
Applications of Fault Detection Methods to Industrial Processes 
 

IOANA FĂGĂRĂŞAN, S. ST. ILIESCU 

Automatic Control and Industrial Informatics Department,  

University “POLITEHNICA” of Bucharest 

Splaiul Independentei 313, 060042 – Bucharest,  

ROMANIA 

{ioana, iliescu}@shiva.pub.ro;    http://www.shiva.pub.ro 
 

 

Abstract: - Components of industrial processes are often affected by un-permitted or un-expected deviations 

from normal operation behaviour.  The fault detection task consists of determination of the fault present in a 

system and the time of detection. In addition to fault detection follows the fault identification by determination 

of kind, location and time of detection of a fault.  These procedures are based on the observed analytical and the 

heuristic knowledge of the process. In this paper a comparison between different methods of fault detection and 

some examples of the fault detection and identification procedure for industrial processes is provided. For some 

classes of processes the structure and some parameters are well known but for others only rough models are 

available. Therefore the methods for fault detection and diagnosis are mainly different. 
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1 Introduction 
Fault detection and diagnosis (FDD), in general, are 

based on measured variables by instrumentation or 

observed variables and states by human operators. 

The automatic processing of measurements for fault 

detection requires analytical process knowledge and 

the evaluation of observed variables requires human 

expert knowledge which is considered heuristic 

knowledge. In this context the fault detection and 

diagnosis can be considered within a knowledge-

based approach (Fig.1).  

A general FDD scheme for a process consists of 

two levels, a symptom generation part and a 

diagnostic part. In the first level, symptoms are 

generated based on residuals and these features 

indicate the state of the process. The comparison of 

two analytically generated quantities, obtained from 

different sets of variables or the difference between 

measurements and computed variables are called 

residuals and these quantities are indicative of the 

presence of faults in the system. In the second level, 

the relations between symptoms and faults are 

established. To detect and isolate a fault is important 

to find the significant symptoms, which are robust 

against noises or disturbances. In order to avoid the 

possible loss of the systems performance because of 

a fault appearance, many research efforts in the field 

of process supervision, fault detection and diagnosis 

have been made [14, 18, 25]. 

The objective of FDD is not only to determine 

some fault presence in the system (fault detection), 

to establish the kind and location of fault (fault 

isolation) and to estimate the behaviour of the fault 

in time and amplitude as well as the cause of this 

un-expected system behaviour. 

 

 

2 Comparison of fault detection 

methods 
The comparison of the different methods for fault 

detection is not easily performed because the final 

practical results depend on many aspects (process 

type, un-permitted or un-expected disturbances, 

open or close loop structure, processes 

nonlinearities, etc.).  

The structure and at least some parameters are 

relatively well known for a fist class of processes, 

like electrical, mechanical, thermo or hydraulic 

processes. For a second class of processes only 

rough models are available, as e.g. many industrial 

processes, chemical, mineral or metal processing. 

Advanced methods of fault detection are using 

either mathematical process model or signal models 

depending on the system characteristics (class of 

processes).    

Model based fault detection methods use 

residuals which indicate changes between the 

process and the model. 

Signal based model is assuming special 

mathematical models for the measured signals.  

A scheme for fault detection with process/signal 

models is given in Fig. 2. 
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Fig.1. The scheme of the knowledge based fault detection and diagnosis 
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Fig.2. The scheme for fault detection with process/signal model 
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The model-based fault detection methods rely on 
the concept of analytical redundancy. In contrast to 

physical redundancy, when measurements from 

parallel sensors are compared to each other, now 
sensor's measurements are compared to analytically 

computed values of the respective variable. Such 

computation use present and/or previous 

measurements of other variables, and the 

mathematical plant model describing their nominal 

relationship to measured variable. The idea can be 
extended to the comparison of two analytically 

generated quantities, obtained from different sets of 

variables. In either case, the resulting differences, 
called residuals, are indicative of the presence of 

faults in the system. 

There exist many approaches for the design 
model based fault detection and the often used one 

are: the parity equations, the state observers or state 

estimators and parameter estimations. 

These methods are based, for example, on 

discrete state-space models [4], time continuous 

state-space models [16], observers [13] or transfer 

function models [14,18]. 

Parity equations and observer – based methods 

have partially almost identical properties, but parity 
equations are much simpler to be design, to be 

implemented and to be used. Parity equations and 

observers-based methods are well suited for additive 

faults, but are not in general well suited for 

multiplicative faults. For multiplicative faults the 

parameter estimators are best suited. 

Another essential difference is that parity 

equations and observers based methods need more 

than one inputs measurement to detect and isolate 

several faults, but for parameter estimation methods 
one input and one output is sufficient to detect and 

diagnose different faults.  

A qualitative comparison of properties of 
different fault detection methods for SISO (Single 

Input Single Output) and MIMO (Multi Input Multi 

Output) processes is depicted in table 1. 

Signal processing is another way to deal with 

fault diagnosis [2]. This approach is based on a 

signal model. Signals may be analysed either 

using time-domain methods (e.g. correlation, 

mean-change) or frequency domain methods 

(e.g. Fast Fourier Transform, FFT), or with 

more sophisticated methods including time-

frequency or wavelet analysis [25]. Decision 

may be based on the normal process behaviour 

knowledge (for instance the signal is zero-

mean) or on some faulty behaviour knowledge 

(for instance, a fault gives rise to some extra 

frequency contents in the spectrum).  

Table 1.  

  Parity 

equations 

State 

estimation 

Parameter 

estimation 

Assumptions:  

Model structure and 

parameters 

known known known/  

unknown 

Detectable faults: 

Abrupt, incipient, 

single faults 

yes yes yes 

Multiple faults SISO: no 

MIMO: yes 

SISO: no 

MIMO: yes 

SISO: yes 

MIMO: yes 

Fault isolation SISO: no 

MIMO: yes 

SISO: no 

MIMO: yes 

SISO: yes 

MIMO: yes 

Additive yes yes yes 

Multiplicative no no yes 

 

All these approaches have a common 

difficulty: how to ensure that a change in some 

quantity is characteristic of a particular fault 

[16]. Signal based model fault detection can be 

applied especially for machine vibration, the 

position, speed or acceleration measuring, for 

example imbalance or bearing faults (turbo 

machines), knocking (gasoline engines), 

chattering (rolling mills), etc. 

Detection tests based on signal model that 

aim to detect a change in the mean or the 

standard deviation of a signal are now often 

used [2, 17].  
In [9], normal and knocking cylinder pressure 

measurements from a variable-compression-ratio 

engine over a wide range of operating conditions are 
analyzed. Both Frequency and Time domain 

analysis of the signals are extensively investigated 

and the results are compared. The frequency domain 
analysis of cylinder pressure measurements provides 

more precise results, in particular for the cycles 

under knocking conditions. 

Frequency representations are particularly 

useful for studying rotating machines because 

of the extra frequency contents that generally 

appear under the influence of a fault. For 

instance [5] deeply study faults in a three phase 

induction machine. The spectral analysis of 

electric and electromagnetic signals shows that 

mechanical abnormalities such as broken rotor 

bars generate characteristic frequency contents 

in the signals. The Fourier Transform is unable to 

accurately analyse and represent a signal with non 

periodic features, for instance a transient signal. To 

study non stationary signals, time-frequency 

methods replace traditional spectral analysis. The 
Short Time Fourier Transform interpretation is close 
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to a local Fast Fourier Transform analysis. The 
signal to analyse is multiplied by a sliding signal 

with finite duration (such as a rectangular, a 

Hamming, a Blackman window, etc.). Thus the 
spectrum is computed in real time and its important 

variations are used to detect faults. This method has 

been applied for instance in the metallurgical 

industry [8]. Rise in productivity in modern rolling 

mill plants induces an increase of the rolling speed. 

This also increases the potential vibrations of the 
system. Different vibration frequencies appear that 

correspond to particular faults [25]. Thus 

monitoring the frequency contents can help to 
localise the faults. 

The discrete wavelets potential to fault detection 

for signals singularities is depicted in [22]. 
An interesting experimental investigation is 

performed in [1] to carry out the feasibility of using 

an electrical method for the detection of defects in 

conductive pipelines. The pipeline, with an auxiliary 

conductor acting as signal return, is treated as a 

transmission line, and the time domain 

reflectometry (TDR) technique is used to reveal the 

presence of holes or defects. 

 
 

3 Model Based Fault Detection and 

Diagnosis Example 
A MIMO model was choose in order to offer proper 

conditions to design model based FDD procedures 

using parity equations. An example of a heat 

exchanger model, a MIMO system with m inputs 

and r outputs is presented in [16]. For each output a 

linear local model could be considered taking into 

account all process input: 

1

1

( )
( ) ( ) ;

( )

( ) [ ( ) ... ( )]

( ) [ ( ) ... ( )]

P

P

T

r

T

m

B s
y s u s

A s

y s y s y s

u s u s u s

=

=

=

   (1) 

 

The FDD scheme was tested on a heat 

exchanger case by presenting several different 

process and sensor faults, using the model 

library (Fig. 3). 

The considered system inputs are: water 

input temperature θLi, water speed wL (or water 

flow ML), air-wall thermal flow qWG (or air flow 

MA) and air input temperature θAi . The system 

outputs considered of major interest are the 

water output temperature θLe and secondary, the 

air output temperature θAe. 

HqL

HwL

HτL

HθL

HqA

HwA

HτA

HθA

u1=MA

(S51)

u3=ML

(F31)

u2=θθθθLi

(T32)

u4=θθθθAi

(T51)

y1=θθθθLe

(T41)

y2=θθθθAe

(T52)

 
Fig. 3. Heat exchanger MIMO model structure. 

The above transfer functions, their gains and 

time constants are calculated in [6]. Considering the 

MIMO transfer function model for the heat 
exchanger [6, 7] the next equations systems is 

obtained, where H1 and H2 take into account the 

sensor model and channel model between heat 
exchanger and sensors: 

1

2

0

0

A

qL wL LLe
L

qA wA AAe

Li

M

H H HH
M

H H HH

ϑ

ϑ

θ

θ
θ

•

•

 
 

     
=      
      

 
   

 (2) 

 
The model based FDD is design with parity 

equations that starts with the mathematical model of 

the process for water-air heat exchanger, Fig. 3 and 

equation (2).  
The residual generator is introduced by: 

 

1

2

1 1

2 2

( ) ( )1 0
( ) ( ) ( ) ( ) ( )

( ) ( )0 1

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

qLT

Le Ae A

qA

wL L

L Li

wA A

H s H s
r s w s s s M s

H s H s

H s H s H s H s
M s s

H s H s H s H s

θ

θ

θ θ

θ

•

•

⋅     
= ⋅ ⋅ + ⋅ − ⋅ −      ⋅     

⋅ ⋅    
− ⋅ − ⋅    ⋅ ⋅    

    (3) 

 

To obtain the decoupled residuals for each 

measured signal, a specific condition must be 
satisfied in order to remove the dependency by each 

measurement.  

For example the residual rϑLi is decoupled for the 

measurement of the water input temperature sensor 

θLi by satisfying a condition like:  
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1

2

( ) ( )
( ) ( ) 0

( ) ( )

LT

Li

A

H s H s
w s s

H s H s

θ

θ

θ
⋅ 

⋅ ⋅ = ⋅ 

        (4) 

 

The above condition is satisfied if: 
 

[ ]2 1( ) ( ) ( ) ( ) ( )
Li

T

A Lw s H s H s H s H sθ θ θ= − ⋅ ⋅        (5) 

 

A solution for the decoupled residual generator 

elements is underlined: 

 

2 1

2 1

2 1

1 1 1

2 2 2

( ) 0 1

( ) 1 0
1 0

( ) ( ) ( )
0 1

( )

( )

( ) ( )

Le

Ae

A

L

Li

M qA qL Le Ae

wA wLM

A L

qL wL L
A L

qA wA A

r s

r s

r s H H H H s s

H H H Hr s

H H H Hr s

H H H H H H
M s M s

H H H H H H

ϑ

ϑ

θ θϑ

θ

θ

θ θ

• •

   
   
          = − • + −            − 
   −   

     
− − −    

   
( )

Li
sθ



 

  

(6) 
 

The design residuals relation (6) is necessary for 

fault detection and identification.

 

Each residual was 

designed to become independent to a specific 

measurement. In case that some of the 

measurements are damaged, the decoupled residual 

rest at a low value, instead all the other residuals are 

affected. 

The relation (6) is completed with another two 
that represent the deviation of estimation values 

from the measured ones representing the residual 

build up with an output error method: 
 

ˆ( ) ( ) ( )
Le

P

Le Le
r t t tϑ ϑ ϑ= −    (7) 

ˆ( ) ( ) ( )
Ae

P

Ae Ae
r t t tϑ ϑ ϑ= −         (8) 

 
The group of residuals affected or not permits to 

locate certain faults. The residuals have the property 

to become zero if any fault exists or be different 

from zero if a fault appears in measurements or 

process. 

The structured residuals are so designed that one 

residual responds to some distinct faults and it is 

insensible to others. When a fault occurs some 

residuals respond some others don’t. The response 
of residual set is characteristic to each fault and is so 

called signature or code of the fault. For these 

residuals the tests of exceeding the thresholds (ki) 
are applied separately for each residual (ri(t)) as 

follows: 

0 ( )
( ) 1..

1 ( )

i i

i

i i

if r t k
t i n

f r t k
ε

 ≤
= =

>

  ( 9) 

where [ ]'1 ... nεεε =  is the fault signature. 

In order to establish the identifiable fault 
signature the threshold value ki must be settled. This 

value could be settled upon statistical or 

experimental considerations. In the last case this 
value can take into account the noise effects and the 

modelling errors too. The optimal selection of the 

thresholds is made through a compromise between 

false alarms and leak of fault detection. The 

thresholds values established for these residuals 

could cover the noise effects as well as modelling 
errors. 

The detection of a fault depends on the most 

sensitive residual and its isolation on the less 
sensitive one (but not on the decoupled residual).  

To isolate the fault source a set of residuals with 

different responses for each fault is needed. This 
principle is illustrated by incidence matrix (Table 1), 

each column representing a fault signature. The 

results presented in previous incidence matrix are 

valuable for investigated faults. This set of residuals 

is build to be very sensitive to faults in temperature 

sensors, so a small deviation like 1÷3 oC (1÷6% 

from maximal value) could be detected and isolated. 

For other faults the sensitivity is decreasing and 

only faults greater then 10% could be isolated. 

Smaller errors could be only detected. 

Table 1. Incidence Matrix 

Sensor’s fault  

F31 S51 T32 T41 T52 

Le
rϑ  1 1 0 0 1 

Ae
rϑ  0 1 1 1 0 

AM

r •
 0 0 0 1 0 

LM

r •
 0 1 1 1 1 

Li
rϑ  1 1 0 0 1 

Le

P
r ϑ

 0 1 1 1 0 

Ae

Pr ϑ  1 1 0 0 1 

0 – un-deflected residual 

1 – significant residual deflection 

 

To illustrate the above considerations a fault 

analysis will be presented. Considering a fault in 

temperature sensors θLi, that appears at moment 

t=2000s, it could be detected and isolated due to its 

value. The residuals deflections are depicted in Fig. 

4 and for a better illustration these results were 

normalized by its thresholds. This operation allows 

uniform representation of information and implies a 
unique threshold to be used for all residuals.  
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Fig. 4. Unified representation of residuals for a 

sensor T41 offset (10 oC) 

The fault signature is different for deviations 

between 2-6%, as seen in Table 2. The fault can be 

isolated as sensor θLi (T32) fault (Fig. 4), but for 

faults greater than 3
o
C one cannot distinguish 

between sensor’s offset and bias. Analysing Figure 

4 for temperature θLi (T32) sensor fault the most 

sensitive residuals are rML and r
P

ϑLe, residuals that 

assure fault detection, followed by rϑAe  and rMA that 

indicate the fault (fault isolation). 

Table 2. Fault’s signature  

Fault in sensor θLi 

1 
o
C 

2 
o
C 

3 
o
C 

10 
o
C 

k=0.9-1.1 

 

Sensor’s offset fault Sensor’s bias fault 

Le
rϑ  0 0 0 0 0 

Ae
rϑ  0 1 1 1 1 

AM

r •
 0 0 1 1 1 

LM

r •
 1 1 1 1 1 

Li
rϑ  0 0 0 0 0 

Le

P
r ϑ

 1 1 1 1 1 

Ae

Pr ϑ  0 0 0 0 0 

 

 

4 Signal Based Fault Detection and 

Diagnosis Example 
A signal based detection method presented in this 

section use the Stationary Wavelet Transform (SWT) 

for the detection of “low” frequency vibrations.  

Wavelet decomposition can be implemented for 

diagnostic purpose when a fault occurrence is 

revealed by a signal singularity. The proposed 

detection method analyses the changes that appear 
over the different decomposition levels to detect the 

singularity. The hypothesis for fault isolation is that 

different faults induce different effects on the 
wavelet coefficients over the decomposition levels. 

The isolation method proposed analyses the 

modification of the wavelet coefficients over the 

different levels of decomposition to deduce which 

fault is present. 

The detection procedure works in three steps. 
The first step transforms the signal into wavelets 

coefficients. It decomposes the signal on J scales. 

This step also allows characterizing the frequency 
contents that define the “normal” behaviour of the 

system. The second step corresponds to the wavelet 

coefficient thresholds. A fuzzyfication of the 
threshold’s coefficients is implemented:  

 

1 2

( ) 0 2
2

0 0

j j j

k

j

kj j j j j

k kj j

j

k

δ α λ

δ
µ δ δ α λ

α λ
δ

 ≥


= < <

 =

   (10) 

 

where jα  is a parameter that defines the 

membership function of the coefficients. 

The third step corresponds to the detection 

decision. In order to give a unique indicator, the 

various fuzzy coefficients are considered as partial 

criteria and the detection problem is regarded as a 

fuzzy decision making one with partial criteria. 
Fuzzy decision making allows formal modelling of 

decision-making for imprecise and uncertain 

conditions. The decision (here the detection 
decision) is considered as a fuzzy set described by 

its membership function 
dµ  that is computed using 

the membership functions of the various partial 

points of view on the final decision ( )ic d : 

( ) ( ) ( )( )1 2, ,...,d ph c d c d c dµ =  (11) 

where h is a fuzzy set operator to be determined in 

function of the properties that are required for the 
decision. 

When a singularity occurs in the signal, at least 

one level of decomposition must reveal its 
appearance, and the singularity may not be present 

over all scales Thus, (12) is proposed for the 

detection decision: 

 

 1 max ( ); 1 :j

k k
j

D j Jµ= =                     (12) 

 

From a practical point of view, it can be 

observed that the wavelet coefficients may be very 

rT41 

rT52 

rT32 

rS51 

rF31 

rP
T41 

rP
T52 
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small, during a very short time, even when there is a 
singularity in the signal. Thus (13) may be preferred 

to (12), to favour a clearer decision:  

 

2 max{max( ); 0: 1}; 1:j

k k l
j

D l N j Jµ
−

= = − =        (13) 

 

where N is a small time window. [25] proposes a 

comparison of different aggregation operators to 

detect extra vibrations (considered as faults) in a 

rolling mill. 

For fault isolation, the singularity appearance 

must modify differently the various levels of 

decomposition, depending on the considered fault. 
A learning phase shows which levels are modified 

by a specific fault. For example, consider a signal 

that is decomposed over 5 levels. Moreover, 
suppose that the wavelet coefficients on levels i and 

j are modified by the fault, while the coefficients on 

levels k, l, m are not modified. This situation can 

occur for instance when the fault gives rise to 

oscillations in a specific frequency range as reported 

by [5] for electrical drives or [24] for rolling mills. 

The isolation decision for this specific fault can be 

given by:  

 

, , (1 ),
3 min

(1 ), (1 )

i j k

k k k

k l m

k k

D
µ µ µ

µ µ

 −
=   − − 

       (14) 

 

(14) expresses that the coefficients on levels i 

and j must be “high” at the same time, and the other 

coefficients must be “small”, to decide that this fault 

is present. 

For a wide range of applications, particular 

additive frequency contents are related to the 
occurrence of a particular fault (e.g. faults in rolling 

mill process or abnormalities such a broken rotor 

bars in induction motor). In other applications, the 
signals recorded on the process exhibits impulses in 

amplitude or a pseudo frequency occurrence when a 

fault occurs. All these situations can be handled 

with SWT. Table 3 gives three academic examples 

that ilustratre these situations. These simulated 

signals will show the powerful of the isolation 

proposed method. 

The parameters are f = 50Hz, f1 = 20Hz, f2 = 

350Hz, f3 = 175Hz. Scenario 0 corresponds to the 
reference signal (i.e. “normal” behaviour): it 

corresponds to a noisy sinusoidal signal. ε is a 

Gaussian white noise with zero mean and variance 

σ² chosen such that the Signal-to-Noise Ratio is 

10SNR dB≈ .  

 

Table 3. Scenario and simulated signal 

0 ( )( ) sin 2 ( )refx t ft tπ ε= +  

1 

( )
( )

( )

1 1

2 1 2

3 3 4

( ) ( ) 0.7(sin 2

sin 2 )( ( ) ( ))

0.7sin 2 ( ( ) ( ))

refx t x t f t

f t u t u t

f t u t u t

π

π τ τ

π τ τ

= +

+ − − −

+ − − −

 

2 
1

2 1

1

( ) ( ) 40 ( 1) ( )
n

k

ref

k

x t x t t kδ τ+

=

= + − −∑  

3 
( )1

3

0.25(2 )

1 1 2

( ) ( )

2 sin(2 ) ( ) ( )

ref

f t

x t x t

e f t u t u t
π π τ τ−

= +

+ − − −
 

In scenario 1, extra frequency contents f1 and f2 

occur at time 
1t τ=  during a time interval 

2 1τ τ−  

and another additive frequency f3 occurs at instant 

3t τ=  during a time interval 
4 3τ τ−  

(
1 2 3 4τ τ τ τ< < < ). Scenario 2 corresponds to a fault 

characterised by the appearance of periodic 

impulses while scenario 3 deals with the appearance 

at time 
1t τ=  of a pseudo frequency of 

duration
2 1 0τ τ− > .  

In order to detect and isolate the faults described 

in scenarios 1 to 3, some parameters of the SWT 

must be discussed. The sampling frequency fe of the 

signal and the number of decomposition level of the 

wavelet transform are related to the frequency that 

must be detected. Actually, the SWT can be 

performed with different wavelets. For instance, the 

Mallat wavelet is used in [23] for detection and 

identification of faults in HVDC systems. The 

Morlet wavelet has been used in the literature for 

the analysis of vibration signals recorded on rotating 

machineries [24]. This is due to the fact that the 

Morlet wavelet is able to pick up impulses generated 

by the rotating elements. Other wavelets are used in 

the literature but the Daubechies’ wavelets [4] are 

used in a wide range of applications [19, 20]. This is 

certainly due to their “nice” properties (compact 

support, number of vanishing moments, 

orthogonality, etc.). 

For the examples in Table , a wavelet 

decomposition over 5 levels (J = 5) is sufficient to 

ensure a good detection. The sampling frequency is 

equal to 1 kHz. The Daubechies 12 “db12” wavelet 

has been used because it is able to highlight the 

“faulty” extra frequency contents. The thresholds λj
 

have been computed with the reference signal xref. 

x1, its SWT decomposition and the thresholds λj are 

given in Fig.5. 
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Fig. 5. x1 and its SWT decomposition 

The SWT coefficients d5 and d1 clearly exhibit 

the extra frequency contents f1 = 20Hz and f2 = 

350Hz. This can be explained by the dyadic split of 

the frequency domain. The other extra frequency 

content is characterized by
3 175Hzf = . It is 

exhibited in the coefficients d2 on the second level 

of decomposition. The threshold’s coefficients are 

fuzzyfied with the membership functions 

, 1:5
j

jµ =  calculated with (10). The result is 

shown in Fig.6. The abnormality in each frequency 

band is clearly exhibited. 
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Fig. 6 Fuzzyfication of the thresholded coefficients 

 

The fault detection indicator FD is computed 

with (13). It measures the appearance of an 

abnormal behaviour over all the levels of 

decomposition. When fault isolation is considered, 

specific aggregation operators must be defined. 

These new operators take into account some 

knowledge on the kind of singularity that appears 

when a particular fault occurs. Thus, the fault 

isolation decisions that are defined are given by: 

( ) ( )
( )

1 2 3
1

4 5

, 1 , 1 ,
min

1 ,FFI
µ µ µ

µ µ

 − − 
=  − 

          (15) 

( ) ( )
( ) ( )

1 2 3
2

4 5

1 , , 1 ,
min

1 , 1FFI
µ µ µ

µ µ

 − − 
=  − − 

 (16) 

Results are shown in Fig.7. 

-2

0

2

Analysed signal and FDI

Signal      

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

FD      

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

FI
F1

     

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

FI
F2

      

Time [s]

 

 

1 -> fault detection; 0 -> unfaulty

1 -> identification fault F1

1 -> identification fault F2

 

Fig. 7. Signal x1 and FD, FIF1, FIF2 

It can be observed that the isolation decision FIF1 

that is devoted to the detection of frequencies f1 and 

f2 clearly identifies this fault. Identically FIF2 is able 

to detect the fault characterized by f3. 

For the second and third scenario the fault 

detection and isolation procedure is similar to the 

one presented for scenario 1 but the decision rule 

that takes into account all the decomposition levels 

could be different. 

 

5 Conclusion 
The diagnostics procedures are based on the 

observed analytical and heuristical symptoms and 

the heuristic knowledge of the process. In this paper 

a comparison between different methods of fault 

detection and an overview of the fault diagnosis 

procedure for technical system is provided. For 

some classes of processes the structure and some 

parameters are well known but for others only rough 

models are available. Therefore the methods for 

fault detection and diagnosis are mainly different.  

Two examples of process model/signal based 

FDD methods was illustrated within the paper. 

A process model based approach for FDD was 

presented based on analytical relations between 

characteristics of analyzed process and on the 

measured signals, also. However, in many processes 

the sensors already exist for control and supervision 

purpose, but the analytical relation between the 

measured signals is not exploited. In these cases the 
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approach can easily improve the process 

supervision.  

Analytical model’s parameters have been used to 

generate the suitable equations to detect and isolate 

faults. A powerful method for this purpose seams to 

be building residuals with parity equations support. 

The set of affected and unaffected residuals points 

to the fault location. Design of the parity equations 

is suitable for processes with more than one 

measured output. Herein, MIMO processes were 

considered. For each residual it was set a suitable 

threshold that allows detection or isolation decision 

for a fault by monitoring the residual deflections. 

The residual sensitivity depends on parity equation 

parameter and input measured signals. It was 

underlined that detection of a fault depends on the 

most sensible residual but, in the mean time, the 

fault isolation depends on the less sensible residual 

(no the decoupled one). 

The capability for the stationary wavelet 

transform to deal with different faults for fault 

detection and isolation has been investigated. A 

detection procedure based upon the thresholds of the 

wavelet coefficients has been considered. These 

coefficients are fuzzyfied and aggregated in order to 

provide a symptom. The tuning parameters of this 

procedure are the wavelet itself, the number of 

decomposition levels, the thresholds and the 

decision method. The wavelet choice depends on the 

features that must be detected in the signal under 

analysis. This selection is sometimes not unique. 

For detection purpose, the final choice is made in 

order to maximize the symptom sensitivity. 
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