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Abstract: - In the area of level-walking gaits, gaits can be categorized into two types according to the terrain 
condition : gaits on perfectly smooth terrain and gaits on terrain which contains forbidden areas (areas which 
are not suitable for foot placement).The main characteristic of the modular walking robots is that they are able 
to move away on not arranged, horizontal and rough terrain. The performance of walking robots is closely 
related to the adopted gait. The movement of the walking robots can be divided in two modes: condition of the 
static stability; condition of the dynamic stability. During walking, the legs move according to the gait and two 
forelegs are adjusted to avoid forbidden areas. Different methods of leg adjustments and body adjustments are 
integrated into the strategy. In the work are analyzed the possibilities of determination of the limit conditions 
for the stable displacement of the walking robots. In the work are analyzed the possibilities of determination of 
the limit conditions for the stable displacement of the quadrupedal walking robots. Finally, this strategy is 
verified by using computer graphics simulations. 
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1  Introduction 
 
 
The selection of the type of gait is a very 
complicated matter, especially in the real 
conditions of walking on the unarranged. 
Therefore, it is necessary that the terrain surface to 
be selected before the type of gait is chose. 

The walking robot alternatively leans upon 
some of its legs and  moves the others in a new 
position, ensuring to it self a stable support. To 
achieve and control a walking robot, one must 
know all its walking capabilities, as the choice of 
the number of legs and their structures depend a lot 
on the selected walking type. The selection  of the 
walking gait  type depends on a string of factors 
such as: 

- shape and constituency of the ground the 
robot  walks upon; 
- the gait’s stability; 

- the way of  guiding and controlling the 
movement of the shift system elements; 
- attainment of the velocity and mobility that 
the  motion requires.  
It is quite sophisticated a job to choose the 

motion type,  the  more under the real field walking 
circumstances. The gait of a walking robot is a 
sequence of movements by its legs,  coordinated to 
a sequel of movements of its body, whose final 
goal of the robot’s moving to different places. In 
order to visualize the motion of a modular walking 
robot, models of the walking robot and the terrain 
must be established. Recently, the gaits for walking 
on rough terrain have drawn more attention from 
researchers. For example, some obstacle-crossing 
gaits of a hexapod and quadruped were studied in 
[4],[5]. A computer-generated free gait was 
developed in [12]. A discontinuous follow-the-
leader gait was developed and successfully 
implemented to control a hexapod in walking over 
uneven terrain [4], [17] A continuous follow-the-
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leader gait was formulated and studied in [17],[11]. 
Two terrain-adaptable free gaits were developed to 
enable a quadruped to enable a quadruped to walk 
on a rough planar terrain [14].  

Among the above-mentioned gaits, the gaits 
which have the follow-the-leader feature seem to 
be most suitable for rough terrain in walking. The 
discontinuous follow-the-leader gait developed in 
[17],[18] followed a special leg moving sequence 
and allowed only one leg to be lifted at a time so 
that good stability could be maintained. The body 
movements were inserted into two designed leg 
movements and the overall body motion was 
discontinuous [1],[19]. This type of walking mode 
provides good mobility on rough terrain.  

This type of walking mode provides good 
mobility on rough terrain. However, it suffers a 
slow speed due to the discontinuous body motion. 
This may not be a problem for walking in severely 
rough terrain, but it certainly limits the 
performance of the walking machine in mildly 
rough terrain. Compared to the discontinuous 
follow-the-leader gait, a continuous follow-the-
leader gait can reach a higher speed and maintain 
smoother body motion on mildly rough terrain due 
to its periodic nature[6], [17]. During walking, the 
walking machine has at least two legs in the air at 
one time and the stability is reduced.  

As a result, the mobility of the continuous 
follow-the-leader gait is not as good as the 
discontinuous follow-the-leader gait.  
 
2   Mathematical modeling of gait for 
modular walking robots. The walk as 
sequence of states. 
 
A cycle of the movement of the leg of a  modular 

walking robot has two phases: the support phase 
and the transfer phase. In the first phase, the leg’s 
support part has a direct contact with the walking 
surface area. In the transfer phase, the leg of the 
robot is above the walking surface and is moving 
so that it realizes the stability state on the whole of 
the walking robot. The walk of the robot is 
characterized by the order raise and seat of the legs 
and by the trajectory form of the theoretical support 
point in comparison with the platform. To establish 
the walking order it is needed to number the legs. 
The state of the leg (i) at a given time [2], [14], 
[13],  is described by a state’s function qi(t), that has 
only two values, 0 and 1, as it follows: 

( )
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On the interval [0, t1], the leg is in the support 
phase. On the interval [t1, t2], the leg is not leaning 
upon the support surface and it is in the transfer 
phase. On the interval [t2, t3], the leg is on the 
support surface again etc. At a moment of time, the 
state of the walking robot with N legs is defined by 
a N-dimensional vector q, named the vector of the 

legs states. The vector’s components qi, i = 1,  N , 
are formed by the functions of the legs’ states, 
ordered by their numbering: 
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so that the first component of the vector define the 
state of the leg 1, the second one is the state of the 
leg 2 etc. 

It is assumed that in any finite interval of time 
there is a finit number of moments that defines the 
values of the functions qi(t). The q states, that 
appear at every change of the value of the function 
qi(t), are numbered chronologically as they are 
carried on. As a result, the walk of a walking robot 
is described by a succession of states (qj ), j = 1, 2,.. 
An example of the succession of the states for a 
walking robot with 4 legs is: 
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It is assumed that, at the initial moment, all the 
walking robot’s legs are in the support phase. After 
this, the leg number 1 is raised and moved down, 
followed by the raise of the leg number 2 and its 
move down etc. The walk is cyclically if the 
succession of the states (qi) is periodical. The total 
amount of the realized states in a time period is 
named the walk cycle. In the above example, the 
walk is cyclic if after the state q9, determined above, 
follows the state q2, state q3 etc, in that order. 
 

3 Determination of stability 
conditions with the movement of the 
modular walking robot on rough 
terrain 

 
An important feature of the walking robots is that 
the ground’s configuration never influences or 
affects their movement too much.  Such a feature 
makes this locomotion type turn into an attractive 
solution for many applications that requires 
movement on an unplanned land, namely having an 
uneven configuration.  
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As uneven land covers an endless variety it is 
difficult to match all the types and cases of walking 
on such grounds.  
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Fig.1 Model of walking modular robot 

 
To study the issue we need a simplification of 

the geometrical features of the real terrain. For this, 
we introduce the notion obstacle, hurdle- The 
obstacle is isolated if it can be included in the area 
between a vertical plane and a perpendicular one on 
the walking direction; besides there are no 
forbidden area for the walking robot to step 
forward in the area of its movement..  

 
Fig.2. The walking modular robot MERO 2. 

 
The support area separated through the 

mentioned planes is called the obstacle’s area 
(zone), where it is forbidden to place the support 
points of the robot’s legs and feet. The width of the 
obstacle’s area depends on the ratio of the 
obstacle’s dimensions, on the geometrical 
parameters and the technical features of the 
walking robot. The presence of the obstacle on the 
support area can lead to the change in the 

movement direction, in the height of the movement 
of the body of the walking robot or its orientation 
in space as well as to the appropriate redefining of 
the steps’ order and sequence  and in the regime of 
the legs’ movement.  Figure 1 shows the model of a  
modular hexapod robot MERO2 and figure 2 the 
walking modular robot MERO 2 was developed 
at University ”Politehnica “of Bucharest .  
 
3.1 Stepping over isolated obstacle  while 
preserving static stability  
 
The presence of the obstacles on the support 
surface may lead to changing the direction, the 
height of the body’s movement and its orientation 
in space as well as the appropriate reorganization of 
the sequel of watching the regime of the legs’ 
movement. 

This paragraph will follow, in compliance with 
[2], the case when to prevent the obstacles, it is 
enough only to change the sequel of following and 
maybe the height of the  body’s center of gravity 
(mass point) preserving the same the other 
movement features of the robot. Like before we 
will assume that the legs’ suspension points are 
symmetrically placed to the vertical plane including 
the body’s center and the speed parallel to it. The 
paths followed for the right and left legs of the 
robot we assume to be rectilinear and parallel to the 
speed vector. We are given the body’s mass point 
to be projected on the center line between the 
follow paths. 

We will name the obstacle ‘isolated’ if we can 
include it in the field between two vertical planes, 
erect on the body’s movement direction so that the 
follow paths beyond this field lack the points 
forbidden to advance. On the support area the 
above mentioned planes separate the area called the 
obstacle’s zone where it is forbidden to place any 
follow points. Its ends are erect on the follow paths. 
The zone’s width depends on the ratio of the 
obstacle’s dimensions and the geometrical 
parameters characteristic to the robot as well as its 
control system. It occurs the problem of 
establishing the sequence of follow, which enables 
the robot to step over the area without disturbing its 
static stability. 
 
3.2 Movement of walking robots on uneven 
surfaces  
 
3.2.1. Waking robots step over  obstacles 
with defined configuration. The obstacle’s 
geometry is defined by one or two parameters.  
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Figure 3 shows the main types of obstacles such as 
a slope in figure 4a, a ditch in figure 4b, a step in 
figure 4c, and an insulated wall in figure 4d. 
The walking robot moves on a slope. The main 
difference between walking on a slope and walking 
on a horizontal plane surface  consists in the fact 
that the projection of the robot’s center of gravity 
changes position against the sides of the support 
polygon, if the slope exceed a certain limit, the 
projection no longer lies inside the support 

polygon. 
 
Fig 3 Geometric modular walking robot model 
 

    If the periodical walking on a plane, flat surface 
is symmetric to the longitudinal and lateral axes of 
the body, the limit of the. anterior (fore) 
longitudinal stability is equal to the limit of the 
posterior (back).longitudinal stability. When the 
robot walks on a slope, when it goes both up and 
down, the limits of the longitudinal fore and back 
stability diminish accordingly, due to the change in 
the position of the projection of the center of 
gravity. A sensor is used to emphasize the walking 
robot’s stance a sensor that measures the platform’s 
inclination in two planes, a sagittal and a frontal 
one. 

   
Fig. 4. Different shapes of obstacles 

To improve the robot’s stability when it moves 
along a slope, there are two strategies such as: 
 -its body’s height is diminished and its 
position adjusted; 
 -the step’s length is also curbed. 
 
 3.2.2. The walking robot moves on a slope, 
through adjusting the  height it steps at and its 
body’s  position  
 
The walking robot moves along a maximally 
inclined slope. First, it is analyzed the efficiency of 
diminishing the body’s height when the robot 
walks along a slope. The movement happens when 
the body’s longitudinal axis is parallel to the 
maximal slope’s line. θ is the slope’s angle (fig. 5 
and H tanθ is the deviation of the projection of the 
center of gravity on the support surface. You can 
calculate the limit of longitudinal stability the 
longitudinal stability by: 
                                Sl = S'l cos θ            (4) 

Instability occurs when Sl < 0 at any moment 
of  the full locomotion cycle. Instability occurs 
when Sl < 0 at any moment of  the full locomotion 
cycle.    
 

 
 

Fig. 5. The slope’s inclination angle 
 
Therefore we have to take in consideration only 

the minimal limit of the longitudinal stability. 
No matter if the robot goes up or down the slope, 
its stability is similarly affected, because of the 
movement of the projection of the center of gravity, 
as undulated walk types are symmetrical to the 
body’s side axis, at a similar inclination.SO is the 
limit  stability of the horizontal walk (slope angle θ 
=0). You can calculate stability limit at a slope 
angle θ, through the relation: 
                 S = (S0 − H tanθ)cos θ             (5) 
he maximal height the robot can move at, Hm can 
be calculated putting the condition that stability 
limit:   
           S = 0 and: Hm = S0 ⋅ tan θ             (6) 
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For a given height H of the body, the maximal 
inclination is given by the relation: 
            θmax = θm = arctan(S0 / H).             (7) 

As the body’s minimal height is H0 − RZ0, the 
maximal inclination is found by the relation: 

θm = arctan(S0 / (H0 − RZ0)).             (8) 
For the precise walk, the maximal stability is 

obtained lifting the robot’s both back legs at an 
utmost height on the side where the legs go down, 
Then:  

S0 = P0 + RZ0 / 2               (9) 
Taking into account the use factors β = 3/4 and β 

= 11/12, the limit stability of the undulated walking 
is determined by the equation: 

S = ((n/2)-1)(P/ R)β+β − 3/4  (10), 
And the growth in the step’s length leads to the 

rise in its stability. This is why the walking robot’s 
stability limit is 
      S0 = P/ 2 + (1 − 3/ (4β)) R            (11) 

For walking on a slope it is advisable a use 
factor whose value is closer to the upper limit β = 
11/12. 

Replacing the values of the limit S0 in equation 
(8) we find out the inclination’s maximal value.  

Adjusting the platform’s position, the projection 
of the center of gravity does not move if the 
platform keeps horizontal and the same level. Thus, 
the stability limit is the same as that of waking on a 
plane and horizontal ground. 
    The body can be kept horizontally only if the 
slope’s angle is smaller than the limit angle φm.  

Figure 6 shows that the limit angle is  
φm = arctan(2RZ0 / L)                         (12) 

 

 
 

Fig. 6.  The 6-legged modular robot walks on 
the slope and the body’s inclination is 

diminished 

So that all the six legs of the robot should have the 
same stroke, an horizontally placed body can cross 
an utmost inclination of the line running through 
the points A and B/ and the angle’s size is: 

φ0 = arctan[RZ0 /(2P0 + RZ0)]  (13) 

For this robot, the authors built and tested, the 
angle φO that equals 150. The stability limit SO′ for a 
walk on a surface inclined at such an angle is  
            SO′ = SO / cos φO.             (14) 

The distance between the center of gravity and 
the hypotenuse AB is: 
OC = (H0 − RZ0 / 2) cosφ0.                         (15) 

If the slope’s angle θ is bigger than the angle φ0, 

the robot’s body cannot be perfectly horizontal (fig. 
7). The body’s angle is θ′ = θ - φO.  

Point E where the axis OZ and the slope’s 
surface intersect is called the geometrical center of 
the support area. As the supports are symmetrical 
to the body’s lateral axis that runs through point E, 
a deviation of the center of gravity must be 
measured contingent to the position of point E. 

Point D is the center of gravity’s vertical 
projection (elevation) on the ground’s sloped 
surface. The projection’s deviation is DE: DE = DC 
− EC, or: 

DE = OC(tan θ − tan φO)                       (16) 
In this case the  limit stability on the slope is: 
S′ = S′0 − DE                 (17) 

and the walking’s limit stability becomes: 
S = S′ cos θ.    (18) 

Replacing the equations (14), (16) and (17) in the 
equation (18) we get: 

S=[S0 /cos φ0−OC (tan θ - tan φ0)]cos θ.      (19) 
The slope reaches its maximal angle when S 
becomes zero. This is calculated through the 
equation: 

θm=arctan[(S0 / cos φ0 + OC tan φ0) / OC],   (20) 
and for a walking robot it becomes  

θm = arctan[(1.2 S0 + 12.46) / 51.21].      (21) 
Comparing the results of the previously used 
method where it has been diminished the height the 
body stands at, we notice that the previous method 
is more efficient. Sometimes we can combine the 
two methods specific to walking on a slope. First it 
is adjusted the body’s position so that to reach the 
desired θ′ angle.  
Thus, the body’s height is diminished till the upper 
front edge of the workspace touches the ground in 
this case the body’s new height  OC is: 
OC = OE cos (θ − θ′) = {H0 [RZ0 − (P0 + RX0/ 2)tan 

(θ - θ′)]} cos (θ − θ′)     (22) 
The walk’s geometrical center is the point E and 
the OE line and the line OC intersect at the angle θ 
− θ′. Replacing the difference φO = θ − θ′ in the 
equation (23), the stability limit becomes: 

S = (S0 / cos (θ − θ′) − OC [tan θ − tan (θ − θ′)]) 
cosθ                                                               (23) 

3.2.3. Movement along a slope  whose  angle is 
zero. If a walking robot crosses a sloped area 
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whose inclination angle is θ and if it moves along a 
line whose slope’s angle is zero, and the walking 
robot’s body keeps parallel to the slope’s surface, 
the projection of the center of gravity runs laterally 
to the descending side, at a distance H tanθ if the 
legs keep a normal position against the  ground. 
summarizes such a situation. 

For a precise walk, the maximal slope to be 
adjusted through such a strategy comes up when  
the deviation of the center of gravity equals W/2  
and thus: 

H tan θ = 0.5W.             (24) 
If the body’s height is maximally reduced, the 
equation (24) becomes  

θm = arctan(0.5W/ H).             (25) 
If  the legs stepping on the descending slope are 

fully extended, the maximal slope is  
θm = arctan[(W + RYT)/2],           (26) 

where  RYT is the stroke/haul of a lateral step for a 
maximal workspace value. 

For the undulatory walk the stability limit for a 
movement on the slope is  
   S′ = S′0 − H tan θ/tan γ, for H tan θ ≤ W/2,  (27) 
where γ is the angle for the minimal stability limit 
along the body’s longitudinal axis. 

The moment when the limit of the longitudinal 
stability for an undulatory walk has a minimal 
value is that where one of the back legs is risen [7], 
[4]. Here they are the positions for feet 3 and 6, for 
a walking robot, at the moment when foot 5 is risen 

P(3) = R/2 − (2β − 1) R/β  (28) 
P(6) = − P + R / 2 − (β−1 / 2) R / β (29) 

The size of the angle γ is: 
γ = arctan{W / [P(3) − P(6)]} = arctan{W / [P + (1/ 

(2β) −1)R]}                                              (30) 
where W is the platform’s width measured between 
the positions where the legs hang up.  
As the body’s longitudinal axis is parallel to the 
horizontal plane  S′ = S then : 

S = S0 − H tan θ / tan γ for H tan θ ≤ W / 2.  (31) 
For a slope having a given angle θ, the body’s 
maximal height Hm is: 

Hm = S0 tanγ / tanθ.               (32) 
As the body’s minimal height is H0 − RZ0, the 
maximal inclination in this case is the smallest of 
those resulting from the equation (27) and of the 
following one: 

θm = arctan[S0 tanγ / (H0 − RZ0)].               (33) 
For the second situation, the body’s position is 
adjusted namely it is brought to level, through 
stretching the legs on one side and bending those 
on the opposite side 
The projection of the center of gravity is kept on 
the central line so that it should not alter the body’s 

stability limit. The slope’s maximal inclination 
when the body can be  completely  brought to level 
is the following: 

      αO = arctan(RZ0 / W).                            (34) 
 If the slope’s angle is bigger than α0, the body 
cannot be fully abducted to the level  

 
Fig. 7. Robot’s movement on the slope to a 
direction whose inclination is null, through 

reducing the body’s height 
 

The distance between the extremities’ positions, 
measured parallel to the slope’s surface is: 

              W′ = W / cos αO.  (35) 
The support’s geometric center is in point E. The 

deviation of the projection of the center of gravity 
is:  

DE = DC − E = OC (tanθ − tan αO), (36) 
and:  

OC=(H0 − RZ0/2)cos αO.            (37) 
For the precise walk the slope’s angle is 

maximal when the deviation equals W/2 and 
therefore: 

θm = arctan [0.5W′ / OC + tan α0]. (38) 
 
if the legs on the ascending side rise, and those on 
the descending side go down by the same distance 
RYT, the projection of the center of gravity goes 
upwards by the distance d = RYT cosα0. 

Then: 
DE = OC(tan θ − tan αO) − 0.5RYT cosαO;      (39) 
OC = (H0 − RZ0 / 2) cosαO − 0.5RYT  sinαO.     (40) 

From equation (39) and using W′, you can 
calculate maximal inclination angle θm: 

θm = arctan{[W′ / 2 + (0.5RYT  cos α0] / OC + tan 
α0)}.     (41) 

Undulatory walk’s stability limit on a slope is: 
S′ = S′0 − DE / tan γ,      (42) 

where angle γ defines the minimal limit Sl  related 
to the body’s  longitudinal axis.  
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As the body’s longitudinal axis runs parallel to 
the horizontal plane, S = S′ and S0=S′0. The walk’s 
stability limit in this case is: 

S = S0 − DE / tan γ, for DE ≤ W′ / 2. (43) 
     Replacing the expression DE in the equation 
(34), in equation (40) we get: 

θm = arctan[(S0 tan γ + OC tan α0) / OC].  (44) 
 The slope’s maximal angle is the minimal 
values that the equations (38) and (44) give. 
 
Exemple. The Modular Mobil Walking Robot it is 
necessary to know all the walking possibilities, 
because the selection of the legs number and its 
structure depends on the selected type of the 
gait.[9], [15]. The selection of the type of gait is a 
very complicated matter, especially in the real 
conditions of walking on the rough terrain. The 
longitudinal stability margin, Sl is the shorter of the 
distances from the vertical projection of the center 
of gravity to the front and rear boundaries of the 
support pattern, as measured along the direction of 
motion (see figure 8). If certain obstacles occur on 
the walking surface, a special crossing gait must be 
used, after learning the dimensions of such 
obstacles. Depending on the type of the obstacle, its 
surpassing can be made by the precise arrangement 
of the legs in the permitted areas around the 
obstacle. In such a case, the a periodic gait, named 
“follow the leader” is highly recommended In case 
of walking on an unarranged terrain, due to the 
great diversity of the obstacle dimensions and 
forms, precise walk is not recommended. 

 

. 
Fig. 8. The longitudinal stability margin 

 
Figure 9 shows the model of a modular hexapod 

walking robot The body coordinate system x-y is 
attached to the body center and the x-axis is aligned 
with the body longitudinal axis. The center of 
gravity is coincident with the body center. Each leg 
is assigned a number as is shown in figure 8. Each 
leg is represented by a line segment which connects 

the foot point and hip point is considered unlimited 
(i.e., the workspace of each leg is unlimited).   
 

 
 

Fig.9 The model a modular walking robot 
 
The terrain used in the study is two-dimensional, 
unarranged terrain. The terrain is divided into many 
cells and each cell is about the size of a footprint. 
The cells are classified into two types: a permitted 
cell and a forbidden cell. A forbidden cell is not 
suitable for a foot to tramp on it due to weakness of 
the soil structure, a ditch, or other reasons. A 
collection of many forbidden cells is a forbidden. 
 
 
4.The movement of the walking 
robots 
 
 
One of conditions imposed on the motion of 
walking machines is the stability. The movement of 
the legged robots can be divided in two modes: 

- under condition of the static stability, 
- under condition of the dynamical stability. 

 The main difference between robots which 
walked under the static stability and under the 
dynamical stability conditions originates from the 
fact that during statically walking, the vertical 
projection of the gravity center of the robot must 
lies into the supporting polygon, where as during 
the dynamical walking, this condition can be not 
satisfied. The problem of quasi-statical stability 
analysis in condition of arbitrary step when the 
accelerations of points of component elements are 
much smaller than gravity acceleration is identical 
with the problem of stability analysis when the 
robot does not walk. The inertial forces are 
neglected and the walking can be controlled in a 
kinematics way. 
 The investigation of statical stability is based 
on the notion namely hardening configuration. 
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Hardening configuration is a term used to indicate 
the rigidly structure of the robot, obtained through 
the shutting off the driving motors. The position of 
the walking robot is stable if the hardening 
configuration is in posture of stable equilibrium 
under the action of gravity forces. 
 The hardening configuration is statically stable 
if this accomplished the following conditions: 
 1. The vertical projection of the gravity center 
must be inside the supporting polygon. The 
supporting polygon is the minimum convex area 
which is obtained by connecting all support points. 
A body at rest in a gravitational field, subject to 
ideal connections, has the differential of the gravity 
center elevation equal with zero. 
 2. The tangential components of the reaction 
forces in the support points must be less than 
friction forces between feet and support surface. 
 
4.1. The movement of the modular walking 
robots 
A modular walking robot [10] (figure 10), which 
moved under dynamical stability condition can 
attain higher velocities and can take steps with a 
greater length and a greater height.  
 

 

Fig.10 Quadrupedal modular walking robot 

But, the central body of the robot cannot be 
maintained in the horizontal position because it 
tilted to the foot which is lifted off the ground 
area.The size of the maximum inclination angle 
depends to the forward speed of the robot. The 
stability problem is very important for the moving 
of the quadrupedal walking robots. When a foot is 
lifted off the ground, the other legs supporting the 
robot’s body are in contact with the ground. If the 
vertical projection G΄ of the gravity center G of the 
legged robot is outside of the supporting polygon 
(triangle P1 P2 P3) (Fig. 11), and the cruising speed 
is greater than a certain limit, the movement of the 
robot is realized under condition of the dynamical 
stability. When the leg (4) is lifted off the ground, 

the walking robot rotates around the straight line 
which passes through the support points P1 and P3. 

G

.

24 PP

,PPG 31'  
 

Fig. 11 The overturning movement of the walking 
robot 

The magnitude of the forward speed did not 
influence the rotational motion of the robot around 
the straight line P1P3. This rotational motion can be 
investigated with the Lagrange’s equation [13]: 
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 The kinetic and potential energies of the 
hardening configuration of the robot have the forms 

2
) (

2
2 α+=

&

IAGmT , )sin1(  α−= AGgmP ,  (46) 

and the generalized force is 
α−= cos  AGgmQ .          (47) 

where m denotes the mass of the entire robot, I is 
the moment of inertia of the robot structure and AG 
is the distance between the gravity center G and the 
rotational axis P1P3 (Fig.11). Substituting the (46) 
and (47) into (45), it results: 

         
2 

cos  2

AGmI

AGgm

+
α

−=α&&                (48) 

 Because the moment of inertia of a body is 
proportional with its mass, the angular acceleration 
α&&  does not dependent on the mass m. The 
differential equation (48) may be integrated with 
the initial conditions. For example, if at t = t0 = 0, α 
= α0 = 1.59185, I/m = 0.01125 kg and AG = 0.5 m, 
results. [12],[16]. 
  t = 0.025, α = 1.6246; 
  t = 0.050, α = 1.7082; 
  t = 0.075, α = 1.9192. 
 The quadrupedal walking robot in question, 
which moved so that the step size is 0.2 m, with 
forward average speed equal to 3.63 m/s (13 km/h 
approximate) has the maximum inclination of the 
central body equal to 0.174533. This forward speed 
is very great for the usual applications of the 
walking robots. As a result, the movement of the 
legged robots is made under condition of the static 

WSEAS TRANSACTIONS on SYSTEMS
Ion Ion, Luige Vladareanu, Ion Simionescu 
and Aurelian Vasile

ISSN: 1109-2777 850 Issue 7, Volume 7, July 2008



stability. The conventional quadrupedal walking 
robots have rather sluggish gaits for walking, but 
are unable to move smoothly and quickly like 
animal beings. 
 
4.2. The static stability of quadrupedal 
walking robot 
The quadrupedal walking robot which walks, i.e. it 
leans upon three feet, is a statically determined 
system. When it leans upon four feet, it turns in a 
statically indeterminate system.[7],[8] For 
establishing the stable positions of a walking robot 
it is necessary to determine the forces distribution 
in the shifting mechanisms. In the case of a uniform 
and rectilinear movement of the walking robot on a 
plane and horizontal surface, the reaction forces do 
not have the tangential components, because the 
applied forces are the gravitational forces only. 
 Determination of the real forces distribution in 
the shifting mechanisms of a walking locomotion 
system which moves in rugged land at low speed is 
necessary for the analysis of stability. The position 
of a walking system depends on the following 
factors: 

- the configuration of walking mechanisms; 
- the masses of component elements and their 
position of gravity centers;  
- the values of friction coefficients between 
terrain and feet; 
- the stiffness of terrain; 
- the shape of terrain surface. 

 The active surface of the foot is relatively small 
and it is considered that the reaction force is 
applied in the gravity center of this surface. The 
reaction force represents the resultant of the 
elementary forces, uniformly distributed on the foot 
sole surface. The gravity center of foot active 
surface is called theoretical contact point.To 
calculate the components of reaction forces, 
namely: 

- normal component N , perpendicular on the 
surface of terrain in the theoretical contact 
point; 

- tangential component T , or coulombian 
frictional force, situated in the tangent plane at 
terrain surface in the theoretical contact point, 
it is necessary to determine the stable positions 
of walking robots. 

 The magnitude of T  vector cannot be greater 
than the product of the magnitude of the normal 

component N  by the frictional coefficient µ 
between foot sole and terrain. If this magnitude is 
greater than the friction force, then the foot slips 

along the support surface down to the stable 
position, where the magnitudes of this component 
decrease under the above-mentioned limit. 
 Therefore, the problem of determining the 
stable position of a walking robot upon some 
terrain has not a unique solution. For every foot is 
available a field which covers all contact points in 
which the condition µT ≤ N is true. The equal sign 
corresponds to the field’s boundary.  
 
4.3. The force distribution in the leg mechanisms 
The system builds by the terrain on which to do the 
displacement and the walking robot, which has 
three legs in the support phase, is determinate 
static. The problem of determination of reaction 
force components is solved in simplifying 
assumption, namely the stiffness of the walking 
robot mechanical structure and terrain.[6],[10] The 
complex behavior of the earth may not be described 
than by an idealization of its properties. The 
surface of terrain which the robot walks on, is 
defined in respect to a fixed coordinates system 
O1ξηζ annexed to the terrain, by the parametrical 
equations: ξ = ξ(u, v); η = η(u, v); ζ = ζ(u, v), 
implicit equations:  F(ξ,η,ζ) = 0, or explicit 
equation: ζ = f(ξ,η).  
 These real, continuous and uniform functions 
with continuous first partial and ordinary 
derivative, established a biunique correspondence 
between the points of support surface and the 
ordered pairs (u, v), where {u, v} ∈ R. Not all 
partial first order derivatives are null, and not all 
Jacobians 
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),(

vuD

D

vuD

D

vuD

D ξζζηηξ
,         (49) 

are simultaneous null. On the entire surface of the 
terrain, the equation expressions may be unique or 
may be multiple, having the limited domains of 
validity.  

 The normal component N of the reaction force 
at the Pi contact point of the i leg with the terrain is 
positioned by the direction cosine (fig. 12):  
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in respect to the fixed coordinate axes system, 
where: 
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 The tangential component of reaction force, i.e. 
friction force, is comprised in the tangent plane at 
the support surface.  
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Fig.12. The Hartenberg – Denavit coordinate 
systems and the reaction force components 

 
The equation of the tangent plane in the Pi (ξPi, ηPi, 
ζPi) point is 
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or: 
ξi Ai + ηi Bi + ζi Ci - ξPi Ai - ηPi Bi - ζPi Ci = 0.  (48) 
 The straight-line support of the friction force is 
included in the tangent plane: 

,
i

Pi
i

i

Pi
i

i

Pi
i

nml

ζ−ζ
=

η−η
=

ξ−ξ
  (55) 

therefore: 
Ai li + Bi mi + Ci ni = 0.     (56) 

 If the surface over which the robot walked is 
plane, it is possible that the robot may slip to the 
direction of the maximum slope. Generally, the 
sliding result is a rotational motion superposed on a 
translational one. The instantaneous axis has an 
unknown position. Let:  

               
rrr

VU

γ
ζ=

β
−η=

α
−ξ

coscoscos
,       (57) 

the equation of instantaneous axis under canonical 
form, in respect to the fixed coordinate axes 
system. The components of speed of the Pi point, 
on the fixed coordinate axes system with OZ axis 
identical with the instantaneous axis, are: 

,  ;  ; 0VVjXViYV ZYX =ω=ω−=   (58) 
 The projections of the Pi point speed on the 
axes of fixed system O1ξηζ are: 
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   (59), 

where R is the matrix of rotation in space. 
 The carrier straight line of Pi point speed, i.e. of 
the tangential component of reaction force, has the 
equations 

,
ζηξ

ζ=
η−η

=
ξ−ξ

VVV
PiPi   (60) 

and is contained in the tangent plane to the terrain 
surface in the point Pi: 

Vξ l + Vη m + Vζ n = 0   (61) 
 To determine the stable position of the walking 
robot which leans upon n legs, on some shape 
terrain, it is necessary to solve a nonlinear system, 
which is formed by: 
 - the transformation matrix equation 
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where: A is the transformation matrix of coordinate 
of a point from the system O0X0Y0Z0 of the robot 
platform to the system O1ξηζ; 
A i is the Hartenberg – Denavit [3] transformation 
matrix of coordinates of a point from the system 
Oi+1Xi+1Yi+1Zi+1 of the element i to the system 
OiXiYiZi of the element (i-1) [3], 
 - the balance equations 

∑∑
==

=+=+
n

i
R

n

i
i MMFR

i
1

)(
1

,0  ;0   (63) 

which expressed the equilibrium of the forces and 
moments system which acted on the elements of 
walking robot. 

 The F  and M are the wrench components of 
the forces and moments which represent the robot 
load, including the own weight.  The unknowns of 
this system are: 

- the coordinates XT, YT, ZT  and direction 
cosines cosαT, cosβT, cosγT which define the 
platform position in respect to the terrain: 

- the normal iN  and the tangential iT , ni  ,1= , 
components of the reaction forces; 

- the direction numbers l i, mi, ni, ni  ,1= , of the 
tangential components; 
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- the position parameters U, V, cosα, cosβ, cosγ 
of the instantaneous axis; 
- the magnitude of V0 /ω ratio, where V0 is the 
translational instantaneous speed of the 
hardening structure. 

 The system is compatible for n = 3 support 
points. If the number of feet which are 
simultaneous in the support phase is bigger than 
three, the system is undetermined static and is 
necessary to take into consideration the 
deformations of the mechanical structure of the 
walking robot and terrain. In case of a quadrupedal 
walking robot, the hardening configuration is a six-
fold hyperstatical structure (Fig 13). To 
determinate the force distribution, one must use a 
specific method for indeterminate static systems. 
The canonical equations in stress method [8], [12] 
are: 

δ11 x1 + δ12 x2 +  … + δ16 x6 =  – δ10; (64) 
δ21 x1 + δ22 x2 +  … + δ26 x6 =  – δ20; (65) 

. . . . . . . 
δ61 x1 + δ62 x2 +  … + δ66 x6 =  – δ60; (66) 

where: 
 - δij is the displacement along the Xi direction of 
stress owing to unit load which acts on the 
direction and in application point of the Xj;  
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Fig. 13 The six fold hyperstatical structure 
 

 - δi0 is the displacement along the Xi 
direction of stress owing to the external load 

when Xj = 0, 6 ,1=i :  
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 - GIxi, 3 ,1=i , are the torsion stiffness of 
the legs elements lowers, middles and uppers 
respectively; 

 - EIyi and EIzi, 3 ,1=i , are the bend stiffness of 
the legs elements lowers, middles and uppers 
respectively; 

;6 ,1,6 ,1   ,d

 ddd

d dd

dd

4

1 3

4

1 2

4

1 1

4

1 3

4

1 2

4

1 1

4

1 3

4

1 2

4

1 1

==+

++++

++++

++=δ

∑∫

∑ ∫∑ ∫∑ ∫

∑ ∫∑ ∫∑ ∫

∑ ∫∑ ∫

=

===

===

==

jix
GI

mM

x
GI

mM
x

GI

mM
x

GI

mM

x
GI

mM
x

GI

mM
x

GI

mM

x
GI

mM
x

GI

mM

q z

zizi

q z

zizi

p z

zizi

q y

yiyi

q y

yiyi

p y

yiyi

q x

xixi

q x

xixi

p x

xixi
ij

                                                                      

              (68) 
 - M are the bending moments in basic system 
which is loaded with basic charge; 
 - m are the bending moments in the basic 
system loaded with the unit charge. 
 The definite integrals 

∫=
b

a

xMmI d                    (69) 

are calculated by the Simpson method: 

]))([(
6 bbaababa mMmMmmMM

ab
I ++++−= (70) 

 To calculate the mxi, myi, mzi, Mxi, Myi, Mzi, 

6 ,1=i , seven systems are used (Fig. 12), namely: 
- the system S0, where the single load is G, and 

Xi = 0, 6 ,1=i ; 
- the systems Si, where the single load is Xi = 1, 

6 ,1=i . 

 The remaining unknowns, namely xi, 12  ,7=i , 
are calculated from the equations (53). The normal 
and tangential components of the reaction forces 
are calculated as function of the positions of 
tangent planes on the terrain surface at the support 
points. The following hypothesis are considered as 
true: 

- the stiffnesses of legs are much less than the 
robot’s platform stiffness; 
- the four legs are identically.  
- the cross sections of the leg’s elements are 
constant; 

 

5. Experimental measurement of the 
reaction forces in the contact points 
where the robot’s feet reach the 
ground 
 
We carried out several experiments simulating 
several walking situations, in order to measure the 
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values of the forces at the point where the robot 
touches the ground. both in the sagittal and the 
front plane. Subsequently we found the values of 
the reaction forces in pre-set circumstances, when 
the four-legged robot is walking across an even 
horizontal ground.  
 

 
 

Fig.14 General view of the MERO1 modular  
walking robot 

  
  The force cells placed on the MERO1 (Fig.14) 
walking robot’s feet and the increment conduct 
sensor enable the robot to control its direction by 
adjusting its slant, during the tests the robot carries 
only its own weight namely 84.8 kg. The values of 
the reaction forces are graphically shown in (Fig. 
15.a).  
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Fig. 15 Reaction forces between the ground and the 
robot’s legs: a) m=84.4kg; b) m=106 kg 

The tests were resumed with an additional load 
weighing 21.2 kg and thus the full load reached 106 
kg, (Fig.15.b). 
    Using the walking robot as a transportation 
means we can change a few parameters defining its 
dynamic properties, at an enough large extent For 
instance, an additional load placed on the platform, 
changes the weight, the barycenter’s position and 
the inertia moments of the robot’s body. 
We can apply on the walking robot several forces 
such as, the resultant of the wind’s action, whose 
influence can hardly be anticipated. The contact 
cells also ensure the protection of the force 
transducers.  The force transducers we have 
made use of, turn the variation of a mechanical 
value (such as linear or angular movement 
achieved by distorting an elastic element) into the 
variation of an electric value such as voltage 
current by means of the electroresisitive 
transducers. Each module of the MERO1 walking 
robot is equipped with two identical sensors placed 
at the ends of the robot’s feet (Fig.14). The robot’s 
guidance and control system collect and process the 
data these sensors supply. 
 

6. Conclusions 
 
 
The MERO2, MERO1, modular walking robots 
(figure2 and figure 14) was developed at University 
”Politehnica “of Bucharest. Such modul robot has 
two/four/six legs with three degrees of freedom 
each. The body of modular walking robot carries a 
gyroscopic attitude sensor to measure the pitch and 
roll angles of the body.  
 

 
 

Fig.16.a. Computer graphics simulation for the 
biped gait 
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The legs are powered by hydraulical drives and are 
equipped with joint angle potentiometer 
transducers. Each leg has three degree of freedom 
and a tactile sensor to measure the contact which 
consists of lower and upper levels.  
    The computer graphics simulation of the 
movement of modular walking robot MERO in the 
obstacles’area is presented in  the figures 16.a - 
16.f 
 

 
 

Fig.16.b. Computer graphics simulation for . 
obstacle’s area gait 

 

 
Fig.16.c. Computer graphics simulation for the 

slope gait 
 

 
 

Fig.16.d. Computer graphics simulation for the 
tripod gait for the movement of the 

technological.equipments 
 

The MERO type tansducers used in walking robots 
offer both force control and robot protection. Each 
of the feet is equipped with stain gauged force 
sensing device optimized by finite element 
analysis. Each of the rotational pairs are closed-
loop controlled by software servocontrolled by an 
externel computer. The movement of the 
quatrupedal walking robot may by easy realized 
under conditions of quasi-static stability. This 
conditions are applied only if the forward speed of 
walking robot is less than a certain limit.  
  

 
Fig.16.e. Computer graphics simulation for the 

obstacle gait 
 

  
Fig.16.f. Computer graphics simulation for the 

tripod gait 
 
      The quasi-static movement is slight to 
achieved. A study of the dynamic motion of a 
legged walking robot indicates that while the robot 
body moves at a substantially constant speed, the 
legs are repeatedly accelerated and decelerated, to a 
great degree in each cycle of movement. The 
physical model contains more kinematic chains, 
and when formulating the equations of motion, the 
principle of mechanics having the form of 
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Lagrange’s equations should be employed. The 
dynamic motion problem of a walking robot is 
considerably harder, both theoretical and practical 
point of view. 
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