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Abstract: Petri net model which is one of the most common modelling method of discrete event systems, is
considered to enforce reversibility in this work. Reversibility guarantees that the intial state is reachable from any
state in the reachability set of given Petri net. An approach, enforcing reversibility, is presented in this work. In
this approach, the minimal T-invariants and the firing sequences coressponding to the determined T-invariants are
determined. Then, a set of markings, which is a subset of reachability set, is constructed by using those firing
sequences. In this set, any state can reach to the initial state. Furthemore, the algorithms are developed for the
presented enforcement approach and implemented by using Matlab.
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1 Introduction
1 Petri net model is frequently used for modeling and
analysing discrete event systems ([1, 2, 5, 7]). Dis-
crete event systems (DES) is that they consist of inter-
acting nodes. Each node can be a system in itself and
may be thought of as a component of the DES. These
components can operate concurrently, i.e., a compo-
nent can be performing one of its functions at the same
time that another component is carrying out one of its
respective functions. DES can be described in a pre-
cise, unambiguous manner by using Petri net model
[6, 21, 22, 23].

Petri net model is introduced by Carl Adam Petri
(1962). A Petri net consists of places, transitions, and
arcs that connect them. There are other types of arcs,
e.g. inhibitor arcs. Tokens are located into places; the
current state of the modeled system (the marking) is
given by the number of tokens in each place. Tran-
sitions are active components. They model activities
which can occur (the transition fires), thus changing
the state of the system (the marking of the Petri net).
Transitions are only allowed to fire if they are enabled,
which means that all the preconditions for the activity
must be fulfilled (there are enough tokens available in
the input places). When the transition fires, it removes
tokens from its input places and adds some at all of its

1This work is extended version of the paper ”Reversibility en-
formencent of Petri nets using T-invariants”, which is presented
in ACMOS’2008.

output places.
Petri nets are a promising tool for describing and

studying systems that are characterized as being con-
current, asynchronous, distributed, parallel, nondeter-
ministic, and/or stochastic. As a graphical tool, Petri
nets can be used as a visual-communication aid sim-
ilar to flow charts, block diagrams, and networks.
In addition, tokens are used in these nets to simu-
late the dynamic and concurrent activities of systems.
As a mathematical tool, it is possible to set up state
equations, algebraic equations, and other mathemati-
cal models governing the behavior of systems.

One of the most important property of Petri nets
is reversibility. When the reversibility is satisfied, the
system can move back to an initial state from any
reachable state. In this work reversibility and its en-
forcement is considered.

Many works which use reachability set to analyse
reversibility (for example, [14, 13, 11, 8] and refer-
ences therein) have been presented for several types
of Petri nets. Since the computational complexity is,
in general, exponentially related to number of places
and transitions [11], construction of the reachability
set needs an additional effort in the sense of computa-
tional time (see, [20]).

In [3], a relationship between reversibility and T-
invariants, which is a structural analysis method, was
given. Since a simple linear equation is solved to find
T-invariants, the computational complexity for deter-
mination of T-invariants can be neglected. Moreover,
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this relationship is also valid for unbounded Petri nets.
By this motivation, in this paper we used this relation-
ship to analyse and enforce reversibility for bounded
/ unbounded Petri nets. Furthermore, a controller is
used for reversibility enforcement.

2 Petri Net Model
A Petri net is denoted by a tupleG(P, T,N,O,m0),
whereP is the set of places,T is the set of transitions,
N : P × T → N is the input matrix that specifies
the weights of arcs directed from places to transitions,
O : P × T → N is the output matrix that specifies
the weights of arcs directed from transitions to places,
whereN is the set of non-negative integer numbers,
andm0 is the initial marking.

M : P → N is amarking vector,M(p) indicates
the number oftokens, represented by black dots, as-
signed by markingM to placep. A transitiont ∈ T is
enabledif and only if M(p) ≥ N(p, t) for all p ∈ P .
Here,N(p, t) corresponds, the element of the input
matrix, to p ∈ p and t ∈ t. An enabled transition
t ∈ T mayfire at M , yielding the new marking vec-
tor:

M ′(pi) = M(pi)+O(pi, t)−N(pi, t), ∀p ∈ P (1)

whereM ′ is new marking vectors which is obtained
from the marking vectorM , and| ∗ | denotes the num-
ber of elements of the set (*).

A marking M ′ is said to be reachable fromM
if there exists a firing sequence starting fromM and
yieldingM ′ such as

M ′ = M + AUg (2)

where,A := O − N denotes the incidence matrix,
g indicates the sequence of enabled transitions, and
Ug : T → N denotes the firing count vector whose
jth element indicates how many timestj is fired ing.

In this work,ρ(M, g) denotes the transition func-
tion which gives yielded marking when the sequence
g is fired starting from markingM , the reachability
set, denoted byR(G,m0), is the set of all markings
reachable fromm0.

The example Petri net is considered to explain the
notation in this work. The example net is shown in
Figure 1.

This net is described asP = {p1, p2}, T =
{t1, t2}, m0 = [1 1]T . In addition the input and
output matrices are constructed as follows:

A =

[
−1 1

1 −1

]

Figure 1: A Petri net

At initial marking,m0, transitiont1 is enable, i.e
ρ(m0, t1) = M1:

M1 = m0 + AUt1

M1 =

[
1
0

]
+

[
−1 1

1 −1

] [
1
0

]

=

[
0
1

]

HereUt1 denotes the firing count vector of transi-
tion sequenceg = t1. First element ofUt1 denotes
how many timest1 is fired from the present mark-
ing. From markingM1 not t1 but t2 is enabled, i.e
ρ(M1, t2) = M2:

M2 = M1 + AUt2

M2 =

[
0
1

]
+

[
−1 1

1 −1

] [
0
1

]

=

[
1
0

]

Some properties of Petri nets are given as follow:
Let us remember some behavioral properties related
to the discussion of this work.

Definition 1: G is said to beK-bounded, ifM(p) ≤
K(p), ∀p ∈ P , ∀M ∈ R(G,m0) (K : P → N ),
G is said to beboundedif it is K-bounded for some
K : P → N . OtherwiseG is unbounded.

Definition 2: A Petri netG is said to be reversible if
m0 ∈ R(G,M), ∀M ∈ R(G,m0).

Definition 3: A Petri net G is said to be par-
tial reversible ifm0 ∈ R(G,M), for at least one
M ∈ R(G,m0), and the reversible set is defined
as Rs := {M ∈ R(G,m0) | m0 ∈ R(G,M)}
⊂ R(G,m0).

Definition 4: A Petri net G is said to be par-
tial reversible if m0 ∈ R(G,M), for at least
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one M ∈ R(G,m0), and the reversible sub-
set of the reachability set is defined asRs :=
{M ∈ R(G,m0) | m0 ∈ R(G,M)}
⊂ R(G,m0).

Definition 5: Any nonzero solution ofAX = 0̂, the
vectorX (|T | × 1) is called as T-invariant. Here,̂0
denotes zero vector (|T | × 1), |T | denotes the number
of elements ofT . If a T-invariant is not a linear com-
bination of other T-invariants it is minimal T-invariant

In this work, the set of minimal T-invariants is de-
termined by using the algorithm presented in [17] and
it is denoted byTm.

Algorithm1

1. ConstructA′ = [I
...AT ]

2. j=|T |+1

3. Find the couples of nonzero elements injth col-
umn such that sum of these elements are equal to
zero.

4. Calculate the sum of the corresponding rows.

5. Each sum is appended to the bottom ofA′.

6. Each addend are deleted fromA′.

7. If j = |P | + |T |, go to 8th step, otherwisej =
j + 1 and go back to3rd step.

8. The first|T | elements of the rows whose all el-
ements are zero after|P | + 1 th column are the
transpose of minimal T-invariants.

For example, consider a Petri net with the follow-
ing incidence matrix:

A =




−1 1 1
1 −1 −1
1 −1 0




AT =




−1 1 1
1 −1 −1
1 −1 0




A′ =




1 0 0 −1 1 1
0 1 0 1 −1 −1
0 0 1 1 −1 0




Annulling 4th column

1
2
3

1 + 2
1 + 3




1 0 0 −1 1 1
0 1 0 1 −1 −1
0 0 1 1 −1 0
1 1 0 0 0 0
1 0 1 0 0 1




Delete 1st, 2nd and 3rd rows.

A′ =

[
1 1 0 0 0 0
1 0 1 0 0 1

]

Annulling 5th row

5th row is annuled because of the calculations in
the previous step.

Annulling 6th row

6th row can not be annuled.

Minimal T-invariant is determined as[1 1 0]T .
T-invariants are very important elements for Petri

nets to analyse properties. If in all the T-invariant of
the Petri net model of a manufacturing system, the
same element is equal to zero, then we can claim that
it is impossible to come back to the initial marking
after firing sequence of transitions which contains the
transition corresponding to this element. From a man-
ufacturing point of view, this means that it will be im-
possible to come back to the initial state if we perform
the operation represented by transition corresponding
to the null elements of T-invariants.

Note that a sequence of transitions could be T-
invariant without being firable. Let us assume that
σ1, σ2...σk are firable sequence of transitions and that
Xσi are T invariants. If a management system pro-
ceeds by activating some of these sequences one or
more times, then it guarantees that the state of the sys-
tem is the same at the end of the process as it was at
the beginning.

3 Reversible set
In this section, our method which determines a re-
versible set of a Petri net by using minimal T-
invariants is introduced. The set of T-invariants of a
Petri net is given by,T = {X | A X = 0̂, X ∈ N |T |}.
Minimal T-invariants of the net is formed by the basis
of T . In this work, the set of minimal T-invariants is
determined by using the algorithm presented in [17]
and it is denoted byTm.

WhenUg of a firing sequenceg is equal to a min-
imal T-invariant, i.e.Ug = X ∈ Tm, thenAUg = 0̂.

WSEAS TRANSACTIONS on SYSTEMS Hanife Apaydin Ozkan and Aydin Aybar

ISSN: 1109-2777 674 Issue 6, Volume 7, June 2008



Hence, the second term at the right side of the equa-
tion (2) is zero. Thus,M ′ is obtained asM ′ = m0 if
the transitions ing are firable fromm0 respectively.

The method uses all minimal T-invariants to find
firable firing sequences fromm0. In our approach,
we use the sum of all minimal T-invariants for this
purpose. This sum,C, is determined as

C =
∑

X∈Tm

X (3)

Consequently,C is also a T-invariant.
The method finds the set of corresponding firing

sequences ofC. These firing sequences are different
ordering of transitions inC. Note that each transi-
tion ti ∈ T are repeatedC(i) times in the sequences,
whereC(i) is the ith element ofC. The sequences
constructs the set̂gC , it consists of all possible per-
mutations of transitions inC (it is possible to obtain
this set by usingperms function in Matlab).

Since it is not necessary that all firing sequences
in ĝC are firable fromm0, the sequences firable from
m0 are searched througĥgC , after ĝC is formed. If
there exists, all markings obtained during the firing of
these firable sequences fromm0 constructs the setRs,
in this caseRs 6= ∅.

If A X = 0 has only trivial solution, then there
exists no firing sequenceg such thatAUg = 0. Hence,
reversible set is obtained as empty,Rs = ∅.

4 Reversible Set Algorithm

In this section, the algorithm of the method presented
in the previous section is introduced. The algorithm,
called as Reversible Set Algorithm (RSA), determines
the set of firing sequences corresponding to the sum of
the minimal T-invariants, firstly. Then, it checks the
firability of the firing sequences fromm0, one by one
and then fires the firable sequences fromm0 and con-
structs the setRs with the marking vectors obtained
during these firings.

RSA requires the definitionG and the set of min-
imal T-invariantsTm of the considered Petri net (the
definition G contains the set of placesP , the set of
transitionsT , the input and output matricesN andO,
and the initial markingm0). Note that, for the con-
struction of the setTm the algorithm in [17] is imple-
mented by using Matlab.

RSA calculatesC, and constructs the setĝC . The
sequences in̂gC , are represented by appropriate or-
dered sets of transitions, i.e. firing sequence “txtytz”
is represented by the set{tx, ty, tz} in ĝC . Then, the
algorithm takes firing sequences from the setĝC one
by one.

In the algorithm RSA, notations are given as
thereinafter:ĝC denotes the set of all possible com-
binations (all possible sequences) of transitins inC,
ĝi
C denotesith (i ∈ N ) element of the set̂gC , [g]i

denotesith transition of the firing sequenceg, Rs de-
notes determined reversible set,E(G,M) is the func-
tion which finds the set of enabled transitions at mark-
ing M , ρ(G, [g]j) is the function which determines
the obtained marking when transition[g]j is fired from
markingM .

RSA checks whether[ĝ1
C ]1 ∈ E(G,m0). If

[ĝ1
C ]1 ∈ E(G,m0), in other words the first transi-

tion of ĝ1
C is firable fromm0, then RSA calculates

the yielded markingM1
1 = ρ(m0, [ĝ1

C ]1) and put
it to set R̄. Next continues with[ĝ1

C ]2 if [ĝ1
C ]2 ∈

E(G,M1
1 ), then RSA calculates the yielded marking

M2
1 = ρ(M1

1 , [ĝ1
C ]2) and put it to set̄R. This proce-

dure keeps on likewise. If all transitions ofĝ1
C are re-

spectively firable fromm0, all markings inR̄ is trans-
fered to the setRs. R̄ is cleared and the next firing
sequence (̂g2

C) is taken from the set̂gC . And the pro-
cedure is repeated again. If a transition[ĝi

C ]j is not
firable from M i

j−1 during the procedure, algorithm
stops checking firability of presentĝi

C ∈ ĝC from m0

and takes the next firing sequence from the setĝC .
When all firing sequences in̂gC is checked for

firability from m0, RSA is terminated and returns the
setRs. If Rs = ∅ reversibility can not be enforced,
otherwiseRs 6= ∅ and it is possible to enforce re-
versibility by the controller developed in [11].

General procedure of the method is given by
Algorithm-2:

Algorithm2

1. C =
∑

X∈Tm

X

2. Construct the set̂gC with the corresponding se-
quences ofC.

3. Obtain firable sequences fromm0 in ĝC .

4. Fire enable transitions fromm0 and obtain new
markings.

5. ConstructRs by using new markings.

The Pseudo code of the Algorithm2 is given as
follow:

Pseudo Code of Reversible Set Algorithm (RSA)

C = 0̂
For j = 1 to |Tm|
C = C + [Tm]j
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End
ĝC=perm(C)
R = ∅, G = ∅, R̄ = ∅
For t = 1 to |ĝC |
M = m0

g = ĝt
C

For j = 1 to |g|
same=0
T = E(G,M)
For k = 1 to |T |
If [g]j ∈ T Then
same=1
M̄ = M + A U[g]j

M = M̄
R̄ = R̄ ∪̂ M
break

End
End
If same = 1 Then
R = R ∪̂ R̄
break

End
If same=1Then
continue

End
If same=0Then
R̄ = ∅
break

End
End

End
Return Rs

5 Controller

In [24], some algorithms and a controller have been
presented to enforce boundedness, reversibility and
liveness. In that work; initially, with an arbitrarily
chosen bound vector, a bounded reachability set of an
unbounded Petri net has been determined; then, the
reversible subset of that bounded set is constructed by
using developed algorithms. Since obtained reversible
set may be empty, reversibility can not be enforced by
the controller everytimes.

In this present work, we obtainRs firstly. If
Rs 6= ∅, reversibility is enforced by the controller ap-
proach developed in [24]. Because it is known that if a
Petri net is partially reversible, the controllerc(M, t)
below enforces reversibility of the net [24].

c(M, t) =

{
1, if ρ(M, t) ∈ Rs,
0, otherwise

(4)

Figure 2: Program interface

where,M ∈ R(G,m0), t ∈ E(G,M). If c(M, t) =
1, then ρ(M, t) ∈ Rs and firing transitiont from
marking M is allowed. If c(M, t) = 0, then
ρ(M, t) /∈ Rs and firing transitiont from markingM
is forbidden.

6 Simulation Program

A program, called as RSA simulation program (RSA-
SP) is developed to implement this algorithm. It is
developed as a Matlab function. When RSA-SP is
run, the interface shown in Figure 2 appears on the
screen. Initially only “Input” button is activated. After
this button is clicked the name of the input file (con-
structed by the user) must be entered. An example
format of this file is given in Appendix B. After this
operation, “Minimal T-invariants” button is activated.
By clicking on this button the Matlab function devel-
oped for the algorithm introduced in [17] is run. Once,
minimal T-invariant set is determined, the RSA button
also becomes active. By clicking on this button, the
Matlab function for the algorithym RSA executes and
Rs is obtained.

RSA-SP determines the set of minimal T-
invariantsTm, the sum of these invariantsC, corre-
sponding firing sequence setĝC . Then the set of tran-
sition squences firable fromm0 through the set̂gC .
Finally, RSA-SP composes the setRs. These results
are written on output file Output.m. An example for-
mat of this file is given in Appendix C.

7 Example

We give an example to simply show how our
algorithm works for the Petri net ([4] p.182)
shown in Figure 3. The set of places isP =
{p1, p2, p3, r1, r2, r3, p4, p5, p6}, the set of tran-
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sitions isT = {t1, t2, t3, t4, t5, t6}, and the initial
marking ism0 = [1 0 0 2 1 1 1 0 0]T . The input file
of this example Petri net for RSA simulation program
is given in Appendix A.

The example Petri net is not bounded, because the
number of tokens in placesp2 and p5 can increase.
The setT = {[1 1 1 0 0 0]T , [0 0 0 1 1 1]T } is obtained
by using the algorithm in [17]. ThenC is determined
asC = [1 1 1 1 1 1 1].

Figure 3: Example Petri net [4]

The Matlab functionperm(C) finds all possible
sequences which consists of onet1, onet2, onet3, one
t4, onet5, onet6. Output of the functionperm(C)
has 720 firing sequences. Some of these sequences
are given as fallow:

ĝ1
C = {t1, t2, t3, t4, t5, t6},

ĝ2
C = {t4, , t5, t6, t1, t2, t3},

ĝ3
C = {t4, , t5, t1, t6, t2, t3},

ĝ4
C = {t4, t1, t2, t3, t5, t6},

ĝ5
C = {t4, t1, t5, t6, t2, t3},

ĝ6
C = {t1, t4, t5, t6, t2, t3},

ĝ7
C = {t4, t1, t5, t6, t2, t3},
...

ĝ718
C = {t2, t4, t5, t6, t2, t3},

ĝ719
C = {t4, t1, t6, t5, t2, t3},

ĝ720
C = {t6, t4, t5, t1, t3, t2}.

Note that, 8 of these 720 transitions are firable
from m0. Let us analyse each of the sequences in or-
der of occurence:

• ĝ245
C = {t4, t5, t6, t1, t2, t3}

ρ(m0, t4) = [1 0 0 2 1 1 1 1 0]T = M245
1

ρ(M245
1 , t5) = [1 0 0 1 0 1 1 0 1]T = M245

2
ρ(M245

2 , t6) = [1 0 0 2 1 1 1 0 0]T = M245
3

ρ(M245
3 , t1) = [1 1 0 2 1 1 1 0 0]T = M245

4

ρ(M245
4 , t2) = [1 0 1 1 1 0 1 0 0]T = M245

5
ρ(M245

5 , t3) = [1 0 0 2 1 1 1 0 0]T = M245
6 = m0

Rs = {m0,M
245
1 ,M245

2 ,M245
3 ,M245

4 ,M245
5 }

• ĝ263
C = {t4, t5, t1, t6, t2, t3}

ρ(m0, t4) = [1 0 0 2 1 1 1 1 0]T = M263
1

ρ(M263
1 , t5) = [1 0 0 1 0 1 1 0 1]T = M263

2
ρ(M263

2 , t1) = [1 1 0 1 0 1 1 0 1]T = M263
3

ρ(M263
3 , t6) = [1 1 0 2 1 1 1 0 0]T = M263

4
ρ(M263

4 , t2) = [1 0 1 1 1 0 1 0 0]T = M263
5

ρ(M263
5 , t3) = [1 0 0 2 1 1 1 0 0]T = M263

6 = m0

Rs = Rs ∪ {M263
1 ,M263

2 ,M263
3 ,M263

4 ,M263
5 }

• ĝ350
C = {t4, t1, t2, t3, t5, t6}

ρ(m0, t4) = [1 0 0 2 1 1 1 1 0]T = M350
1

ρ(M350
1 , t1) = [1 1 0 2 1 1 1 1 0]T = M350

2
ρ(M350

2 , t2) = [1 0 1 1 1 0 1 1 0]T = M350
3

ρ(M350
3 , t3) = [1 0 1 1 1 0 1 1 0]T = M350

4
ρ(M350

4 , t5) = [1 0 0 1 0 1 1 0 1]T = M350
5

ρ(M350
5 , t6) = [1 0 0 2 1 1 1 0 0]T = M350

6 = m0

Rs = Rs ∪ {M350
1 ,M350

2 ,M350
3 ,M350

4 ,M350
5 }

• ĝ359
C = {t4, t1, t5, t6, t2, t3}

ρ(m0, t4) = [1 0 0 2 1 1 1 1 0]T = M359
1

ρ(M359
1 , t1) = [1 1 0 2 1 1 1 1 0]T = M359

2
ρ(M359

2 , t5) = [1 1 0 1 0 1 1 0 1]T = M359
3

ρ(M359
3 , t6) = [1 1 0 2 1 1 1 0 0]T = M359

4
ρ(M359

4 , t2) = [1 0 1 1 1 0 1 0 0]T = M359
5

ρ(M359
5 , t3) = [1 0 0 2 1 1 1 0 0]T = M359

6 = m0

Rs = Rs ∪ {M359
1 ,M359

2 ,M359
3 ,M359

4 ,M359
5 }

• ĝ629
C = {t1, t4, t5, t6, t2, t3}

ρ(m0, t1) = [1 1 0 2 1 1 1 0 0]T = M629
1

ρ(M629
1 , t4) = [1 1 0 2 1 1 1 1 0]T = M629

2
ρ(M629

2 , t5) = [1 1 0 1 0 1 1 0 1]T = M629
3

ρ(M629
3 , t6) = [1 1 0 2 1 1 1 0 0]T = M629

4
ρ(M629

4 , t2) = [1 0 1 1 1 0 1 0 0]T = M629
5

ρ(M629
5 , t3) = [1 0 0 2 1 1 1 0 0]T = M629

6 = m0

Rs = Rs ∪ {M629
1 ,M629

2 ,M629
3 ,M629

4 ,M629
5 }

• ĝ637
C = {t1, t4, t2, t3, t5, t6}
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ρ(m0, t1) = [1 1 0 2 1 1 1 0 0]T = M637
1

ρ(M637
1 , t4) = [1 1 0 2 1 1 1 1 0]T = M637

2
ρ(M637

2 , t2) = [1 0 1 1 1 0 1 1 0]T = M637
3

ρ(M637
3 , t3) = [1 0 0 2 1 1 1 1 0]T = M637

4
ρ(M637

4 , t5) = [1 0 0 1 0 1 1 0 1]T = M637
5

ρ(M637
5 , t6) = [1 0 0 2 1 1 1 0 0]T = M637

6 = m0

Rs = Rs ∪ {M637
1 ,M637

2 ,M637
3 ,M637

4 ,M637
5 }

• ĝ673
C = {t1, t2, t4, t3, t5, t6}

ρ(m0, t1) = [1 1 0 2 1 1 1 0 0]T = M673
1

ρ(M673
1 , t2) = [1 0 1 1 1 0 1 0 0]T = M673

2
ρ(M673

2 , t4) = [1 0 1 1 1 0 1 1 0]T = M673
3

ρ(M673
3 , t3) = [1 0 0 2 1 1 1 1 0]T = M673

4
ρ(M673

4 , t5) = [1 0 0 1 0 1 1 0 1]T = M673
5

ρ(M673
5 , t6) = [1 0 0 2 1 1 1 0 0]T = M673

6 = m0

Rs = Rs ∪ {M673
1 ,M673

2 ,M673
3 ,M673

4 ,M673
5 }

• ĝ679
C = {t1, t2, t3, t4, t5, t6}

ρ(m0, t1) = [1 1 0 2 1 1 1 0 0]T = M679
1

ρ(M679
1 , t2) = [1 0 1 1 1 0 1 0 0]T = M679

2
ρ(M679

2 , t3) = [1 0 0 2 1 1 1 0 0]T = M679
3

ρ(M679
3 , t4) = [1 0 0 2 1 1 1 1 0]T = M679

4
ρ(M679

4 , t5) = [1 0 0 1 0 1 1 0 1]T = M679
5

ρ(M679
5 , t6) = [1 0 0 2 1 1 1 0 0]T = M679

6 = m0

Rs = Rs ∪ {M679
1 ,M679

2 ,M679
3 ,M679

4 ,M679
5 }

Rs is a reversible set of Petri net. It has 40 ele-
ments. It is the largest reversible set that can be ob-
tained by the sum of minimal T-invariants (it is possi-
ble to enlarge the setRs using other linear combina-
tions of minimal T-invariants). Note that, the output
file of the RSA simulation program for this Petri net
is given in Appendix B.

8 Conclusion

Petri net model is very useful modeling tool for dis-
crete event systems. For analysing systems modeled
by Petri nets reachability set approach is used fre-
quently. But, because of the state explosion problem
it is impossible to use reachability set approach for
analysing big dimensional or unbounded systems.

In this work, we propose a method which does
not construct reachability set and use a structural ap-
proach to analyse reversibility which is one of the
most important properties of Petri net model.

The method calculates all possible transition se-
quences of minimal T-invariants. Then, it checks these
sequences one by one. If transitions of a sequence are
respectively firable fromm0, all markings obtained
during this firing are put into the setRs. At the end
RSA returnsRs. If Rs is not empty reversibility can
be enforced by using the controller in [11]. This con-
troller guarantees that the reachability set of the con-
trolled Petri net is reversible .

A Petri net model which was given by [5] is con-
sidered to show the advantage of the presented algo-
rithm. This Petri net model has 32 places and 20
transitions. For this example, the reversible set was
constructed by [11] depending on the reachability set.
The centralized method took about 32 min. (on a PC
with a Pentium-4 microprocessor running at 3.0 GHz
and has 768MB RAM). The number of elements of
this set is 3802. The presented algorithm took 30 sec.
and the reversible set has 450 elements. The reason,
which causes this difference, is explained such that, in
[11], all markings in the reachability set are searched
to find the reversible markings. Thus, although the
largest reversible set is obtained, the duration takes a
lot of time. In our presented work, reversible set is
found by only minimal T-invariants. If other linear
combinations of T-invariants are used, the largest re-
versible subset is constructed.

Overlapping decompositions and expansions
(see, [19]) may be used and an algorithm which is
based on local T-invariants may be developed for fur-
ther work. Another direction for further research may
be developing the structural controller for reversibility
enforcement (see, [15]).

APPENDIX

In this section, the input file of the program RSA-SP
for the definition of example net and the output file
of RSA-SP which contains the minimal T-invariants,
the sequences fromm0 and the elements ofRs for the
example net are given in Appendix A and Appendix
B, respectively.

Appendix A : Input file of the example

N=[1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 1 0 0 1 0
0 0 1 0 1 0
0 1 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
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0 0 0 0 0 1]

O=[1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 1
0 0 1 0 0 1
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0]

m0=[1 0 0 2 1 1 1 0 0]

Appendix B : Output file of the example

Minimal T-invariants:
1 1 1 0 0 0

0 0 0 1 1 1

C:
1 1 1 1 1 1

Firable sequences:
{t4, t5, t6, t1, t2, t3}

{t4, t5, t1, t6, t2, t3}

{t4, t1, t2, t3, t5, t6}

{t4, t1, t5, t6, t2, t3}

{t1, t4, t5, t6, t2, t3}

{t1, t4, t2, t3, t5, t6}

{t1, t2, t4, t3, t5, t6}

{t1, t2, t3, t4, t5, t6}

RS:
1 0 0 2 1 1 1 1 0

1 0 0 1 0 1 1 0 1

1 0 0 2 1 1 1 0 0

1 1 0 2 1 1 1 0 0

1 0 1 1 1 0 1 0 0

1 0 0 2 1 1 1 1 0

1 0 0 1 0 1 1 0 1

1 1 0 1 0 1 1 0 1

1 1 0 2 1 1 1 0 0

1 0 1 1 1 0 1 0 0

1 0 0 2 1 1 1 1 0

1 1 0 2 1 1 1 1 0

1 0 1 1 1 0 1 1 0

1 0 0 2 1 1 1 1 0

1 0 0 1 0 1 1 0 1

1 0 0 2 1 1 1 1 0

1 1 0 2 1 1 1 1 0

1 1 0 1 0 1 1 0 1

1 1 0 2 1 1 1 0 0

1 0 1 1 1 0 1 0 0

1 1 0 2 1 1 1 0 0

1 1 0 2 1 1 1 1 0

1 1 0 1 0 1 1 0 1

1 1 0 2 1 1 1 0 0

1 0 1 1 1 0 1 0 0

1 1 0 2 1 1 1 0 0

1 1 0 2 1 1 1 1 0

1 0 1 1 1 0 1 1 0

1 0 0 2 1 1 1 1 0

1 0 0 1 0 1 1 0 1

1 1 0 2 1 1 1 0 0

1 0 1 1 1 0 1 0 0
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1 0 1 1 1 0 1 1 0

1 0 0 2 1 1 1 1 0

1 0 0 1 0 1 1 0 1

1 1 0 2 1 1 1 0 0

1 0 1 1 1 0 1 0 0

1 0 0 2 1 1 1 0 0

1 0 0 2 1 1 1 1 0

1 0 0 1 0 1 1 0 1
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