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Abstract: This paper investigates the construction of guaranteeing cost dynamic output feedback controller for
linear discrete-time delay systems with time-varying parameter uncertainties and with exogenous disturbances. A
necessary and sufficient condition for a controller to have the guaranteeing cost property is given by a nonlinear
matrix inequality. As a sufficient condition, a linear matrix inequality is derived, the solution of which can be used
for constructing a control of the desired type. It is also shown that the resulted trajectory is input-to-state stable. A
numerical example illustrates the application of the results.
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1 Introduction

Systems with delay occur in several areas of engineer-
ing, therefore they have always been one of the fo-
cuses of control theory. Especially in the past decade
a huge amount of papers has been published on the
stabilization, guaranteeing cost and H∞ control prob-
lems for uncertain time-delay systems primarily in the
continuous-time case, but in the discrete-time case as
well. (To mention but a few of them see e.g. [3], [5],
[11], [13], [18], [19], [20] and the references therein,
while a sampled tracking of delay system is presented
by [16]). The relatively modest amount of work de-
voted to discrete-time delay systems can be explained
by the fact that such systems can be transformed into
augmented systems without delay. However, this ap-
proach suffers from the ”curse dimension”, if the de-
lay is large and inappropriate for systems with un-
known or time-varying delays. The present paper
deals with the determination of guaranteeing cost out-
put feedback control for uncertain discrete-time delay
systems with given constant delay, though a part of
the results remains valid also in the case of unknown
but bounded delay. We note that to the best of our
knowledge, time-varying delays are considered in the
literature under the assumption that at least the current
state is available for measurement, and memoryless
state-feedback is to be constructed (e.g. in [2], [4],
[5], [15], [19], [21]). Most papers consider only sys-
tem uncertainty of either norm-bounded or polytopic

type. Similarly to paper [19], we consider both system
uncertainty and exogenous disturbance, but the class
of system uncertainty considered here is more gen-
eral. This is the uncertainty of linear fractional form.
Authors are not aware of results on uncertain delay
systems with this type of uncertainty.

Firstly, we formulate a necessary and a sufficient
condition for a dynamic feedback to be a guaranteeing
cost robust controller. This condition can be trans-
formed into a bilinear matrix inequality (BMI). A lin-
ear matrix inequality (LMI) will be shown, the solu-
tion of which is also a solution of this BMI. In order
to set up the LMI, the method of the seminal work [6]
will be applied. A further novelty of the present pa-
per is that, unlike [13], [19] (see remark 2 in [19]),
the coefficient matrix of the delayed initial states in
the cost function bound should not be fixed, but it is
computed parallel to the weighting matrix of the unde-
layed initial state and the parameters of the dynamic
output feedback controller. It is also shown that the
resulted trajectory is input-to-state stable. We note
that, under a special choice of the weighting matrices
of the cost function, robust H∞ results can be derived
from the results of the present paper.

The organization of this paper is as follows: After
fixing the problem statement, we provide some def-
initions and a preliminary lemma in Section 2. Our
main results are stated and proved in Section 3. A nu-
merical example is given in Section 4 to illustrate the
application of the results, and finally the conclusions
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are drawn.
Standard notation is applied. The transpose of

matrix A is denoted by AT , and P > 0 (≥ 0) denotes
the positive (semi-) definiteness of P . The minimum
and maximum eigenvalues of the symmetric matrix P
are respectively denoted by λm(P ) and λM (P ). No-
tation w∞ (or simply w) is used for the infinite vector
series {wj}∞j=0, while wk denotes its truncation to

{wk−τ , wk−τ+1, ..., wk},

where τ is a given positive integer. ‖w‖ denotes the
Euclidean norm of the vector w, while ‖w‖∞ and
‖w‖2 are defined by

‖w‖∞ = sup
k∈N

‖wk‖ ,

and

‖w‖2 =

( ∞∑
k=0

‖wk‖2

)1/2

.

Notations l2 and l∞ are used for the linear space of
infinite vector series with finite norms. Symbol I de-
notes the identity matrix of appropriate dimension.
The notation of time-dependence is omitted, if it does
not cause any confusion. For the sake of brevity, as-
terisk replaces blocks in hypermatrices, and matrices
in expressions that are inferred readily by symmetry.

2 Problem statement and prelimi-
naries

2.1 Discrete uncertain time-delay systems

Consider the following discrete-time state-delayed
uncertain system:

xk+1 = Axk +Adxk−τ +Buk

+Ewk +Hxp
(x)
k , k ∈ Z+

xk = φk, k = 0,−1, ...,−τ,
yk = Cxk + Cdxk−τ +Hyp

(y)
k ,

q
(x)
k = Aqxk +Ad,qxk−τ +Bquk +Gxp

(x)
k ,

q
(y)
k = Cqxk + Cd,qxk−τ +Gyp

(y)
k ,

where x ∈ Rn is the state, u ∈ Rm is the control,
w ∈ Rs is the exogenous disturbance and y ∈ Rp

is the measured output. All the matrices are of ap-
propriate dimensions. The time delay τ is assumed to
be a known constant. The uncertainty appears in the
system as

p
(x)
k = ∆(x)

k q
(x)
k

and

p
(y)
k = ∆(y)

k q
(y)
k ,

where the time varying unknown matrices represent-
ing the collection of all parametric uncertainties ∆(x)

k ,
∆(y)

k satisfy the constraint

(∆(.)
k )T ∆(.)

k ≤ I,

where dot replaces either x or y. It is assumed that the
system is well posed, i.e. matrices I−∆(x)Gx and I−
∆(y)Gy are invertible for all admissible realizations of
∆(x) and ∆(y). It can easily be shown by the matrix
inversion lemma that the inverse of a matrix of type
I −∆G exists for all ∆T ∆ ≤ I if and only if

I −GTG > 0.

This is also equivalent to

I −GGT > 0.

By substitution we obtain that the uncertain dynamics
is

xk+1 = (A+ δA)xk + (Ad + δAd)xk−τ

+(B + δB)uk + Ewk (1)
yk = (C + δC)xk + (Cd + δC)xk−τ , (2)

where(
δA, δAd, δB

)
=

= Hx(I −∆(x)Gx)−1∆(x)
(
Aq, Ad,q, Bq

)
,(

δC, δCd

)
=

= Hy(I −∆(y)Gy)−1∆(y)
(
Cq, Cd,q

)
.

Assign to system (1)-(2) the objective function

J(x0,u∞,w∞) =
∞∑

k=0

L(xk,uk, wk) (3)

with

L(x, u, w) = xTQx+ uTRu− wTSw,

where

x0 = {φ−τ , φ−τ+1, ..., φ0}

is the initial function, and matrices Q, R and S are
symmetric and positive definite. The purpose of this
paper is to design a dynamic output feedback control
guaranteeing a certain level of performance for system
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(1)-(3). To this end, the output feedback controller is
looked for in the form

x̂k+1 = Âx̂k + Âdx̂k−τ + L̂yk, (4)
x̂k = 0, k = 0,−1, ...,−τ, (5)
uk = Kx̂k +Kdx̂k−τ , (6)

where x̂ ∈ Rn is the state of the controller, and the
matrices Â, Âd, L̂, K and Kd of appropriate dimen-
sions should be determined. The application of the
control (4)-(6) to system (1)-(2) results in the follow-
ing closed loop system:

zk+1 = (A0 + δA0)zk + (Ad,0 + δAd,0)zk−τ +

+E0wk, k ∈ Z+ (7)
zk = ζk, k = 0,−1, . . . ,−τ,

where

zk =
(
xk

x̂k

)
, k ∈ Z+,

ζk =
(
φk

0

)
, k = 0,−1, . . . ,−τ,

A0 =
(

A BK

L̂C Â

)
, E0 =

(
E
0

)
,

Ad,0 =
(

Ad BKd

L̂ Cd Âd

)
,

δA0 = H∆̃Aq, δAd,0 = H∆̃Aq,d,

with

H =
(
Hx 0
0 L̂Hy

)
, Aq =

(
Aq BqK

Cq 0

)
,

∆̃ = (I −∆G)−1∆,

G =
(
Gx 0
0 Gy

)
, ∆ =

(
∆(x) 0

0 ∆(y)

)
,

Ad,q =
(
Ad,q Bd,qKd

Cd,q 0

)
.

The objective function for the closed-loop system (7),
equivalent to the original one under the application of
(4)-(6), can be expressed as

Jz(z0,w∞) =
∞∑

k=0

Lz(zk, wk), (8)

where

Lz(zk, wk) =
(
zT
k , zT

k−τ

)
Q

(
zk
zk−τ

)
−

−wT
k Swk

with

Q =
(

Γ
0

)
Q
(

ΓT , 0
)

+

+
(
KT

KT
d

)
R
(
K, Kd

)
,

ΓT =
(
I, 0

)
,

K =
(

0, K
)
, Kd =

(
0, Kd

)
.

Definition 1 Consider the uncertain system (1)-(2)
with the cost function (3). A controller of the form (4)-
(6) is said to be a guaranteeing cost output feedback
controller for (1)-(2) with (3), if there exist positive
definite symmetric matrices P0 and Pd such that for
the function

V (zk) = zT
k P0zk +

τ∑
i=1

zT
k−iPd zk−i (9)

inequality

V (zk+1)− V (zk) + Lz(zk, wk) < 0 (10)

holds true for all k ∈ N, for any disturbance se-
quence w∞ and any realization of the uncertainty,
where zk =

(
zT
k−τ , ..., z

T
k

)T and z∞ is the solution
of (7).

Remark 2 Definition 1 is the generalization of that
given in [8] inasmuch as it allows the appearance of
delayed states in (7) and (8). It is well-known that,
by augmentation, system (7) is equivalent to an un-
delayed discrete-time system with a state space of di-
mension (τ + 1)n. Thus the above mentioned defini-
tion could directly be used to the augmented system.
However, to avoid the application of a (τ+1)n×(τ+
1)n matrix as a quadratic cost matrix, function V is
defined like a Lyapunov-Krasovskii function. This def-
inition is analogous of those of [10], [14], [17] and
[22]. Other papers as e.g. [1] and [7] accept a def-
inition formulated directly by the objective function.
The connections of these two approaches will be dis-
cussed below in corollary 6 and in remark 7.

2.2 Input-to-state stability of discrete-time
time-delay systems

Consider the general discrete-time time-delay system

x(k + 1) = f(x(k), x(k − τ), w(k)), (11)
k ∈ Z+,

x(k) = φ(k), k = 0,−1, ...,−τ.
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Definition 3 System (11) is (globally) input-to-state
stable (ISS), if there exist a KL-function β : R≥0 ×
R≥0 → R≥0 and a K-function γ such that, for each
w ∈ l∞ and each φ = {φ(−τ), ..., φ(0)} it holds that∥∥x(k;φ,w)

∥∥ ≤ β(
∥∥φ∥∥ , k) + γ(‖w‖∞) (12)

for each k ∈ Z+, where x(.;φ,w) denotes the solu-
tion of (11).

As it has already been mentioned, system (11) is
equivalent to an augmented undelayed discrete-time
system. This gives the possibility of a straightforward
re-formulation of results in [9] on the ISS property of
discrete-time systems for delayed discrete-time sys-
tems, if an ISS-Lyapunov function can be shown for
the augmented system. However, sometimes this may
be difficult. The problem comes from the fact that it
is not easy to give an upper estimation for the forward
difference of a Lyapunov function candidate along the
solution, which contains a strictly negative definite
term with respect to the whole augmented state. It
can be seen that this is the case in the problem un-
der consideration. The difficulty can be overcome, if
the required estimation holds true with a certain part
of the augmented state as it is given in the following
lemma.

Lemma 4 If there exist a continuous function V :
Rn(τ+1) → R≥0, two K∞- functions α1, α2 and two
positive constants α3 and σ such that

(i) α1

(∥∥ξ∥∥) ≤ V
(
ξ
)
≤ α2

(∥∥ξ∥∥)
∀ξ ∈ Rn(τ+1)

(ii) V (F (ξ,w))− V
(
ξ
)
≤ −α3 ‖ξ0‖2 + σ ‖w‖2

∀ξ ∈ Rn(τ+1), ∀w ∈ Rs,

where

ξT =
(
ξT
0 , ξ

T
1 , ..., ξ

T
τ

)
, ξi ∈ Rn,

F (ξ,w)T =
(
ξT
1 , ..., ξ

T
τ , f (ξτ , ξ0, w)T

)
,

then system (11) is ISS.

Proof. Let us consider the augmented system ap-
plied with an arbitrary initial state

ξ(0) ∈ Rn(τ+1)

and an arbitrary (τ + 1)-tuple of disturbances
{w(0), ..., w(τ)}:

ξ(k + 1) = F (ξ(k), w(k)), k = 0, 1, ..., τ.
(13)

ξ(0) = ξ(0)

By property (ii) we have
τ∑

k=0

[V (F (ξ(k), w(k)))− V (ξ(k))]

= V (F (ξ(τ), w(τ)))− V (ξ(0))

≤ −
τ∑

k=0

α3 ‖ξ0(k)‖2 +
τ∑

k=0

σ ‖w(k)‖2 . (14)

Observe that, for k = 0, ..., τ , the first n elements of
ξ(k) denoted by ξ0(k) equals to ξ(0)k and

F (ξ(τ), w(τ))

= (f(ξτ (0), ξ0(0), w(0))T , ...

..., f(ξτ (τ), ξ0(τ), w(τ))T )T .

In this way, a mapping

F : Rn(τ+1) ×Rs(τ+1) → Rn(τ+1)

can be defined so that for any ζ ∈ Rn(τ+1) and

η = (ηT
0 , ..., η

T
τ )T ∈ Rs(τ+1),

the result of the recursion (13) for

ξ(0) = ζ

and w(k) = ηk is taken, and F(ζ, η) is defined by

F(ζ, η) = F (ξ(τ), w(τ)).

From (14) it follows that

V (F(ζ, η))− V (ζ) ≤ −α3 ‖ζ‖2 + σ ‖η‖2 ,

thus V is an ISS-Lyapunov function in the sense of
Definition 3.2 in [9] for the discrete-time system

ζ(k + 1) = F(ζ(k), η(k)), ζ(0) = ζ0. (15)

Therefore, Lemma 3.5 of [9] gives that (15) is ISS.
Since

ζj(k) = x(k(τ + 1) + j − τ)

and

‖η(.)‖∞ ≤
√
τ + 1 ‖w(.)‖∞ ,

the required inequality (12) immediately follows.

3 Main results

In this section we propose a guaranteeing cost robust
minimax strategy for system (1)-(2). Firstly, a neces-
sary and a sufficient condition will be established for
the controller (4)-(6) to be a guaranteeing cost robust
minimax strategy for system (1)-(2).
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3.1 A necessary and sufficient condition

Set

Ĝ = (I −GTG)−1,
̂̂
G = (I −GGT )−1.

Introduce the following notations:

A1 = A0 +HĜGTAq,

Ad,1 = Ad,0 +H
̂̂
GGTAd,q.

Theorem 5 The controller (4)-(6) is a guaranteeing
cost output feedback for (1)-(2) with (3), if and only if
there exist positive definite matrices P0 and Pd and a
positive constant ε such that

Ψ =
(

Ψ11 ∗
Ψ21 Ψ22

)
< 0. (16)

where

Ψ11 =


Pd − P0 ∗ ∗ ∗

0 −Pd ∗ ∗
0 0 −S ∗
A1 Ad,1 E0 −P−1

0



Ψ21 =


Aq Ad,q 0 0
0 0 0 HT

ΓT 0 0 0
K Kd 0 0


Ψ22 = diag

{
− 1
ε2

( ̂̂G)−1,

−ε2(Ĝ)−1, −Q−1
, −R−1

}
.

Proof. Set

P̂ = Pd − P0 + ΓQΓT +KRKT ,

K̂d = KdRK
T
d − Pd.

By simple substitution from (7), we obtain that (10)
can equivalently be written as

0 > V (zk+1)− V (zk) + L(zk, wk) =

zT
k+1P0zk+1 + zT

k (Pd − P0)zk +

+
(
zT
k , zT

k−τ

)
Q

(
zk
zk−τ

)
−

zT
k−τPdzk−τ − wT

k Swk

=
(
zT
k , z

T
k−τ , w

T
k

) AT
0 + δAT

0

AT
d + δAT

d

ET
0

P0

× (A0 + δA0, Ad + δAd, E0) +

+

 Pd − P0 0 0
0 −Pd 0
0 0 −S

+

 ΓQΓT +KRKT KRKT
d 0

KdRK
T KdRK

T
d 0

0 0 0


 zk

zk−τ

wk

 , (17)

i.e. the matrix in the square brackets is negative defi-
nite. By Schur complement this holds true if and only
if


P̂ ∗ ∗ ∗

KdRK
T K̂d ∗ ∗

0 0 −S ∗
A0 + δA0 Ad + δAd E0 −P−1

0

 < 0.

(18)

Substituting the definition of δA0, δAd,0, we obtain
that

0 >


P̂ ∗ ∗ ∗

KdRK
T K̂d ∗ ∗

0 0 −S ∗
A0 Ad E0 −P−1

0

+


0
0
0
H

 ∆̃
(
Aq, Ad,q, 0, 0

)
+


AT

q

AT
d,q

0
0

 ∆̃
(

0, 0, 0, HT
)
. (19)
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Applying Lemma 2.6. of [17], (19) holds if and only
if there is a positive constant ε such that

0 >


P̂ ∗ ∗ ∗

KdRKT K̂d ∗ ∗
0 0 −S ∗

A0 Ad E0 −P−1
0

 +

 1
ε2

 AT
q

AT
d,q

0

 ̂̂
G

(
Aq, Ad,q, 0

)
∗

HĜGT
(

Aq, Ad,q, 0
)

ε2HĜHT

 .

(20)

By taking into account the definition of A1 and Ad,1,
inequality (20) is obviously equivalent to

0 >


Pd − P0 ∗ ∗ ∗

0 −Pd ∗ ∗
0 0 −S ∗

A1 Ad,1 E0 −P−1
0

 +


AT

q 0 Γ KT

AT
d,q 0 0 KT

d

0 0 0 0
0 H 0 0




1
ε2

̂̂
G 0 0 0

0 ε2Ĝ 0 0

0 0 Q 0
0 0 0 R

 (∗) ,

from which (16) can be obtained applying the Schur
complement again.

Remark 6 If the delay τ is unknown but constant,
then (4)-(6) is not well-defined, and V depends also
on the unknown parameter τ . However, if a memo-
ryless dynamic feedback is applied, i.e. Âd = 0 and
Kd = 0 are chosen, then the proposed approach is
applicable, and theorem 5 remains valid, since (16)
doesn’t depend on the delay, though the above restric-
tion may give more conservative results.

Corollary 7 If (4)-(6) is a guaranteeing cost output
feedback controller for (1)-(2) with (3), then (7) is ISS
and

sup
w∞∈l2

Jz(z0,w∞) ≤ V (z0). (21)

Proof. Under the condition of the corollary, the
strict inequality (16) holds true. But then there exists
a µ > 0 so that (16) remains valid if µΓ̃Γ̃T is added
to the right hand side of the inequality, where Γ̃T =
(0, I, 0, 0, 0, 0, 0, 0). Let us denote a corresponding
modification of Lz by

L̃z(zk, wk) =

=
(
zT
k , zT

k−τ

)( Q 0
0 µI

)(
zk
zk−τ

)
−

−wT
k Swk.

Going backward along the equivalent relations, from
the modified inequality it follows that

V (zk+1)− V (zk) + L̃z(zk, wk) < 0 (22)

holds true for all k ∈ N, for all disturbance sequences
w∞ and for any realization of the uncertainty. Then
(22) involves that the conditions of Lemma 4 are sat-
isfied with

α1(s) = min{λm(P0), λm(Pd)}s2,
α2(s) = max{λM (P0), λM (Pd)}s2,

α3 = µ and σ = λM (S), thus the ISS property fol-
lows from Lemma 4.

On the other hand, summing up (10) for k =
0, ..., N we have that

N∑
k=0

Lz(zk, wk) ≤ V (z0).

Since
∞∑

k=0

wT
k Swk is finite for any w∞ ∈ l2,

Jz(z0,w∞) is finite as well, and (21) holds true.

Remark 8 Since Jz(z0,w∞) and J(x0,u∞,w∞)
are identical, if u∞ is generated by (4)-(6), corollary
6 shows that the guaranteeing cost output feedback
controller yields a cost bounded by

V (z0) = Ṽ (x0)

independently from the disturbance w∞ ∈ l2 and the
uncertainty. We note that one can allow any bounded
disturbance sequence to have the ISS property. At
the same time, in the investigation of the cost func-
tion over an infinite horizon, one has to restrict the
attention to output feedback controllers (4)-(6), which
ensure that the objective functional is well defined for
a class of admissible disturbances in the sense that the
cost value belongs to R ∪ {+∞} ∪ {−∞}. For any
w∞ ∈ l2 the corresponding cost value

Jz(z0,w∞) ∈ R ∪ {+∞} ∪ {−∞},

thus l2 is a suitable class of admissible disturbances.

Remark 9 If τ is unknown, then V (z0) in (21) cannot
be computed. Nevertheless, if 0 < τ ≤ τ with given
τ , we have that

V (z0) ≤ V (z0) := zT
0 P0z0 +

τ∑
i=1

zT
−iPd z−i

and V (z0) is a computable upper bound for the cost
function.
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3.2 Derivation of an LMI

Matrix inequality (16) is clearly nonlinear. On the
basis of the approach of [6], an LMI will be shown,
the solution of which is also a solution of (16). This
means that an LMI can be given for the unknowns K,
Kd, L̂, Â, Âd, P0 and Pd, which yields a sufficient
condition for (4)-(6) to be a guaranteeing cost output
feedback controller. This is established by the next
theorem. To formulate it, introduce further notation
as follows. Set

Π = P−1
0 PdP

−1
0 ,

and partition matrices P0 and P−1
0 into n × n blocks

as

P0 =
(

X M
MT Z

)
, P−1

0 =
(

Y N
NT W

)
.

Introduce matrices

F1 =
(

X I
MT 0

)
, F2 =

(
I Y
0 NT

)
,

and

Π̃ = F T
1 ΠF1.

Set furthermore

A1 = A+Hx(I −GT
xGx)−1GT

xAq,

Ad,1 = Ad +Hx(I −GT
xGx)−1GT

xAd,q,

B1 = B +Hx(I −GT
xGx)−1GT

xBq,

C1 = C +Hy(I −GT
yGy)−1GT

y Cq,

Cd,1 = Cd +Hy(I −GT
yGy)−1GT

y Cd,q,

and

K̃ = KNT , K̃d = KdN
T , L̃ = ML̂, (23)

Ã = XA1Y +XB1K̃ + L̃C1Y

+MÂNT , (24)

Ãd = XAd,1Y +XB1K̃d + L̃Cd,1Y

+MÂdN
T . (25)

Theorem 10 Let ε > 0 be a fixed positive constant.
If the LMI

Ω =


Ω11 ∗ ∗ ∗
Ω21 Ω22 ∗ ∗
0 Ω32 Ω33 ∗

Ω41 0 0 Ω44

 < 0, (26)

holds for X , Y , Π̃, K̃, K̃d, L̃, Ã and Ãd, where

Ω11 =

 Π̃−
(
X I
I Y

)
0

0 −Π̃

 ,

Ω22 =


−S E

T
X E

T 0
XE −X −I 0
E −I −Y 0

0 0 0 −ε−2( ̂̂G)−1

 ,

Ω33 = −ε2(Ĝ)−1,

Ω44 =

(
−Q−1 0

0 −R−1

)
,

Ω21 =


0 0 0 0
ψ21 Ã ψ23 Ãd

A1 ψ32 Ad,1 ψ34

Aq ψ42 Ad,q ψ44

Cq CqY Cd,q Cd,qY

 ,

ψ21 = XA1 + L̃C1, ψ23 = XAd,1 + L̃Cd,1,

ψ32 = A1Y +B1K̃, ψ34 = Ad,1Y +B1K̃d,

ψ42 = AqY +BqK̃, ψ44 = Ad,qY +BqK̃d,

Ω32 =
(

0 HT
x X HT

x 0
0 HT

y L̃ 0 0

)
,

Ω41 =
(
I Y 0 0
0 K 0 Kd

)
,

then a guaranteeing cost output feedback controller
for (1)-(2) with (3) can be expressed in the form of
(4)-(6) by solving (23)-(25).

Proof. Fix ε in (16). Apply the congruence trans-
formation

diag{P−1
0 , P−1

0 , I , I, I, I, I, I }

to (16), then multiply the obtained inequality by

diag{F1, F1, I F1, I, I, I, I }

from the right and by its transpose from the left. Let us
compute the blocks of Ω. Block Ω11 can immediately
be obtained by observing that

F T
1 P

−1
0 F1 =

(
X I
I Y

)
. (27)

Block Ω22 is received from the third to the fifth rows
and columns of Ψ in (16):

Ω22 =

 −S ∗ ∗
F T

1 E0 −F T
1 P−1

0 F1 ∗
0 0 −ε−2(I −GGT )

 .
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Here

F T
1 E0 =

(
XE

E

)
,

thus by (27), block Ω22 is verified. Since the last
three block rows and columns are multiplied by
diag{I, I, I}, Ω33 and Ω44 are obviously valid. To
compute Ω21, we observe that P−1

0 F1 = F2. Thus

Ω21 =

 0 0
F T

1 A1F2 F T
1 Ad,1F2

AqF2 Ad,qF2

 .

By substitution we obtain that

F T
1 A1F2 =

(
X M
I 0

)
×

×
(

A1 B1K

L̂C1 Â

)(
I Y
0 NT

)
=

(
ψ21 Ã

A1 ψ32

)
,

and analogously

F T
1 Ad,1F2 =

(
ψ23 Ãd

Ad,1 ψ34

)
,

AqF2 =
(
Aq ψ42

Cq CqY

)
,

Ad,qF2 =
(
Ad,q ψ44

Cd,q Cd,qY

)
,

which gives the required expression of Ω21. Further-
more,

Ω32 = (0,HTF1, 0),

and

HTF1 =
(

HT
x X HT

x

HT
y L̃

T 0

)
,

thus Ω32 is also verified. Finally,

Ω41 =
(

ΓT 0
K Kd

)(
F2 0
0 F2

)
=

(
I Y 0 0
0 K 0 Kd

)
,

because(
I, 0

)
F2 =

(
I, Y

)
,(

0, K
)
F2 =

(
0, K

)
.

Thus for a fixed ε > 0, (16) follows from the LMI
(26). As far as the solvability of (23)-(25) is con-
cerned, we observe that from (26) it follows that(

X I
I Y

)
> 0,

thus I −XY is invertible. Because of the definition,

MNT = I −XY,

thereforeM andN are also invertible, and they can be
determined e.g. by singular value factorization of I −
XY . Thus the system of matrix equations (23)-(25)
can subsequently be solved for the required matrices
K, Kd, L̂, Â and Âd.

Remark 11 Observe that matrices P0 and Pd are si-
multaneously determined here by the LMI (26) fixing
ε. Several papers (see e.g. [11]) proposed an LMI
method for systems without exogenous disturbances,
where ε was set to 1 and Pd was also fixed.

Remark 12 We note that in the case of unknown de-
lay, the dynamic output feedback (4)-(6) had to be
considered with Âd = 0 and Kd = 0. However
in the derivation of (26), it was crucial to introduce
Ãd defined by equation (25) as a new unknown. This
equation may not hold, if Âd = 0 is fixed. Therefore,
the approach of this paper is not suitable to reduce
the construction of a guaranteeing cost dynamic out-
put feedback controller to the solution of an LMI, if
the delay is not given.

Remark 13 From the proof of Theorem 10 one can
see that inequality (16) can be transformed into a bi-
linear one in the variables K, Kd, L̂, P0, Pd and ε.
However, the solution of BMIs requires more sophisti-
cated tools (see e.g. [12]).

Theorem 10 provides a constructive method to
find an appropriate control. There are efficient meth-
ods and software tools to find a feasible solution.
Since the main purpose is to find a guaranteed cost,
it is expedient to assign an objective function to the
LMI, which assures as low guaranteed cost as possi-
ble. Partition Π̃ into n× n blocks as follows:

Π̃ =

(
Π̃11 Π̃12

Π̃T
12 Π̃22

)
.

The upper bound of the system’s performance is given
by (9), (21). Taking into account the initial value of
x̂0, an upper bound Ub for the guaranteed cost value
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can be given by the upper left blocks of P0 and Pd,
which are X and Π̃11, respectively. Thus

Ub = λM (X) ‖x0‖2 + λM (Π̃11)
τ∑

j=1

‖x−j‖2 .

To obtain a relatively low value of Ub, we consider
two additional variables ω1, and ω2, add the LMIs

ω1I > X, ω2I > Π̃11

to LMI (26), and minimize the objective function

θω1 + (1− θ)ω2

with respect to the resulted in new LMI system, where
0 ≤ θ ≤ 1 is a given constant. To solve the problem
with a fixed nonzero initial state, it can be chosen e.g.
as

θ = ‖x0‖ / (‖x0‖+ ...+ ‖x−τ‖) .

4 A numerical example

Consider the dynamical system (1)-(3) with the fol-
lowing parameters: let τ = 5,

A =
(

1.2 0
−1.2 0

)
, Ad =

(
0.2 0.1
0.1 0.2

)
,

B =
(

1
0.01

)
, E =

(
0.01
0.01

)
,

C =
(

1 0
)
, Cd =

(
0.05 0.05

)
,

Hx =
(

0.2 0.1 0
0 0 0.2

)
, Hy = 0.1,

Aq =

 1 1
0 0
0 0

 , Ad,q =

 0 0
1 1
0 0

 ,

Bq =

 0
0
1

 ,

φk =
(

1
−1

)
, k = 0,−1, ...,−τ,

Cq =
(

0.05 0.04
)
, Cd,q =

(
0 0

)
,

Gx =

 0.01 0.02 0
0 0.04 0

0.01 0.02 0.05

 , Gy = 0.01,

and consider the following matrices in the perfor-
mance index:

Q = 0.1I2, R = 0.1, S = 1.

Solving (26) for ε = 1 with the proposed objective
function one obtains

Â =
(
−0.8105 0.1324

1.2772 −0.2082

)
,

Âd =
(

0.0275 0.1060
0.0581 0.0534

)
,

L̂ =
(

6.8764
−5.2473

)
,

K =
(
−0.1252 0.0221

)
,

Kd =
(
−0.0019 0.0478

)
,

ω1 = 12.915, ω2 = 4.1596,

P0 =


12.2348 ∗ ∗ ∗
2.3827 4.3278 ∗ ∗

−1.3848 0.6952 0.5861 ∗
0.3420 0.6813 0.1899 0.2496

 ,

Pd =


2.6126 ∗ ∗ ∗
1.8960 1.8271 ∗ ∗

−0.0349 0.0295 0.0195 ∗
0.3338 0.2153 0.0090 0.0874

 ,

λM (P0) = 13.0230, λM (Pd) = 4.1941 and the guar-
anteed cost with the given initial states is 15.0360.
The state responses of above system with ∆(x) =
I, ∆(y) = I are given in figure 1.
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Figure 1: State responses of the closed-loop system.

5 Conclusions

This paper dealt with the construction of guarantee-
ing cost output feedback controller for linear uncertain

WSEAS TRANSACTIONS on SYSTEMS Eva Gyurkovics and Tibor Takacs

ISSN: 1109-2777 653 Issue 7, Volume 7, July 2008



discrete-time time-delay systems. The uncertainty in-
volved time-varying parameter uncertainties of linear-
fractional form and external disturbances. A neces-
sary and sufficient condition for a controller to be a
guaranteeing cost output feedback was formulated in
terms of a (nonlinear) matrix inequality. A sufficient
condition in terms of a linear matrix inequality was
also given, which could effectively be solved. A nu-
merical example illustrated the proposed method.
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[7] É. Gyurkovics and T. Takács: ”Guaranteeing
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