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Abstract: - The paper presents a short survey of three topics: modern sensor networks, distributed parameter 
systems and estimation techniques, especially using artificial intelligence tools, to be involved in the new 
domain of identification of distributed parameter systems, based on sensor networks and artificial intelligence. 
As smart and small devices the modern sensors are capable to be implemented in large distributed parameter 
systems. Sensor networks, with hundred and thousands of ad-hoc tiny sensor nodes spread across a 
geographical, are acting as a distributed sensor in a distributed parameter system. Sensor network topics, sensor 
network architectures and sensor network applications are presented. Examples of distributed parameter systems 
with large application in practice as the process of heat conduction, applications related to electricity domain, 
motion of fluids, the processes of cooling and drying, phenomenon of diffusion and other applications are 
presented. The identification techniques are useful for applications ranging from control systems, fault detection 
and diagnosis, signal processing to time-series analysis. Methods to estimate linear back box models and models 
of artificial intelligence, as fuzzy logic and neural network are presented. The artificial intelligence tools may be 
used for identification of nonlinear complex systems as the distributed parameter systems are. A case study of 
malicious nod detection based on a neural autoregression method in the process of plane heat propagation is 
developed. 
 
Keywords: - Wireless sensor networks, system identification, distributed parameter systems, neural networks. 
 
1   Introduction 
The development of wireless sensor allows 
development of new methods and algorithms for 
identification of systems, especially in the case of 
distributed parameter systems. The main principles 
consists in the fact that in this kind of identification 
the sensor network may be seen as a “distributed 
sensor” placed into a field, which is distributed 
parameter system, allowing measurement in well-
chosen points of an infinite variable system. In the 
last years a lot of papers were published in the fields 
of identification of distributed parameter systems in 
sensor networks [1÷6]. This paper presents a short 
synthesis of the main aspects of the concepts 
involved in identification of distributed parameter 
systems based on sensor networks and artificial 
intelligence tools as fuzzy logic and neural networks. 
     Advances in scientific computation and 
developments in spatial sensor technology have 
enhanced the ability to develop modeling strategies 

and experimental techniques for the study of the 
spatiotemporal response of distributed nonlinear 
systems. The simplifying methods for modeling of 
these systems, that are trying to capture the 
distributed system dynamics through lumped 
parameter models, can be developed. Robust 
implementations of distributed system identification 
algorithms based on detailed space and time 
experimental data have now an important role to play 
[7÷12]. 
     Advances in hardware and wireless network 
technologies have created smart, low-cost, low-
power, multifunctional miniature sensor devices. 
These devices make up hundreds or thousands of ad 
hoc tiny sensor nodes spread across a geographical 
area. These sensor nodes collaborate among 
themselves to establish a smart sensing network. A 
sensor network can provide access to information 
anytime, anywhere by collecting, processing, 
analyzing and disseminating data. Thus, the network 
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actively participates in creating a smart environment 
[13÷17]. 
…..Methods of artificial intelligence, as fuzzy logic 
and neural networks [18], can solve identification 
problems in multilinear complex systems with many 
variables, with unknown models. 
     Since for distributed parameter systems it is 
impossible to observe their states over the entire 
spatial domain, a possible solution is to locate 
discrete sensors to estimate the unknown system 
parameters as accurately as possible. There is recent 
original work on optimal sensor placement strategies 
for parameter identification in dynamic distributed 
systems modeled by partial differential equations. 
New development of new techniques and algorithms 
or adopting methods, which have been successful in 
the field of optimal control and optimum 
experimental design, are reported in papers. 
     In many sensor networks applications, sensors 
collect correlated measurements of a physical field, 
e.g., temperature field in a building or in a data 
center. However, the locations of the sensors are 
usually inconsistent with the application 
requirements. In the paper [2, 3] it is considered the 
problem of estimating the field at arbitrary positions 
of interest, where there are possibly no sensors, from 
the irregularly placed sensors. The sensor network on 
a graph is mapped, and by introducing the concepts 
of interconnection matrices, system digraphs, and cut 
point sets, real-time field estimation algorithms are 
derived. Simulations and real world experiments on 
temperature estimation are done. 
     A strategy by which sensor nodes detect and 
estimate non-localized phenomena such as 
boundaries and edges (e.g., temperature gradients, 
variations in illumination or contamination levels) is 
study in [4]. A general class of boundaries, with mild 
regularity assumptions, is considered, and theoretical 
bounds on the achievable performance of sensor 
network based boundary estimation are established. 
A hierarchical boundary estimation algorithm is 
proposed that achieves a near-optimal balance 
between mean-squared error and energy 
consumption. 
     Theory of partial differential equations is 
presented in [19] and applications to some systems 
with distributed parameters in [20, 21]. 
     Developing low-order models of high fidelity is 
important if the objective is accurate control of the 
distributed parameter systems. The work [22] 

presents a method to develop a low-order models 
when there is no available exact model of the system. 
The foundations for this method, are singular value 
decomposition theory and the Karhunen-Loève 
expansion. It is shown that satisfactory closed-loop 
performance of the nonlinear distributed parameter 
systems can be obtained using a dynamic matrix 
controller designed using the finite order model. 
     In the paper [23] a methodology for the 
identification of distributed parameter systems, based 
on artificial neural network architectures, motivated 
by standard numerical discretization techniques used 
for the solution of partial differential equations is 
presented. 
     A new direct approach to identifying the 
parameters of distributed parameter systems from 
noise-corrupted data is introduced in [24]. The model 
of the system, which takes the form of a set of linear 
or nonlinear partial differential equations is assumed 
known with the exception of a set of constant 
parameters. Using finite-difference approximations 
of the spatial derivatives the original equation is 
transformed into a set of ordinary differential 
equations. The identification approach involves 
smoothing the measured data and estimating the 
temporal derivatives using a fixed interval smoother. 
A least-squares method is then employed to estimate 
the unknown parameters. 
     In the paper [25] the state-of-the-art algorithms 
for consensus-based distributed estimation using ad 
hoc wireless sensor networks, where sensors 
communicate over single-hop noisy links, is 
presented. Basic estimation criteria such as least-
squares, maximum-likelihood and other are 
reformulated on a novel framework, amenable to 
distributed solutions. The framework encompasses 
adaptive filtering and smoothing of non-stationary 
signals through distributed LMS and Kalman 
filtering. 
     In the present paper three topics: modern sensor 
networks, theory of distributed parameter systems 
and theory of system identification, using especially 
artificial intelligence tools, are converged to a new 
domain – identification of distributed parameter 
systems, based on sensor networks and artificial 
intelligence (Fig. 1). A short survey of the main 
characteristics of these topics is made. 
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Fig. 1. Topics involving for modern identification 

 
     The second paragraph presents some principles 
and technical data of modern sensor networks. The 
third paragraph presents some examples of 
distributed parameter systems, with their 
mathematical models, on a large scale of 
applications, described with partial differential 
equations. The fourth paragraph presents some 
system identification basics, with linear and 
nonlinear models and artificial intelligence tools like 
fuzzy logic and neural networks. The fifth paragraph 
presents a study case of malicious node detection 
based on an autoregression neural model and a 
sensor network. 
 
 
2   Sensor Networks 
Wireless sensor networks are extremely distributed 
systems having a large number of independent and 
interconnected sensor nodes, with limited 
computational and communicative potential. The 
sensors are deployed for data acquisition purposes on 
a wide range of locations, sometimes in resource-
limited and hostile environments such as disaster 
areas, seismic zones, ecological contamination sites, 
military combat zones. In this structure data 
processing is at the sensor level, data transmission is 
wireless, sensing mechanism is not necessarily 
power supply is not necessarily wireless. 
     Sensor network applications include: 
environmental monitoring, civil infrastructure 
monitoring, shared resource utilization, tracking, 
perimeter protection [26] and military surveillance. 
Application are in micro-climates, air quality, soil 
moisture, animal tracking, energy usage, office 
comfort, wireless thermostats, wireless light 
switches. In techniques they have as applications 
data acquisition of physical and chemical properties, 
at various spatial and temporal scales, as in 
distributed parameter systems, for automatic 

identification, measurements over long period of 
time. The sensor networks are deployed for data 
acquisition purposes on a wide range of locations, in 
resource-limited and hostile environments such as 
disaster areas, seismic zones, ecological 
contamination sites, military combat zones. All 
applications are distributed parameter systems. 
 
 
2.1   Modern Sensors 
     The modern sensors are smart, small, lightweight 
and portable devices, with a communication 
infrastructure intended to monitor and record specific 
parameters like temperature, humidity, pressure, 
wind direction and speed, illumination intensity, 
vibration intensity, sound intensity, power-line 
voltage, chemical concentrations and pollutant levels 
at diverse locations. The sensor number in a network 
is over hundreds or thousands of ad hoc tiny sensor 
nodes spread across different area. Thus, the network 
actively participates in creating a smart environment. 
They are low cost and low energy devices, realized 
in nanotechnology. With them we may developed 
low cost wireless platforms, including integrated 
radio and microprocessors. The sensors are adequate 
for autonomous operation in highly dynamic 
environments as distributed parameter systems. We 
may add sensors when they fail. They require 
distributed computation and communication 
protocols. They assure scalability, where the quality 
can be traded for system lifetime. They assure 
Internet connections via satellite. 
     The structure of a modern sensor is presented in 
Fig. 2 [13, 14, 15]. 
 

 
Fig. 2. The structure of a modern sensor 

 
     An example of a physical device is presented in 
Fig. 3. 
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Fig. 3. A small sensor 

 
     We may see on integrated and discrete electronic 
devices, with the above mentioned functions, placed 
on a circuit. The dimension of a such sensor is 
comparable with a small coin. 
     The sensors are characterized by: a robust radio 
technology, cheap and energy efficient processors, 
lifetime energy source, on-board memory, flexible 
I/O for various sensors, common highly available 
components, efficient resource utilization – currently 
uses 10 µA average, high modularity, flexible open 
source platform. Some examples of technical data 
are: 128 KB instruction EEPROM, 4 KB data 
EEPROM, 512 KB External Flash Memory, radio 
with 38 K or 19 K baud, at 900MHz, LEDs, µP at 
7,3 MHz, JTAG, programming board, ISM Bands: 
433-434,8 MHz Europe, power consumption: 16 mA 
Tx, 9 mA Rx, 2 µA sleep, transmission range: 1m, 
off the floor 100m range, ground level 10 m range, 
interface block data to laptop, GPS, cost: $ 95. 
     Sensor are developed to measure: temperature, 
humidity, pressure, wind direction and speed, 
illumination intensity, vibration intensity, sound 
intensity, power-line voltage, chemical 
concentrations and pollutant levels at diverse 
locations and others. All are variables in distributed 
parameter systems. 
 
 
2.2   Sensor Network Structure 
Hundreds or thousands of ad-hoc tiny sensor nodes 
spread across a geographical area form the basis of a 
sensor network. Sensor nodes collaborate among 
themselves to establish a sensing network. The 
sensor network provides access to information 
anytime, anywhere, by collecting, processing, 
analyzing and disseminating data. The network 
actively participates in creating a smart environment. 
Sensor network is working as a distributed sensor. 
     The constructive and functional representation of 
a sensor network is presented in Fig. 4 [13, 14, 15]. 

 
Fig. 4. Sensor network 

 
     The sensor networks have different structures 
[16]. The star networks (point-to-point), are 
networks in which all sensors are transmitting 
directly with a central data collection point. The 
mesh networks are networks in which sensors can 
communicate with each other. In mesh networks 
sensor nodes can relay messages from other sensor 
nodes, there is no need for repeaters. Software 
controls the flow of messages through network with 
self-configuration. New nodes automatically 
detected and incorporate. Advantages of the mesh 
structures are: robustness, easily deployed, no RF 
site surveys needed, no repeaters needed, easily 
expanded. Their disadvantages are: more 
complicated software, battery consumption of nodes 
increases, each node must transmit other nodes 
messages as well as its own, potentially less 
bandwidth. A sensor has the following hardware: 
radio node, antenna, on-board board microprocessor 
contains code for managing mesh network. As 
hardware development board it contains pins for 
sensor connection, microprocessor for handling 
signal, power supply, serial port, radio node plugs 
onto top of board. The sensor contains software on 
board for data acquisition, signal processing, 
embedded programming, embedded C language, 
messages format up to user. 
     In the field of sensors networks some topics are 
involved [27], like: development topics: deployment, 
localization, synchronization, calibration; wireless 
communication: wireless radio, characteristics, MAC 
protocols, link layer techniques, power control; 
sensor network architecture; networking topics: 
topology control, data gathering, network 
monitoring, network coding; data-centric: routing 
and aggregation, querying and data basis, storage; 
hardware; software; security. Standards and 
protocols are imposed for sensor networks 
development. 
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2.3   Sensor Network Architectures 
Different structure may be uses in practice, for 
example [16]. The sensor network may be static or 
mobile. For a static case each sensor node knows its 
own location, even if they were deployed via aerial 
scattering or by physical installation. If not, the 
nodes can obtain their own location through the 
location process. Moreover, all the sensors passed a 
one-time authentication procedure done just after 
their deployment in the field. The sensor nodes are 
similar in their computational and communication 
capabilities and power resources to the current 
generation sensor nodes. Every node has space for 
storing up to hundreds of bytes of keying materials 
in order to secure the transfer of information through 
symmetric cryptography. 
     There is a base station into the network, 
sometimes called access point, acting as a controller 
and also as a key server. It is assumed to be a laptop 
class device and it is supplied with long-lasting 
power. 
     An example of a wireless cellular network 
architecture is presented in Fig. 5. 
 

 
Fig. 5. Cellular network architecture 

 
     In this architecture, a number of base stations are 
already deployed within the field. Each base station 
forms a cell around itself that covers part of the area. 
Mobile wireless nodes and other appliances can 
communicate wirelessly, as long as they are within 
the area covered by one cell. 
     A versatile architecture is a sensor network with 
mobile access is presented in Fig. 6. 
     This structure used for large-scale sensor 
networks. The main difference related to the cellular 
network architecture is that base stations are 
considered to be mobile, so each cell has varying 
boundaries which implies that mobile wireless nodes 
and other appliances can communicate wirelessly, as 
long as they are at least within the area covered by 

the range of the mobile access point. 
 

 
Fig. 6. A sensor network with mobile access 

 
     Multiple sensor nodes can detect an event situated 
in the surrounding area, so redundancy of sensor 
networks is assured. 
     In the next paragraph we presents some examples 
of such distribute parameter systems with their 
mathematical models with partial derivative 
equations. 
 
 
3   Distributed Parameter Systems 
The distributed parameter systems, opposed to the 
lumped parameter systems, are systems whose state 
space is infinite dimensional. An object whose state 
is heterogeneous has distributed parameters. Such a 
system is described by partial differential equations. 
Partial differential equations are used to formulate 
problems involving functions of several variables, 
such as the propagation of sound or heat, 
electrostatics, electrodynamics, fluid flow, elasticity. 
Distinct physical phenomena have identical 
mathematical formulations, and the same underlying 
dynamic governs them. Some examples of 
distributed parameter systems are presented as 
follow [19, 20, 21]. 
     One of the most important domain of applications 
of the partial differential equations is the process of 
heat conduction, with propagation of heat in 
anisotropic medium: propagation of heat in a porous 
medium, transference of heat in semi-space 
compound by two materials submitted to heating, 
processes of transference of heat between a solid 
wall and a flow of hot gas, estimation of the 
temperature field in space with fissured zone having 
the form of a circular disc. 
     Applications related to electricity domain are: the 
propagation of electric current in cables, the heating 
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of the electrical contacts. 
     In the field of motion of fluid there are: plane 
motion of viscous fluids, running of viscous fluids in 
rectilinear tube, computation of losses of 
nonstationary heat in subterranean pipe, running of 
gases in water main. 
     The processes of cooling and drying: cooling of 
clap, cooling of a sphere, drying of wood pieces, 
drying in vacuum. 
…..Phenomenon of diffusion: diffusion flow in a 
heavy sphere for chemical reactions happening with 
finite speet on the sphere surface, the flames 
diffusion, which appears to the beginning of a tube, 
repartition density of particles loading by the 
meteorites. 
…..Other applications are: estimation of the ice 
height covering the snow the arctic seas, motion of 
underground waters, alloy of heavy fusible particles, 
investigation of the wave close to the single point of 
the board of a plane plate, the growing of the gas 
particles in a fluid, substances combustion, the 
temperature modification in the air mass. 
 
 
3.1   Process of Heat Conduction 
Let it be an object of a volume 3RV ⊂ . The frontier 
of dominium V is a surface S, formed by a finite 
number of smooth surfaces. Let it be θ(P, t) the 
function of the object’s temperature, at the time 
moment t, where P∈V is a point in the volume V. If 
different points of object have different 
temperatures, θ(P, t)≠ct., then a heat transfer will 
take place, from the warmer parts to the less warm 
parts. Let it be a regular surface σ placed in V, which 
contains the point P. From the theory of thermal 
conductivity through the dσ in the time dt a heat 
quantity dQ is passing, proportional to the product 
dσ.dt and proportion to the function θ(P,t) 
derivative, along the normal n to the surface σ in the 
point P: 
 

σ
∂

θ∂
= dtd

n
tPkdQ ),(  

(1) 

 
where k is a proportionality factor, called coefficient 
of internal thermal conductivity of the object. The 
vector grad θ has its direction along the normal at 
the level surface for θ=ct., in the sense of θ rising. 
     The law of heat propagation through an object in 

which there are no heat sources: 
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     The heat sources in the object have a distribution 
given by the function: 
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     If the object is homogenous .// ctka =ργ=  and 
the equation (2) is written: 
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     In the case of heat propagation through a bar: 
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The initial conditions or of the limit conditions have 
physical significance. The equation 
 

),()( PtFgradkdiv
t

+θ=
∂
θ∂

ργ  
(6) 

 
does not determine completely the state of the object 
K. We must take in considerations the initial state of 
the object, the temperature distribution in the object 
at the moment t=0: 
 

),,(),,,( 0 zyxftzyx t =θ
=

 (7) 

 
called initial conditions. 
 
 
3.2   Propagation of electric current in cables 
Let it be a cable without margin at right. The 
potential in a point P(x) is V(x, t), where x is the 
distance from the cable origin and t is the time 
moment. The quantity of electricity on the unity 
distance dx is C.V.dx, where C is the capacity. If i is 
the current intensity, the electricity quantity which 
enter the element dx in the time dt is 
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and the rising of C.V.dx for a variation with dt of t 
corresponds to this: 
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which is leading to the equality 
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     Using Ohm’s law which gives Ri
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obtains the equation 
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and with cR=1, we are led to the heat equation 
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     In the above hypothesis the phenomenon of 
induction is neglected; if it is taken in consideration, 
the equation is 
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3.3   Heating of electrical contacts 
The differential equation of conductor heating is 
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where λ is the thermal conductivity, α is the global 
transmitivity of heat at the conductor periphery, l is 
the conductor dimension, J is the current density, A 
is the transversal section of the conductor, θ is the 
conductor heating, with θ=θm-θr where θr is the 
conductor’s temperature in normal functioning, θm is 
the maximum temperature in regime of short circuit, 

ρ=ρp(1+αRθ) is the material rezistivity. 
 
 
3.4   Motion of fluid 
For the plane motion of viscous fluids let consider an 
incompressible, viscous fluid of constant density ρ, 
in a plane movement. If (vx, vy) are the speed 
components in the point P(x, y) of the plane at the 
time moment t the movement equations are 
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where p is the pressure in this point, 
ρ
μ

=ν , μ is the 

viscosity coefficient, and 2
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     At the equations (16) the equations of continuity 
are added 
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     The current function is introduced 
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3.5   Running of viscous fluids in 
        rectilinear tubes 
Let be a rectilinear tube, which is leading a viscous 
liquid. The ax of tube is Oz. Let us consider the 
movement of a part of the liquid between two 
transversal sections z1 and z1+h. If A is the 
transversal section area supposed to be constant and 
ρ is the fluid density, the movement equation is 
 

RppA
t
vAh −−=
∂
∂

ρ )( 21  
(18)

 
where p1 and p2 are the pressions in the two sections 
and R is the force on the tube wall. If v is the fluid 
speed in the direction of Oz axis, v is independent of 
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z if the liquid is incompressible 
 

),,( tyxvv =  (19)
 
     The partial derivative equation is 
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if the pression p is constant 
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which it is the equation of heat propagation in plane, 
where a=μ/ρ. 
 
 
3.6   Losses of nonstationary heat in 
        subterranean pipe 
In the design and exploitation of oil and gas pipes a 
series of problems arise at the calculation of heat 
losses of pipes in conditions of a heat change 
nonstationary. For determining the nonstationary 
heat losses in the subterranean pipes the next 
equation is used 
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where θ is the temperature of the transported 
material, θs is the soil temperature, t is the time, x, y 
are the Cartesians coordinates and a is a coefficient 
what is characterizing soil thermal diffusion.  
 
 
3.7   Running of gases in water main 
Suddenly in practice a great importance is to 
determine the necessary time to establish the 
pressure in a certainly point of a pipe after the valve 
closing. The nonstationary running of a gas is 
defined by the system 
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where p is the pressure, v is the medium speed 
related at the section, d is the pipe diameter and λ is 
the friction coefficient. 
 
 
3.8   Estimation of the ice height covering 
        the snow on the arctic seas 
A method used to determine the ice height of the 
arctic seas is the radiometry. Radiometry is based on 
registration of the heat radiation of which intensity 
varies with temperature and the radiation coefficient 
of the objects. The value of the radiations will 
characterize the relation between the ice height in its 
different stages. The temperature of the ice surface is 
determined from the heat equation, which describes 
the heat repartition in snow and ice 
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where cj is the specific heat, ρj is the density, λj is the 
thermal conductivity coefficient, θj is the 
temperature, t is the time, z is the height coordinate. 
The indices j=1,2,3 correspond to the there medium: 
air, snow and ice. At the frontiers there are the 
conditions of equilibrium. 
 
 
4   Identification Techniques 
System identification is for building accurate, 
simplified models of complex systems from noisy 
time-series data. It provides tools for creating 
mathematical models of dynamic systems based on 
observed input/output data. The identification 
techniques are useful for applications ranging from 
control system design and signal processing to time-
series analysis. Actually, there is a huge amount 
written on the subject of system identification. The 
textbooks [28÷31] deals with identification methods 
and also describes methods for physical modelling. 
For more details about the algorithms and theories of 
identification for distributed parameter systems there 
are [7÷12]. But only the experience with real data 
may help us to understand more. It is important to 
remember that any estimated model, no matter how 
good it looks on design, has only picked up a simple 
reflection of reality. So, in this aspect the sensor 
network is the powerful tool. 
     The identification techniques are useful for 
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applications ranging from control systems, fault 
detection and diagnosis, signal processing to time-
series analysis. 
     The structure of a modern control system is 
presented in Fig. 7 [32]. 
 

 
Fig. 7. The structure of a modern control system 

 
     It has the basic level of feedforward control, with 
control feedback, the second level with supervising, 
and the highest level of management. Identification 
finds its place in all these control levels. 
     There are identification methods based on 
parametric model and on nonparametric models. 
From the second category we enumerate spectral 
methods, correlations methods, recursive state 
estimation with Bayes filters and Gaussian filters. 
     Models describe relationships between measured 
signals. 
 

 
Fig. 8. The identification signals 

 
     The outputs y(t) are then partly determined by the 
inputs u(t). In most cases, the outputs are also 
affected by more signals than the measured inputs. 
Such unmeasured inputs are called disturbance 
signals or noise e(t). The relationship is y(t)=f(u(t), 
e(t)). 

     In case of systems that cannot be modeled based 
on physical insights it is possible to use standard 
models, which by experience are known to be able to 
handle a wide range of different system dynamics. A 
family of such ready made model, which tell the size 
and it is possible to find them to fit to measured data. 
    The estimation techniques are classified as 
follows: estimating parametric models, as estimating 
linear black-box models (with dynamics) like 
transfer functions and state-space models and 
estimating nonlinear black-box models. Estimation 
of linear black-box models is based on identification 
of polynomial and state-space models using various 
estimation algorithms: autoregressive models (ARX, 
ARMAX), Box-Jenkins (BJ) models, output-Error 
(OE) models, and state-space parameterizations; 
estimation of a model of the noise affecting the 
observed system. Estimation of nonlinear black-box 
models is based on methods like nonlinear ARX and 
Hammerstein-Wiener models. 
     In the modern control systems models of artificial 
intelligence may be used for estimation of nonlinear 
complex systems, of high dimensions, with many 
variables. Such models may be developed using: 
fuzzy logic, neural networks, Bayesian networks, 
genetic algorithms, knowledge base systems, expert 
systems. 
 
 
4.1   Estimation Based on Linear Models 
     A general case model is the Box-Jenkins model, 
summarized as: 
 

)(),()(),()( teqHtuqGty θ+θ=  (25)
 
where G and H are rational transfer functions of the 
shift operator q for the time discrete model 
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θ is the parameter vector thus contain the 
coefficients bi, ci, di, fi of the transfer functions and e 
is the white noise 
     The model is described by the structural 
parameters nb, nc, nd, nf and nk. When these have 
been chosen it remains to adjust the parameters bi, ci, 
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di, fi to data.  
     Some special cases are: - the output error model 
(OE), where the properties of the disturbance signals 
are not modeled and H=1; the ARMAX model – the 
auto-regression and a moving average of white noise, 
when 
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and the ARX model, where in the above case of 
ARMAX other simplification is done C(q)=1. 
Starting from (…) it is possible to predict what the 
output y(t) will be, based on measurements of u(t), 
y(t). The prediction of y(t) is obtained with the 
general expression: 
 

)(),(),()()],(1[)( 11
^

tuqGqHtyqHty θθ+θ−= −− (28)

 
which have special cases for OE and ARX. 
     The principle of minimizing the prediction errors 
is used to fit the parameterized models to data.  
     The output y at time t is thus computed as a linear 
combination of past outputs and past inputs. It 
follows, for example, that the output at time t 
depends on the input signal at many previous time 
instants. This is the system dynamics. The 
identification problem is then to use measurements 
of u and y to figure out: the coefficients in this 
equation; how many delayed outputs nf to use in the 
description. If the time delay in the system is nf that, 
from the equation we may see that it takes nh sample 
periods before a change in u will affect y. How many 
delayed inputs nb to use. 
 
 
4.2   Estimation Based on Fuzzy Logic 
In the case of estimation based on fuzzy logic the 
model is a fuzzy system. Such a fuzzy system has the 
structure from Fig. 9. 
     In this structure an input interface of fuzzification 
transforms the crisp inputs u in fuzzy information A, 
applied to an inference procedure. The inference is 
working using a rule base of the fuzzy model. The 
crisp output y of the fuzzy model is obtained from 
the fuzzy information B of the inference applying a 
defuzzification method. 
 

 
Fig. 9. Fuzzy model 

 
     The inference is a computational method used in 
computers to apply the fuzzy reasoning from the rule 
base. An example of inference is presented in Fig. 
10. 
 

 
Fig. 10. Fuzzy inference 

 
     In this inference method the crisp inputs u1 and u2 
are fuzzified through membership functions assigned 
to the fuzzy values (NB, ZE, PB) from the rule base. 
The rule base are computed using fuzzy operations 
as AND, OR, implemented with minimum or 
maximum. The output fuzzy set, described by a 
membership function, is computed with the fuzzy 
operation OR. These computations are made for all 
the rules of the rule base. And the result is the fuzzy 
information B. The output y is the most significant 
value from the universe of discourse (the definition 
set of the membership function) of the output 
membership function. 
 
 
4.3   Estimation Based on Neural Networks 
     The same identification algorithms may be 
implemented using neuronal networks. In this, case a 
feedforward neural network, with continuous values, 
with two hidden layers of neurons, working as 
multifunction approximation is recommended. The 
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structure of a multilayer neural network with m 
inputs ui, i=1,...,m and n outputs yi, i=1,...,n is 
presented in Fig. 11. 
 

 
Fig. 11. Multilayer feedforward neural network 

 
     This neural network has weights for the internal 
connections wij

k, and each neuron has is own bias. 
The neuron acts like the following functions: 
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where fa is the activation function. Such activation 
function are the sigmoid th(x) for the neurons from 
the hidden layers from the interior of the neural 
network and the linear function y=x, for the neurons 
from the output layer. The neural network transfer 
function is: 
 

 

 
 
(30)

 
     The neural identification has the block diagram 
from Fig. 12. 
     In this case the model is a neural network. The 
neural model is obtained by training (learning) the 
neural network with training sets (ui, yi), i=1, N, 
obtained from real measurements from the 
distributed parameter systems, achieved using sensor 
networks. A cost function (31) is imposed for 
training. 

 
Fig. 12. Direct neural identification 

 

 

(31)

 
     A training method, based on error 
backpropagation is used. For example the Levenberg 
Marquard method, using a cvasi-Newton method to 
minimize the cost function assures the small number 
of iterations to obtain the appropriate weight and 
biases values. A rule of weight updating is applied: 
 

 

 
 
(32)

 
     Developing of neural mode has the principle 
described in Fig. 13. 
 

 
Fig. 13. Diagram of neural identification 

development 
 
     As we said above, a supervised learning (by 
backpropagation) is used to obtain the best values of 
the unknown weights w and biases b, propagating 
back through the network the training output error 
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computing the gradient ΔE. 
 
 
5 Malicious Node Detection 
In this example a strategy based on antecedent values 
provided by each sensor for detecting their malicious 
activity is presented. At each time moment the 
sensor’s output is compared with its estimated value 
computed by a robust autoregressive neural 
predictor. In case that the difference between the two 
values is higher then a chosen threshold, the sensor 
node becomes suspicious and a decision block is 
activated. We present the neural estimation structure 
based on autoregression, the model of the heat 
conduction in the plane, sensor deployment, the 
neural network structure, the neural training 
characteristics, the sensor value and the estimate, the 
sensor error and an example of sensor network 
measurements. 
 
 
5.1   Detection Strategy 
     The strategy of detection considers an 
autoregressive (AR) model that approximates the 
time evolution of the measured values provided by 
each sensor: 
 

)()(...)1()( 1 tentxatxatx n +−⋅++−⋅=  (34)
 
where x(t) is the series under investigation (in our 
case is the series of values measured by the same 
sensor), ia are the auto regression coefficients, n is 
the order of the auto regression and e is the noise. 
     The model (34) may be implemented using a 
feedforward neural network with continuous values. 
The inputs of the neural network are the measured 
values of the sensor, at previous n time moments. 
The coefficients ai will be given by the weights and 
biases of the neurons from the hidden layers of the 
neural network. The output of the neural network 
will be the estimate at the time t of the sensor value: 
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The weights and biases values are computed by 

training, knowing on-line or off-line a set of training 
under the form of a time series x(t), x(t-1),…,x(t-n). 
     The strategy uses the time series of measured data 
provided by each sensor and relies on an 
autoregressive neural predictor placed in base 
stations (Fig. 14). 
 

 
Fig. 14. Malicious node detection block diagram 
 
     The detection principle is the following: 
identifying a malicious node that will try to enter 
false information into the sensor network comparing 
its output value )t(x  with the value )t(x̂  predicted. 
     The proposed methodology is described as 
follows: At every instant t the estimated value )t(x̂ A  
is computed relying only on past values xA(t-1), …, 
xA(0) and parameter estimation and prediction is 
used, as in the following steps. First the parameters 
wi, bi of the neural network are determinate, using 
the Levenberg Marquardt method. A training set 
including all the possibilities of the sensor network 
behavior is used. The neural network is trained to 
obtain a small training error and a high degree of 
generalization. The neural network is test with a test 
set. Second, the prediction value )t(x̂  is obtained 
using the following equation: 
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After that, the present value )(tx A  measured by the 
sensor node is compared with its estimated value 

)(ˆ tx A  by computing the error: 
 

)(ˆ)()( txtxte AAA −=  (37)
 
If this error is higher than a threshold Aε then the 
sensor A will be considered to be a potentially 
corrupted sensor and the decision block will be 
activated. Here, based on a database containing the 
known attacks models, a knowledge-based system 
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can take the decision to expel the malicious node 
from the network topology (Fig. 14).  
     There is no simple method to establish the correct 
model order in case of an AR model. In this case 
there are two parameters that influence the decision: 
the type of data measured by sensors and the 
computing limitations of the base stations. Because 
both of them are a priori known an off-line 
methodology is recommended. Realistic values are 
between 3 and 6. 
     The structure of the neural network is established 
after iterative trainings. 
 
 
5.2   Process Model 
     The propagation of a temperature wave, in a 
homogenous planar field, is considered, where 
several sensor nodes Si,j with I=1,…,N and j=1,…,M, 
being a part of a sensor network, have been 
deployed. These sensors are measuring the local 
temperature θ [oC]. A possible malicious node, to be 
detected, is denoted by SA. An auto-regression neural 
network model is developed to estimate the 
temperature value provided by the sensor A: 

)t(ˆ)t(x̂ AA θ=  , by taking into consideration the 
previous values of the data provided by sensor xA(t-
1), xA(t-2), …, xA(t-n). 
     The time distribution of the temperature θ 
through the homogenous medium in space is )t,z(θ , 
at the moment t, at distance z from the heat source. 
     The heat conduction, when neglecting the heat 
loses in the environment, is described by the heat 
equation [19],[20]: 
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where cθ is the heat conductivity coefficient of the 
medium. 
     In order to investigate how the strategy works the 
function )t,z(θ=θ  is discretised into the aggregates 

k,jθ  (temperature value provided by Sj,k) measured at 
the distance k,jz  from the origin. The goal is to 
obtain the temperature θA measured by the 
corresponding sensor (SA). 
     The energy conservation is governed for each 
point in the field by the following equation: 
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where k,jW is the energy stored in point (j,k), kj

inP ,  is 

the input power in the point and kj
outP ,  is the output 

power from the point. The space model of the sensor 
deployed in the field with the heat sources is 
presented in Fig. 5. 
 

 
Fig. 15. Sensor deployment 

 
     The sensor SA measures the temperature θA in a 
point in this space. Let the heat capacity of each 
point be denoted C and the heat transfer coefficient 
between the points kj

iK , . These give the equation in 
time of the heat diffusion: 
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     A discrete time equivalent equation of (40), with 
a chosen adequate sample period h is used. Each cell 
of sensors is receiving inputs from the around 
medium, from r sources with powers Pi, i=1, …, r, 
positioned around the network. The heat sources Pi 
are positioned in different points in the coordinate 
system xOy. Some coordinate transformations may 
be done and the sources may be moved in the 
adjacent points of the network. 
 
 

WSEAS TRANSACTIONS on SYSTEMS Constantin Volosencu

ISSN: 1109-2777 797 Issue 6, Volume 7, June 2008



5.3   Sensor Network Measurements 
A Crossbow sensor network was used in practice. It 
has the following components: a starter kit, a MICA2 
2,4 GHz wireless module, and an MTS320 sensor 
board. Their nodes are: 2 MICAz 2,4 GHz modules, 
with 2 sensors MTS400, which are measuring 
temperature, humidity, pressure, ambient light 
intensity; 1 MICAz 2,4 GHz with 2 sensors MTS310 
and 1 module MICAz 2,4 GHz working as a central 
node when it is connected through the UB port. A 
gateway MIB520 for node programming and a data 
acquisition board MDA320 with 8 analogue channels 
are provided. The network has the following 
software: MoteView for history sensor network 
monitorization and real time graphics and 
MoteWorks for nod programming in MesC 
language. 
     The transient temperature characteristics 
measured for temperature monitorization in a 
chamber are presented in Fig. 16. 
 

 
Fig. 16. Temperature transient characteristics 

measured with the sensor network 
 
     The user interface allows some facilities, as: 
administration, searching, connections options and 
so on. 
 
 
5.4   Neural Network 
     The neural network used for estimation is a 
feedforward neural network, with continuous values. 
It has 4 inputs, the sensor values at 4 antecedent time 
moments: xA(t-1), xA(t-2), xA(t-3) and xA(t-4). The 
output layer has one neuron for the estimated 
temperature. The structure of it is presented in Fig. 
17. 

 
Fig. 17. The structure of the neural network 

 
     According to Kolmogorov’s theorem two hidden 
layers are used, with biases, to obtain a reduced error 
of approximation of the estimate. The first and the 
second hidden layers have a reduced number of 
neurons, 32 and 16 neurons, respectively. These 
numbers resulted after some iterative training. The 
activation functions of the neural network are the 
hyperbolic tangent function for the hidden layers and 
the first-order linear function for the output layer. 
     The training of the neural network with a training 
set, which cover the entire possible scenario in the 
field. The input data for estimation is a time series of 
the temperature sensor SA, as the state of the heat 
diffusion model (40). This time series is obtained 
using sums of the traveling temperature waves, 
generated by the heat sources Pi. The temperatures 
propagate through to the sensor SA. The training set 
was obtained using present and anterior values of the 
sensors, (θA(t-1), θA(t-2), θA(t-3), θA(t-4); θA(t)) 
taken from the transient responses of the model 
(38÷40). The method chosen for training was the 
Levenberg-Marquardt method. The sum square error 
after 9 training epochs is presented in Fig. 18. 
 

 
Fig. 18. The training error 
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     At a specific time moment (t=400) the sensor was 
corrupted. Some different sets of candidate models 
for the model structure could be experimented. A 4th 
order estimation general model was chosen. With 
weights and biases it has the expression: 
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     This autoregressive neural estimation is applied 
for the sensor SA. 
 
 
5.5   Experimental results 
    The estimated temperature )t(ˆ)t(x̂ AA θ=  for the 
sensor SA is presented in Fig. 19, over the original 
time series xA(t). 
 

 
Fig. 19. Sensor value and the estimate 

 

 
Fig. 20. Sensor error 

     The error )t(x̂)t(x)t(e AAA −=  is presented in Fig. 
20. 
     We may see the error appearance at the time 
moment 400 s, caused by a fault at the node xA. 
     The estimated signal follows the real signal after 
a small delay. 
 
 
6   Conclusions 
A short survey of three topics: modern sensor 
networks, distributed parameter systems and 
estimation techniques, specially using artificial 
intelligence tools, to be involved in the new domain 
of identification of distributed parameter systems, 
based on sensor networks and artificial intelligence. 
     Modern sensors are smart, small, lightweight, 
portable devices, with a communication 
infrastructure, used to monitor and record specific 
parameters. They have low cost and are low energy 
devices, realized in nanotechnology. Some of their 
technical characteristics are presented. As smart and 
small devices they are capable to be implemented in 
large distributed parameter systems. 
     Sensor networks have in their structure hundred 
and thousands of ad-hoc tiny sensor nodes spread 
across a geographical area. Sensor nodes collaborate 
among themselves to establish a sensing network. 
The sensor network provides access to information 
anytime, anywhere, by collecting, processing, 
analyzing and disseminating data. The network 
actively participates in creating a smart environment. 
A sensor network is acting as a distributed sensor in 
a distributed parameter system. Sensor network 
topics, sensor network architectures and sensor 
network applications are presented. Applications of 
data acquisition of physical and chemical properties, 
at various spatial and temporal scales, as in 
distributed parameter systems, for automatic 
identification, measurements over long period of 
time. 
    Some examples of distributed parameter systems 
with large application in practice are presented: the 
process of heat conduction, applications related to 
electricity domain, motion of fluids, processes of 
cooling and drying, phenomenon of diffusion and 
other applications. All these processes have the same 
equations with partial derivatives. 
     Using system identification techniques we may 
build accurate and simplified models of distributed 
parameter systems, from noisy time-series data 
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obtained with sensor networks. The identification 
techniques are useful for applications ranging from 
control systems, fault detection and diagnosis, signal 
processing to time-series analysis. Methods to 
estimate linear back box models and models of 
artificial intelligence, as fuzzy logic and neural 
network are presented. 
     A case study of malicious nod detection is 
presented. The strategy of detection is based on a 
neural autoregression method in the process of plane 
heat propagation. The paper presents: the model of 
the heat conduction in the plane, sensor deployment, 
an example of sensor network measurements, the 
neural network structure, the neural training 
characteristics, the sensor value and the estimate and 
the sensor error. 
 
 
References: 
[1] C. Volosencu, Identification in Sensor Networks, 

in Automation & Information: Theory and 
Advanced Technology, Proceedings of the 9th 
WSEAS Int. Conf. on Automation and 
Information (ICAI’08), WSEAS Press, 2008, 
pp. 175÷183. 

[2] H. Zhang, J.M.F. Moura, B. Krogh, Estimation in 
sensor networks: a graph approach, 4th Int. 
Symp. on Information processing in sensor 
networks, Los Angeles, CA, 2005. 

[3] H. Zhang et all., Estimation in sensor actuators 
arrays using reduced order physical models, 4th 
Int. Symp. Information Processing in Sensor 
Networks, Los Angeles, CA, 2005. 

[4] R. Novak, U. Mira, Boundary Estimation in 
Sensor Networks: Theory and Methods, 
Information Processing in Sensor Networks: 
2nd Int. Workshop, IPSN 2003, Palo Alto, CA, 
2003. 

[5] D.I. Curiac, C. Voloşencu, A. Doboli, O. Dranga, 
T. Bednarz, Discovery of Malicious Nodes in 
Wireless Sensor Networks Using Neural 
Predictors, WSEAS Transactions on Computer 
Research, Issue 1, Vol. 2, Jan. 2007, pp. 38 – 
44. 

[6] C. Volosencu et. all., Malicion Node Detection in 
Sensor network Using Autoregression Based on 
Neural Network, 4th IFAC Conf. on 
Management and Control of Production and 
Logistics, MCPL2007, Sibiu, 2007, pp. 571 – 
577. 

[7] H.T. Banks, K. Kunish, Estimation techniques for 
distributed parameter systems, Systems & 
control: foundation & applications, vol. 1, 
Note(s): XIII-315, 1989. 

[8] C.S. Kubrusly, M.R. de S. Vincente, Distributed 
parameter system identification. A survey, 
International Journal of Control, Volume 26, 
Issue 4 Oct. 1977, p. 509 – 535. 

[9] M.P. Polis, R.E. Goodson, Parameter 
identification in distributed systems: A 
synthesizing overview, Proceedings of the 
IEEE, Jan. Vol. 64, Issue: 1, 1976, pp. 45- 61. 

[10] D. Ucinski, Optimal Measurement Methods for 
Distributed Parameter System Identification, 
CRC Press, 2004. 

[11] J.E. Lagnese, D.L. Russell, Control and Optimal 
Design of Distributed Parameter Systems, 
Mathematics and Its Applications, Vol. 70, 
Springer-Verlag New York, NY, 1995. 

[12] M.A. Demetriou, Adaptive identification of 
second-order distributed parameter systems, 
Inverse Problems, no. 10, 1994, pag. 261-294. 

[13] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, 
E. Cayirci, Wireless Sensor Networks: A 
Survey. Computer Networks, 38(4), March, 
2002. 

[14] M. Tubaishat, S. Madria, Sensor networks: an 
overview, IEEE Potential, Apr. 2003, Vol. 22, 
Issue 2, pap. 20- 23. 

[15] G.J. Pottie, W.J. Kaiser, Wireless Integrated 
Network Sensors. Communications of the ACM, 
vol. 43, 2000. 

[16] J. Feng, F. Koushanfar, M. Potkonjak, System-
Architectures for Sensor Networks Issues, 
Alternatives and Directions, Proc. of the 2002 
IEEE Int. Conf. on Computer Design 
(ICCD’02), Freiburg, 2002, pp.226-231. 

[17] L. Tong, Q. Zhao, S. Adireddy, Sensor 
Networks with Mobile Agents, Proceedings 
IEEE 2003 MILCOM, Boston, USA, 2003, 
pp.688-694. 

[18] C. Volosencu, Sisteme fuzzy si neuronale, Ed. 
Politehnica, Timisoara, 2007. 

[19] G.B. Folland, Introduction to partial differential 
equations, Princeton University Press, 1995. 

[20] M.N. Rosculet, M. Craiu, Ecuatii diferentiale 
aplicative, Ed. Academiei RSR, Bucuresti, 1979. 

[21] D. Basmadjian, The Art of Modeling in Science 
and Engineering, Chapman & Hall, CRC, Boca 
Raton, 1999. 

WSEAS TRANSACTIONS on SYSTEMS Constantin Volosencu

ISSN: 1109-2777 800 Issue 6, Volume 7, June 2008



[22] K. Zheng, A. Hoo, M. J. Piovoso, Finite 
Dimensional Modeling and Control of 
Distributed Parameter Systems, Proc. American 
Automatic Control Conf., Anchorage, 2002. 

[23] R. González-García, R. Rico-Martínez, I. G. 
Kevrekidis, Identification of distributed 
parameter systems: A neural net based 
approach, European Symp. on Computer Aided 
Process Engineering, Vol. 22, Sup. 1, 1998, p. 
S965-968. 

[24] D. Coca, S.A. Billings, Direct parameter 
identification of distributed parameter systems, 
Int. J. of Systems Science, Vol. 31, No. 1, Jan., 
2000, pp. 11-17(7). 

[25] G. B. Giannakis, Distributed Estimation Using 
Wireless Sensor Networks, The 12th WSEAS Int. 
Conf. On Systems, Heraklion, Crete Island, 
Greece, 2008. 

[26] C. Volosencu, D.I. Curiac, A. Doboli, O. 
Dranga, Knowledge Based System for Reliable 

Perimeter Protection Using Sensor Networks, 
Int. Conf. Winsys2007, Barcelona, 2007. 

[27] B. Krishnamachari, A Wireless Sensor 
Networks Bibliography, Technical Report, 
University of Southern California, 2007. 

[28] L. Ljung, System Identification, theory for the 
user, Prentice Hall, Upper Saddle River, NJ, 
1999. 

[29] L. Ljung, T. Glad, Modeling of Dynamic 
Systems, Prentice Hall, Englewood Cliffs, N.J. 
1994. 

[30] T. Söderström, P. Stoica, System Identification, 
Prentice Hall International, London. 1989. 

[31] Sjoberg, J., et. all., Non linear black box 
modeling in system identification: an unified 
overview, Automatica, 33, 1997, 1691-1724. 

[32] L.H. Chiang, E.L. Russell, R.D. Braatz, Fault 
Detection and Diagnosis in Industrial Systems, 
Springer Verlag, London, 2001. 

 
 
 

WSEAS TRANSACTIONS on SYSTEMS Constantin Volosencu

ISSN: 1109-2777 801 Issue 6, Volume 7, June 2008




