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Abstract: - Autonomic control of food extruders has attracted considerable in recent years. With limited 
understanding of the complex physio-chemical interactions during the food extrusion process, designing a 
control system for food extruder is not easy. The common approach is to determine the operating conditions 
and then to maintain these values as closely as possible using various control loops, if not manual control. This 
paper applies genetic algorithms to achieve the parameters of the twin-screw food extrusion process. The 
genetic algorithms are very suitable for searching discrete, noisy, multimodal and complex space. The sum of 
square error on magnitude and phase of the  twin screw food extrusion process is minimize and receiving 
outstanding in shape the measured system extracted from the frequency response analysis of the food 
extrusion process. As recognized, exploitation of the optimization based on Genetic Algorithms gives 
advanced results.    
. 
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1   Introduction
As Cooking food extrusion has attracted 
considerable attention from the food industry as it 
provides and efficient means for the continuous 
processing of a wide range of foodstuffs. Cooking 
extruders are already well established in the 
production of snack foods, baby foods, breakfast 
cereals and pastas. The combination of high 
throughput rates, energy efficiency and versatility 
results in the potential for improved cost 
effectiveness and process rationalization over 
traditional production methods. Despite their 
widespread use and economic importance, modern 
Process System Engineering (PSE) techniques have 
not been applied by the food industry to the same 
extents as by the chemical and petrochemical 
industries. This is largely due to the background of 
the food industry, being much more batchs and 
craft oriented than these other industries. In 
particular, cooking extruders are extremely difficult 
to model mechanistically due to the complex 
rheological properties and flow behavior of the 
process material, poorly understood chemical; 
reactions, and the almost limitless screw and die 
configurations possible. As a result, current 

cooking food extrusion knowledge consists largely 
of empirical correlations and operator experience 
[1]
With improvement in control technology, control 
system based intelligent search techniques have 
been purposed to provide enhanced control system. 
These methods are based on Genetic Algorithms [2-
3], Neural Network [4-5] and Fuzzy system theory 
[6-8]
     Autonomic control of food extruders has 
attracted considerable attention in recent years. The 
design of control systems requires a clear definition 
of the control objective and choices of control 
variables, identification of disturbances and 
manipulative variables, and choice of suitable 
control strategy. With limited understanding of the 
complex physio-chemical interactions during the 
food extrusion process, designing a control system 
for food extruders is not easy [1]
The common approach is to determine the 
operating conditions, such as the temperature and 
pressure profiles along the barrel, which give the 
desired product quality, and then to maintain these 
values as closely as possible using various control 
loops, if not manual control. The intention is that by 
controlling these secondary process variables, the 
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product quality will also be maintained at the 
desired 
Food extrusion is essentially a multiple-input, 
multiple-output (MIMO) system. The influence of 
disturbances and manipulative variables on 
different extruder output is non-linear and involves 
interactions and time delays. Even with MIMO 
control schemes, it may be impossible to control all 
the process outputs at the desired levels. Finally, 
the product quality aspect needs to be considered as 
the ultimate aim of the control system is to yield a 
consistent product quality despite disturbances and 
process up-sets [1]. The process variables which are 
available for manipulation are the feed rate F, the 
moisture content M, the screw speed N, and the 
barrel temperature profile TB(x). The process 
outputs include the die temperature Tdie, the die 
pressure pdie, the product specific mechanical 
energy with the product bulk density ρB, and the 
product gelatinization g. Disturbances may be 
introduced into the process via a number of 
avenues, although the ones considered to be the 
greatest importance here are the rheological 
consistency index K, the tip radius of the screw Rs, 
which is gradually affected by mechanical wear, 
and the inherent moisture content of the feed 
material Mo.

Figure 1. The food extrusion cooking process 
showing inputs, outputs and disturbances [9].

2 Food Extrusion Cooking Process 
Description
Food extrusion is a shaping operation in which a 
material is pressurized by some means to force it 
through a die. The material is generally a solid at 
ambient temperature, and food extrusion usually 
requires processing the material at a high 
temperature, under which the material softens or 
melts to facilitate flow [9] A typical extruder 
consists of a barrel inside which one or more helical 

screws rotate to prop the feed material towards a 
die opening at the discharge end of the extruder, as 
illustrated in Figure 2.

The high pressure generated during this process 
forces the material to exit the extruder through the 
die. At the same time, heat is generated due to 
friction and the material is exposed to high rates of 
shear stress. 

Figure 2. Schematic representation of food 
extrusion cooking process program [10].

This usually leads to some kind of material 
transformation and determines the shape, size and 
texture of the extrudate. 

2.1  MECHANISTIC MODELLING 

The steady state model presented by Kulshreshtha 
et al. [11] and its dynamic version, Kulshreshtha et
al. [12], represent the most recent one-dimensional 
mechanistic modeling approach for twin-screw 
cooking extrusion. Both the steady state and the 
dynamic model are based on elemental heat and 
energy balances. Given the screw speed, feed rate, 
moisture content, feed temperature and barrel 
temperature profile this model calculates the 
temperature and pressure profiles along the barrel 
and the overall shaft-power required. 

2.2. THE GELATINISATION MODEL 

Starch gelatinisation during extrusion is a complex 
reaction for which the mechanisms are not fully 
understood. A review of the literature revealed that 
there have been only two different modelling 
approaches investigated, those suggested by Wang 
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et al [13] and Cai and Diosady [14]. Although it is 
not possible to conclude which of these approaches 
is the more appropriate at this stage, the model 
suggested by Cai and Diosady has been validated 
over a wider range of operating conditions, and is 
therefore the model chosen for our implementation. 

2.3. RESIDENCE TIME DISTRIBUTION (RTD) 

The effect of the residence time distribution on product 
quality is an important consideration, as a high variance 
for the RTD implies a highly inconsistent degree of 
cooking for the product. For this reason, it is 
advantageous to be able to predict the RTD for a given 
set of operating conditions, so that the extruder can be 
operated in such a way as to produce a homogeneously 
cooked product The predicted residence time distribution 
of an inert tracer was compared with experimental RTD 
data obtained by injected sodium chloride at the feed 
port of the extruder [14]. 

2.4. EXTRUDATE EXPANSION 

Extruders are often used to produce puffed products such 
as breakfast cereals, flat breads and snacks. For such 
products the expansion ratio is clearly an important 
quality variable. The model of Fan et al. [15] which 
describes the dynamics of bubble growth in starchy 
extrudates has been implemented in the general 
extruder model to provide predictions of the
expansion ratio and bubble size.

2.5. RHEOLOGICAL MODELS 

Dough mixes are non-Newtonian fluids, and their 
rheological behaviour is quite complex• The 
selection of a suitable theological model is crucial 
to the validity of the resulting extruder model, as it 
directly influences the flow behaviour, heat 
generation, and pressure  development within the 
extruder. In a previous paper [16] two different 
power law model structures were compared for 
their accuracy at describing experimental extrusion
data. However, the power law models that are 
typically applied often do not have a firm 
theoretical basis, and are therefore 1 simply 
correlations of a form that appear to fit 
experimental data over a reasonable range of 
conditions.

From a process systems engineering point of view, the 
application of a non-linear data-based modelling 
technique is a much more appropriate approach to this 
problem. Genetic Programming (GP) (e.g. McKay et al., 
1996) is a novel data-based modelling technique which 
allows the generation of a suitable model structure and 
determination of the model parameters simultaneously. 

Hence the accuracy of model predictions is no longer 
dependent on a pre-assumed model structure,

2.5 ADAPTIVE INFERENTIAL EESTIMATION

Typical control variables for a cooking extrusion 
process are product temperature and die 
temperature• These variables are typically chosen 
because they give some indication of the state of 
the process and are easily measured at rates suitable 
for on-line process control. Ideally however, real 
quality measures would be the control variables, 
such as degree of cook, mean residence time, or 
product expansion ratio. Unfortunately, the 
feasibility of on-line measurement of these 
variables is limited as either the instrumentation 
does not exist or the analysers require long cycle 
times. The resulting delays would prevent early 
detection of the effects of load disturbances, 
resulting in degraded process operation

Estimators that are capable of alleviating the 
problem of large measurement delays and irregular 
sampled feedback have been previously developed 
[1] Since the primary controlled variable is usually 
related to other process outputs, the estimators 
make use of these secondary outputs to infer the 
state of the primary output each time the secondary 
outputs are measured. The estimators are 
implemented within an adaptive framework to 
ensure their applicability to time varying processes. 
The parameters of the algorithm are estimated 
whenever measurements of the primary output 
become available. As a result, estimates of the 
primary output are obtained at the faster rate at 
which the secondary outputs are measured. 
To assess the feasibility of this adaptive inferential 
estimator (AIE) for applications to extrusion 
control, the AIE algorithm was used to provide 
estimates of the product gelatinisation fraction of an 
extruded starchy material, as simulated by the 
extruder model described earlier in this work. 
Product gelatinisation fraction of extruded starchy 
products can be determined off-line using a rapid 
visco- analyser. A typical analysis takes 
approximately 20 minutes, and thus this 
measurement would normally be unsuitable for 
process control purposes. 

3.   Genetic Algorithms

Genetic Algorithms (GAs) is computationally 
simple and independent of any assumption about 
search space. Moreover, they are stochastic parallel 
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global-search algorithms based on the mechanism 
of natural genetics and the biological theory of 
evolution. GAs simultaneously evaluates many 
points in the parameter space, so they are more 
likely to converge toward a global solution. GAs is 
very suitable for searching discrete, noisy, 
multimodal and complex space.

The basic concept of the G.As where developed by 
Holland [17] and revised by Goldberg [18]. 
Goldberg shows that the GAs are computationally 
simple and independent of any assumption about 
the search space. Actually they are stochastic 
parallel global–search algorithms based on the 
mechanism of natural genetics and the biological 
theory of evolution. Because GAs exploit strategies 
of genetic information and survival of the fittest to 
guide their search, they need not calculate the 
gradient or assume that the search space is 
differentiable or continuous .GAs simultaneously 
evaluate many points in the parameter space, so 
they are more likely to converge toward a global 
solution. GAs are very suitable for searching 
discrete, noisy, multimodal and complex space 
[19], [27-29].

GAs differs from other search or optimization 
algorithms. First, the algorithms work with a coding 
of the parameter set, not the parameters themselves. 
Binary coding is normally used and has been 
suggested to be optimal in certain cases. Secondly, 
the algorithms search from the population of points, 
climbing many picks in parallel, and therefore have 
a reduced chance of converging to optima. Thirdly, 
the algorithms only require object function values 
to guide their search, but they have no need for 
derivative or other auxiliary information. Finally, 
the algorithms use probabilistic rather than 
deterministic transition rules to guide their search. 
Thus, these differences contributed to a genetic 
algorithms’ robustness and resulting advantage over 
other more commonly used techniques [11].

When GAs is applied to solve the parallel problem, 
the natural parameter set of the problem needs to be 
coded as a finite length string (an individual). The 
set of all the strings is known as the population.  
Each string presents one possible solution to the 
problem. GAs begins by randomly generating an 
initial population of strings. Then this population 
evolves from generation to generation through the 
application of genetic operators, which imitates 
genetic processes occurring in nature. In every 
generation, all strings of the population are 
evacuated according to their fitness value. A simple 

GA is composed of three operators: reproduction, 
crossover, and mutation. Reproduction is based on 
the principle of survival of the fittest. It is a process 
by which strings are copied according to their 
fitness with greater fitness receive one or more 
copied, in the new population, and those with low 
fitness may have none. The systematic information 
exchange utilizing probabilistic decisions is 
implemented by crossover. To applying this 
operator, two strings are selected from the 
reproduced population to produce new offspring by 
exchanging portions of their structure. The 
offspring may replace weaker individuals in the 
population. Crossover is responsible for producing 
new trial solutions. Mutation is a local operator, 
which is applied with a very low probability of 
occurrence. It is the occasional random alteration of 
a string position to produce a new structure, which 
provides insurance against the permanent loss of 
any simple bit.
GAs efficiently exploit past information to explore 
new regions of the decision space with a high 
probability of finding improved performance, and 
are theoretically and empirically proven to provide 
robust searches in complex spaces [19], [27-29].

3.1 IDENTIFICATION PROBLEM

Generally, the method of nonlinear system, which 
is possible to separate into “nonlinear” and “linear” 
parts, is called Block-Oriented model. Absolutely, a 
wide range of the nonlinear system is possible to 
regard as separate system. In this paper we will use 
Hammerstein model, which the linear part is 
followed by the nonlinear function.
We consider discrete time linear systems so that the 
general structure of the Hammerstein model can be 
described as follows:

   
     knk
qA

qB
ky  



.
1

1

(1)
Where,

    ;, kfky       (2)

In equation (1), q-1 is the unit time delay, B and A 
are two polynomials of unknown orders and 
coefficients, µ, y, and n respectively represents 
system input, output, and stationery white noise 
with zero mean and finite variance, and θ is the 
vector parameters of the memory less nonlinear 
function f.
We implement a fixed length binary string genetic 
algorithms to approximate both the structure of 
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nonlinear function and order of the polynomials, A 
and B.

Where,
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1

1
10

1

(3)

And, nonlinear function is one of the hyperbolic 
function or x with unknown coefficient regarded as 
parameters to be estimated by the GA. This part can 
be both one of the functions listed in table 2 or a 
combination of them capable of estimating more 
complex function or estimate one structure more 
precisely. The reason for selecting abovementioned 
function is their resemblance to some famous hard 
nonlinear function, which is shown in fig. 3.

Fig.  3.  Similarity  between  hyperbolic  function  
and famous nonlinear function. [19]. 

Fig.  3  use  one  of  the mentioned  function  to  
approximate the nonlinear function, using the 
combination of the basic function will  help  us  to  
better  approximate  the  nonlinear functions. 

The main features of the GA are:

 Parameters encoding

Gene on chromosomes is composed as binary 
bit unit and is expressed as the binary string of 
limited M and the population length. Initially, 
this generates length with string N. The 
parameters are coded using binoary code. Real
numbers can be coded easily with  their 
equivalent binary representations. In order to 
encode the structures we made the following 
assumption, which has been shown in table 1.

Table 1. Basic function and their codes.

Code Function
00 Sinh (  )
01 Cosh (  )
10 Tanh (  )
11 ax  +  b

 Fitness Evaluation

GA needs fitness for superior population 
formation. It can be possible with the help of 
the evaluation of excellence and worthlessness 
among strings, mainly; it is calculated from 
objective function. The fitness evaluation is 
performed every generation for each string and 
the results of the fitness evaluation become 
important information for reproduction, 
crossover, mutation, etc.

 Reproduction

Reproduction operator performs the modeling 
of the natural selection phenomenon, adapted 
string is  survived, otherwise is disused. That is, 
the strings with high fitness increase in 
reproduced probability at next generation. In
general, a roulette wheel selection method is 
used.

 Crossover

In an ecosystem, chromosomes occur the 
phenomenon of exchanging some genes. This 
phenomenon is designated also that the 
crossover.  This is an important phenomenon
string with the chromosomes of finite numbers 
obtain genetic variation. In general, the 
probability raising crossover between two 
strings is from 0.6 to 0.95. In search course, the
genetic search method has merits because it can 
obtain the global performance superior to 
parents through local action among 
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chromosomes. Crossover carries out the core 
role in GA.

 Mutation

Mutation is phenomenon making new traits by the 
sudden form change of genes. Mutation is also an 
important factor as crossover. In general, GA are 
possible to the global shift as well as the local 
search by mutation. The mutation probability 
should be selected from 0.001 to 0.01 because rises   
regardless  of  adaptation of  environment 
mutation randomly. If the mutation probability is 
very high, it can lose important traits. Therefore, it 
must be selected properly. Finally, the flowchart of 
GAs is shown in Fig. 4 [2-3][11].

Fig. 4. Flowchart of Genetic Algorithms [10].

4. Mathematical models

Wang et al [20] presented a three stage approach to 
system identification and demonstrates that each 
stage is both simple to apply and transparent in its 
results. The three stages are:

Data acquisition using relay feedback: An 
automated technique for experimental data 
acquisition based on the relay feedback approach of 
Astrom and Hag-glund [21], but with modified 
periodic oscillations.
Step response using frequency-sampling filters: 
Identification of the system step response from the 
experi-mental data using the frequency-sampling 
filter (FSF) approach of Wang and Cluett [22].
Continuous-time transfer-function identification: 
Identification of a (continuous time) transfer 
function from the identified step response.

Each stage is automated, yet the output of each 
stage is readily understandable and can be 
examined by the process engineer before 
proceeding to the next stage.
Thus the first stage yields data corresponding to 
square waves at the correct frequency to yield 
useful information and the process engineer can 
adjust input and output amplitudes according to his 
knowledge of process behavior. The second stage 
gives a step response which is much ‘cleaner’ (in 
terms of noise and disturbance) than that obtained 
by a simple step response experiment and therefore 
can be matched to the experience and intuition of 
the engineer. The third stage yields a transfer 
function approximation to the step; the order of the 
transfer function can be chosen by the process 
engineer to trade off accuracy against complexity 
whilst yielding numerical values for steady-state
gains, time constants, natural frequencies and 
damping.
One of the essential ideas behind the proposed 
approach is associated with the idea of data 
compression in which the process experimental 
data using binary input signals are compressed into 
step responses. During this compression process 
well-established system identification tools and 
methods in discrete systems can be applied to 
obtain high quality step response models.
High quality step response models with little noise 
will lead to the estimation of continuous time 
transfer function models with high accuracy (as 
demonstrated in this paper). In addition, the number 
of data points contained in a step response model is 
far less than the number of data points in a set of 

Start
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1) Pass the best individual to next generation
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process experimental data using a binary input 
signal, which is inevitably advantageous in 
numerical computation of a continuous time 
transfer function model. It is worthwhile to point
out that use of state-variable filters in the estimation 
of a continuous time transfer function model is 
essential for overcoming the well-known lack of 
excitation problem when a step input signal is used.

There was an attempt to identify a continuous time
transfer function model of food extruder directly 
from input and output data using state-variable filter 
approach. However, because of the high noise level 
existed in the measurement of food extruder, it was 
numerically sensitive for the estimation of the pole 
locations in the continuous time model, as well as 
for the choice of state variable filters, even though a 
large number of experimental data were used. In 
contrast, in the proposed approach as the 
continuous time system estimation is set on the 
second stage of the estimation problem, it is 
anticipated that higher quality continuous time 
models will be obtained when there is little noise in
the step response data.

4.1. DATA ACQUISITION USING RELAY 
FEEDBACK

A simple relay is a nonlinear element that switches
between the levels -a and +a based on the error 
signal e and generates a square wave input signal u 
to the process. In the extruder case, the process 
outputs are corrupted with noise, hysteresis is 
added to the relay to reduce the effect of the noise 
(see Fig. 5). Adding hysteresis to the relay produces 
a dead-zone to prevent the relay signal from 
switching due to the noise. It is well known that if 
the width of the hysteresis  equals zero, then the 
oscillation frequency corresponds to the crossover 
frequency of the process under the feedback 
control. An integrator in series to the relay element 
generates a stable oscillation with the dominant 
frequency corresponding to -90o on the Nyquist plot 
[21].

A standard relay experiment produces in most cases 
a limit cycle dominated by a single frequency. 
However, this information is not sufficient for the 
estimation of a continuous time transfer function 
model. The strategy we adopt in the identification 
experiment design was introduced [23]and applied 
by Wang and Gawthrop [24] to simulation studies 
of continuous time system identification, in which 
we make use of multiple relay experiments to 
generate frequency response information at several 
frequencies. The proposed apparatus com-
bines in parallel a relay element with an integrator 
in series with a relay element. Fig. 5 provides a 
block diagram of this apparatus. The experiment is 
performed by alternatively switching the error 
signal between the relay path and the integrator-
relay path. The design of the experiment then 
reduces to the selection of this switching sequence. 
The proposed relay experiment on its own provides 
some interesting ideas about how to design input 
signals for continuous time identification. One of 
the main benefits of the apparatus is that the design 
of an identification experiment suitable for 
obtaining a mathematical model has now been auto-
mated. In addition, choice of sampling rate can be 
set to near continuous measurement.

Wang et al [20] combined stages approach to 
system identification in a novel way and verified 
the approach in an industrial application context.

A multi-frequency relay feedback control system 
[5] was implemented on the food extruder to ensure 
safe operation of the process when doing 
identification experiment and to obtain 
experimental data that have relevant frequency 
content for dynamic modeling. Continuous-time 
transfer function models were estimated using the 
state-variable filter approach presented in Wang 

Fig 5. Data acquisition: multi-frequency relay feedback system [20].
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and Gawthrop [9][26-27]. More specifically, 
suppose that µ1, µ2, y1 and y2 represent screw speed, 
liquid pump speed, SME and motor torque, 
respectively. 

Then the continuous-time model for the food 
extruder is

,
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The continuous-time transfer function models have 
been validated using four sets of experimental data 
which are independent from the data sets used for 
estimating the models. For the equation it could be 
in the normal form as the following:
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The objective function is the sum of square error 
(SSE) as the following [3]:

 
2

1




N

i
simulatedmeasured yySSE (7 )

 ymeasured: the measured magnitude and phase on  
              frequency response characteristics

ysimulated: the simulated magnitude and phase on  
              frequency response characteristics

5.    Simulation Results

The parameters describe by following are setting 
for the Genetic Algorithms used in this paper.

GA:
Number of population  = 50
Crossover  =   4
Mutation                      =   8

Variable : G11  Range

b0:[0, 0.01225]; b1:[0,1.0525];
a0: [0, 0.01095]; a1:[0, 0.33385]; 
a2:[0, 1.51450]; a3:[0,5]

Fig. 6. Frequency response characteristics of the 
system and the Genetic Algorithms with by SSE for 
screw speed input and SME output.

Table 2. Comparison among obtained parameters
for screw speed input and SME output.

Parameters
Methods

Poles Zeros

G11 -0.13212+0.19774i
-0.13212-0.19774i
-0.03864  

-0.01164

GA -0.13266+0.19536i
-0.13266-0.19536i
-0.04054

-0.01220

It could be seen that the best control performance 
was obtained using SSE for screw speed input and 
SME output. Moreover the obtained parameters 
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shown in Table 2 are very closed when compared 
between system and Genetic Algorithms.    

Vriable G12 Range
b0 :[-0.00025, 0]; b1 :[0, 0.00275]; 
a0 : [0, 0.00425]   a1:[0, 0.03885] ;
a2:[ 0, 0.52615]; a3: [0, 1.051955];
a4:[0,5]

Fig. 7. Frequency response characteristics of the 
system and the Genetic Algorithms with by SSE for 
liquid pump speed input and SME output. 

Table 3. Comparison among obtained parameters
for liquid pump speed input and SME output.  

Parameters
Methods

Poles Zeros

G12 -0.06746+0.28363i
-0.06746-0.28363i
-0.03773+0.09286i
-0.03773-0.09286i

0.27148
0.14587

GA -0.06757+0.28620i
-0.06757-0.28620i
-0.03201+0.09658i
-0.03201-0.09658i

0.26098
0.16263

It could be seen that the best control performance 
was obtained using SSE for liquid pump speed 
input and SME output. Moreover the obtained 

parameters shown in Table 3 are very closed when 
compared between system and Genetic Algorithms.    

Variable G21  Range
b0:[-0.00115, 0]; b1 :[0, 0.00490];
a0: [0, 0.01715]; a1 : [0, 0459165]; 
a2:[0, 2.11015]; a3:[0,5]

Fig. 8. Frequency response characteristics of the 
system and the Genetic Algorithms with by SSE for 
screw speed input and motor torque output.

Table 4. Comparison among obtained parameters
for screw speed input and motor torque output.

Parameters
Methods

Poles Zeros

G21 -0.18797+0.19791i
-0.18797-0.19791i
-0.04609

0.21012

GA -0.20005+0.21012i
-0.20005-0.21012i
-0.49102

0.19465

It could be seen that the best control performance 
was obtained using SSE for screw speed input and 
motor torque output. Moreover the obtained 
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parameters shown in Table 4 are very closed when 
compared between system and Genetic Algorithms.    

Variable G22  Range
b0 : [-0.000085, 0]; b1 : [0, 0]; 
a0: [0, 0.03420]; a1: [0, 30160]; 
a2:[0,5]

Fig. 9. Frequency response characteristics of the 
system and the Genetic Algorithms with by SSE for 
liquid pump input and motor torque output.

Table 5. Comparison among obtained parameters
for liquid pump input and motor torque output.

Parameters
Methods

Poles Zeros

G22 -0.03016+0.07698i
-0.03016-0.07698i

0

GA -0.03014+0.07699i
-0.03014-0.07699i

0

It could be seen that the best control performance 
was obtained using SSE for liquid pump input and 
motor torque output. Moreover the obtained 
parameters shown in Table 5 are very closed when 
compared between system and Genetic Algorithms.    

For all simulation results, the results simulated by 
using the parameters obtained from the Genetic 

Algorithms are reasonable when compared with 
system data.

6.   Conclusion
This paper illustrates the genetic algorithms to 
estimate parameters of the twin screw food 
extrusion process. The comparison between 
obtained parameters from system data and genetic 
algorithms are investigated.  GAs efficiently exploit 
past information to explore new regions of the 
decision space with a high probability of finding 
improved performance. Finally, this result could be 
applied for further model predictive control system 
(MPC) in steady-state operating conditions, 
regulatory control, and reference following control.
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