normal vector and the 
origin distance d are obtained. Therefore, the 
correction of the translation vector Δt will have the 
following expression: 
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As a result, given a point PAk belonging to the point 
cloud SA, its new coordinates will be calculated as, 
 

AkAk PTP ⋅=′ ×43     (28) 

Fig. 15. Final alignment 

CIRCON A(12,18,46) CIRCON B 

Fig. 16. Results obtained for different objects. 

 
where T3x4 is the matrix formed by the three first rows 
of T. 
As is shown in Fig.15, the coarse transformation 
obtained is sufficiently good and it can be used as an 
initial estimate by the ICP algorithm [1],[2] if a finer 
alignment is required. 
 
 
 
 
 
 
 

 
 
6   Results 
In addition to the final alignment shown in Fig.15, 
another results obtained for different objects are 
shown in Fig.16. The three first objects come from 
the Range Image Database of the Stuttgart University 
[12] whereas the last object was sensed by the 3D 
vision system presented in [8]. 
This vision system uses a variant of the well-known 
active method. As is shown in Fig.17, two CCD 
cameras are arranged fixed on opposite sides of the 
scene while a rotary platform turns the object. For 
each angle previously fixed, the laser projector 
illuminates an object slice. Subsequently, the two 
images acquired by the cameras are processed by a 
computer in order to make a 3D reconstruction of that 
slice (radial contour) just before the platform moves 

to the next position. At the end of the acquisition 
process a 3D point cloud is provided by this 3D 
vision system along with its corresponding circon 
image. 
As is shown in Fig.16, the results obtained for all 
these objects can be considered acceptable since a 
coarse alignment was found; its corresponding 
Euclidean transformation can be used to initialize the 
ICP algorithm in order to refine this alignment. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

  

 
 
 
7   Conclusion 
A coarse-to-fine algorithm for 3D registration has 
been presented in this paper. This algorithm makes 
use of a multilevel approach based on wavelet 
decomposition in order to search for correspondences 
between two point clouds belonging to the same 
object. This approach permits to accelerate the 3D 
surface matching process. 
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Fig. 17. 3D Vision System: real photo and scheme.  

 
 
Although, as is shown in Fig. 16, the algorithm works 
well in different objects, some problems can be found 
when the surrounding of the point selected for 
building the circon image is too abrupt. This can have 
a significant influence on the calculation of the 
normal vector at that point and hence, on the search 
for correspondences. 
 At the present time we are working on making a 
better selection of the initial point in both point 
clouds. Besides, a new algorithm for 3D object 
recognition is being developed based on a similar 
approach.  
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