
A Heuristic Algorithm for the Scheduling Problem of
Parallel Machines with Mold Constraints

TZUNG-PEI HONG1, PEI-CHEN SUN2, and SHIN-DAI LI2

1Department of Computer Science and Information Engineering
National University of Kaohsiung
Kaohsiung, 811, Taiwan, R.O.C.

Department of Computer Science and Engineering
National Sun Yat-sen University

Kaohsiung, 80424, Taiwan, R.O.C.
tphong@nuk.edu.tw

2Graduate Institute of Information and Computer Education
National Kaohsiung Normal University

Kaohsiung, 802, Taiwan, R.O.C.
sun@nuknucc.edu.tw, cursor@icemail.nknu.edu.tw

Abstract: - This paper addresses the scheduling problem of parallel machines with mold constraints. Each
machine has to load one kind of molds to process a specific job in the production environment. Because it takes
lots of time to change one mold to another on a same machine for producing jobs with different types, it will be
efficient to put all similar jobs together as a batch production. This way will, however, result in the total tardiness
of jobs increasing due to the different due dates of jobs. This kind of problems is an NP-hard problem. In this
paper, we build a model to describe the problem and present a heuristic algorithm to solve it.

Key-Words: - Scheduling, parallel machines, mold constraints, heuristic.

1 Introduction
In this paper, we discuss a scheduling problem in
which there are n jobs and m unrelated parallel
machines with l molds. Each job requires a single
operation which is processed on one machine
equipped with one mold. A job is the minimal unit
and can’t be separated. Each job has its type and a
fixed due date denoted by dj. Each job’s release time
is current.
 Each machine only can load no more than one
mold at a time and a mold is only loaded on one
machine at a time. If the type of the current job is
different with the type of the following jobs
scheduled on the same machine, it needs a setup time
for changing the online mold to next mold for
forming the following job. The setup time is fixed,
machines- and sequence- independent, denoted by S.
 Unrelated machine means that a machine may
process different jobs in different speeds. For
example, machine A processes job i at a low speed,
but it may process job j at a high speed. On the other
hand, machine B processes job i at a high speed, but it
processes job j at a low speed.
 If all machines have the same speed, then the
environment is identical to the identical machines in
parallel. Due to unrelated parallel machines, the
precessing time of a job depends on which machine it
works on.

2 Related research
The parallel machines’ problem is divided into two
groups by the type of machines: identical parallel
machines and unrelated parallel machines. The
problem of parallel machines with setup time is an
independent subject to discuss.
 For identical parallel machines with setup time,
Wang et al. [1] considered that parallel machine with
modulo constraints, in which the setup time is
independent from last modulo but only dependent on
the next modulo. He presented a heuristic algorithm
based on list scheduling and then used NBR (net
benefit of relocation) algorithm to adjust the
sequence of jobs on each machine for minimizing
total tardiness. Schutten and Leussink [2] saw setup
as setup jobs with release dates, due dates and
processing times. They developed a branch-and-
bound algorithm to solve the problem for minimizing
the maximum tardiness of any job. Lee and Pinedo
[3] considered that jobs were weighted and proposed
a three-phase heuristic to minimize total weighted
tardiness. First, factors or statistics were computed.
Second, a sequence was constructed by a dispatching
rule. Third, a simulated annealing method was
applied to improve the solution.
 For unrelated parallel machines with setup time,
several studies discuss sequence- or machine-
dependent setup time.

WSEAS TRANSACTIONS on SYSTEMS Tzung-Pei Hong, Pei-Chen Sun and Shin-Dai Li

ISSN: 1109-2777 642 Issue 6, Volume 7, June 2008

Chen and Wub [4] developed a heuristic based on
threshold-accepting methods and tabu lists to
minimize total tardiness. Tamaki et al. [5]
transformed the scheduling problem to a
mathematical programming problem and used SA
method and genetic algorithm to solve it. Besides,
Kim et al. [6] considered that each job may refer to a
lot composed of different items while every item
within each job has an identical processing time with
a common due date. They used SA to determine a
scheduling policy so as to minimize total tardiness.
Although scheduling of unrelated parallel machine
with setup time has been studied in recent years, the
most studies hypothesize that dies or molds can be
used on any parallel machine in the scheduling. In
this paper, we deal with the scheduling problem in
which molds do not be allowed to load on any
machine.

3 Problem definition
After describing the shecduling problem in section 1,
we present the problem in mathematical formulas.
The symbols we defined are shown as follows.
j: index of jobs (j = 1, 2, …, n),
h: index of molds (h = 1, 2, …, l),
k: index of machines (k = 1, 2, …, m).
The parameters are associated with the job j:
dj: the due date of job j,
cj: the complete time of job j,
pj: the processing time of job j which is processed in

the standard speed,
vjk: the speed that machine k can process job j at, it is

relative to the standard speed,
pjk: the processing time of job j on machine k and pjk =

pj/vjk.

 We take an example to explain the relation of
processing time of jobs and speeds of machines.
There is a job j with quantity qj to product, and the
standard speed v = 1. So the processing time of job j
are pj = qj/v = 6/1 = 6. Now we have three machines 1,
2 and 3. Their processing speeds for job j are vj1, vj2
and vj3, respectively. If vj1 = vj2 = vj3 = v = 1, the
processing times of job j on three machines will be
pj1 = pj2 = pj3 = pj = 6. Now we set vj1 = 1, vj2 = 2 and
vj3 = 3, which means speed of machine 1 is equal to
standard speed, speed of machine 2 is two times than
standard speed, and speed of machine 3 is three times
than standerd speed. The processing time of job j on
machine 1, machine 2 and machine 3 are pj1 = pj/vj1 =
(qj/v)/vj1 = 6/(1*1) = 6, pj2 = 6/(1*2) = 3 and pj3 =
6/(1*3) = 2, respectively.

3.1 Fit molds and fit machines
Every mold has a range of type which it can form.
The forming range of each mold may be partial
covered. A subset of molds which can form the
required type of the job is called fit molds of the job.
Due to the equipment and attributes of machines, a
mold is not allowed to equip on any machine. A
subset of machines which can equip the mold is
called fit machines of the mold. Hence each job is
restricted to a specific subset of machines. Figure 1(a)
shows the relation of jobs, molds, and machines. For
example, job 3 can be formed by mold 4, mold 5 and
mold 6. The mold 4 can be loaded on machine 2 and
3. The mold 5 can be loaded on machine 2 and 4. The
mold 6 can be loaded on machine 3 and 4. The Figure
1(b) shows the relation of this example.

Figure 1: (a) The relation of jobs, molds, and
machines. (b) The relation of this example.

 We define the fit molds and fit machines by
formula (1) and formula (2).

⎪
⎩

⎪
⎨

⎧
=

otherwise
hmold

byformedbecanjjobif
H jh

,0

,1
　

　　　　　　　
 (1)

⎪
⎩

⎪
⎨

⎧
=

otherwise
kmachine

onloadedbecanhmoldif

,0

,1
K hk 　　

　　　　　　

(2)

 For any job j and mold h, the value of Hjh is 1 or 0.
For any mold h and machine k, the value of Khk is 1 or
0. Obviously, these two definitions have to satisfy
constraints of formula (3) and formula (4),
respectively.

∑
=

≤
l

h
jh lH

1

 (3)

∑
=

≤
m

k
hk mK

1

 (4)

WSEAS TRANSACTIONS on SYSTEMS Tzung-Pei Hong, Pei-Chen Sun and Shin-Dai Li

ISSN: 1109-2777 643 Issue 6, Volume 7, June 2008

Figure 2: An example of positions.

3.2 The positions of a job in the schedule
To model the problem, we want to know that all
possible positions of a job in the entire feasible
schedule, which are depended on its t molds and fit
machines of its t molds. Firstly, we should know all
possible positions of a job in a t machine. Because
the amount of jobs which may be processed on a
machine is the amount of possible positions of job j
on that machine, we want to know how many jobs
can be scheduled on a fit machine.For example,
machine 1 can load mold 4 and 5. The mold 4 is one
of fit molds of Job 3 and job 7, and the mold 5 is one
of fit molds of Job 3 and job 6. Hence there are three
possible jobs which may be scheduled on machine 1.
That means job 3 has three possible positions on
machine 1. See Figure 2.
 We denote the amount of jobs which may be
processed on machines k by nk. For any machine k,
the nk is derivated by the formula (5).

mlnn

HKHKHK

k

n

j
jllkjkjk

**

,,
1

2211

3.3 The model of the problem
 We define the symbol Xjkuh to represent the
position which job j is scheduled on. For any job j,
mold h, machine k, and position u of machine k, the
value of Xjkuh is 1 or 0. The values of sequence {Xjkuh }
are a feasible schedule.

otherwise
hmold

equippedkmachineonposition
thuasscheduledisjjobif

X jkuh

,0

,1

 The model of the problem is represented by the
complete time cj of a job j in a feasible schedule, as
shown in the formula (7).

k

nj
jkuhkuj

numklh

Xcc

,,2,1,,,2,1,,,2,1

,
1 (7)

The symbol chku is defined in the formula (8). The
symbol nk represents the amount of jobs which may
be processed on machine k.

k

nj
jkuhjkuk

nj
jkuhjkuk

ku

numklh

otherwiseXSpc

ukMukMifXpc
c

,,2,1,,,2,1,,,2,1

,)(

),()1,(,

1
)1(,

1
)1(,

(8)

 There are some constraints on Xjkuh in the feasible
schedule, as shown in the formula (9) and formula
(10).

K

nj
jhku

numklh

X

,,2,1,,,2,1,,,2,1

,1
1

(9)

knu
mk
lh

jhku njX

1
1
1

,,2,1},0,1{
(5) (10)

 Finally, we define symbol Yhkt to represent the
machine which mold h is equipped on at time t, as
shown in formula (11). And the formula (12) shows
the constraint of a mold in the feasible schedule.

..,0

,1

wo
ttimeat

kmachineonloadedishmoldif
Yhkt (11)

(12)
lh

hkt timeanytmkY
1

,,,2,1},0,1{equipped
(6)

4 The heuristic algorithm
In this section, we present a heuristic algorithm to
solve the scheduling problem. Table 1 illustrates the
algorithm briefly. We explain details of each step in
the following subsections.

WSEAS TRANSACTIONS on SYSTEMS Tzung-Pei Hong, Pei-Chen Sun and Shin-Dai Li

ISSN: 1109-2777 644 Issue 6, Volume 7, June 2008

Table 1: Heuristic algorithm

STEP 1 Sort job set J s by EDD (Earliest Due Date) rule.

Find the job with earliest due date in J s, say job j.
STEP 2 Find all pairs (h, k) of job, where h is a fit mold of job j and k is a fit machine of h.

STEP 3 For each (h, k)r
3.1 Find its cmgr

j and sort each of them by EDD rule.
3.2 Find enough points and the interrupt point of the cmgr

j.
3.3 Calculate the total tardiness or total earliness of cmgr

j and put them into average set
As.

STEP 4
4.1 Get the minimum A* of As.
4.2 Check the mold h* of A* is available. If no, delete A* from As and goto step 4.1.

STEP 5
5.1 Schedule cmgr

j.
5.2 Delete all jobs of cmgr

j from J s.
If an interruption was occurred in step 5.1, put the interrupted jobs back to J s.

5.3 Go to step 1 until J s is empty.

4.1 The first step and the second step
In the first step, the job set J s contains all jobs not
scheduled yet. The EDD rule will list the job with
increasing due date, and the one with the earliest due
date will be listed in the most front. In the second
step, the order pair (h, k)’s of job j represents all
combinations of fit molds of job j and fit machines of
the fit molds. They are all possible choices of job j
and are indexed with r. We will examine each pair to
decide which one is a better choice.

4.2 The third step
When a machine is on the setup time of the changing
molds, it can not process any job. If the setup time is
longer, the cost is greater. To reduce times of
changing molds, the jobs which can be formed by the
same mold should be gathered to process. So, for
each pair (h, k)r of job j, we find its cmgr

j (common
mold group) and sort it by the EDD rule. The group
collects jobs of J s, which can be processed on the
machine k equipped with the mold h. Obviously, the
job j is the leading job of its groups.
 If a cmg is put on a machine loaded with a fit mold
to process, the loaded mold should be used to form
enough jobs before it is unloaded for making the
setup time cost-effective. So, in the step 3.2, we find
the enough point of each cmgj. We add the processing
time of jobs of cmgr

j one by one, until the
accumulative processing time (APT) is greater than α.
The last added job is called enough point of cmgr

j.
The α is a threshold parameter set by experts
according to the cost-benefit analysis, which means
how many jobs in cmgr

j are processed, so that the
setup time of cmgr

j will be cost-effective.

 The jobs in cmgr
j can be processed by the same

mold, but their due dates may be different greatly. If
the difference of due dates of two continual jobs in a
cmgr

j is great enough, an interruption may be
considered. That is, the latter job with later due date
and all jobs in cmgr

j after it can wait for the next
chance to be scheduled and another cmg with earlier
due date of its leading jog can be processed first. The
jobs in cmgr

j after the latter one have later due dates
then it due to EDD sorting in the step 3.1. From the
job of enough point to penultimate job of cmgr

j, if the
difference of due dates between a job and its
succeeded job is greater than β , we let the front job
be an interrupted point of cmgr

j. It must be noticed
that interruptions may increase times of changing
molds. In different situations, the consideration will
be different. The β is another parameter set by
experts. The pseudocode in Table 2 illustrates how to
find the enough point and interrupted points.
 When we try to assign cmgr

j of the pair (h, k)r to
the machine k, one of the following three conditions
will occur.
• The machine h has other scheduled cmg and the

mold of the last scheduled cmg, say cmgi is
different from the mold h of the pair (h, k)r.

• The machine h has other scheduled cmg and the
mold of the last scheduled cmg, say cmgi is the
same with the mold h of the pair (h, k)r.

• There is no other scheduled cmg on the machine k.

 In the first condition, we have two strategies:
interrupt cmgi and succeed cmgi.
 For the interrupted strategy, we interrupt the
scheduled cmgi at one of its interrupted points,

WSEAS TRANSACTIONS on SYSTEMS Tzung-Pei Hong, Pei-Chen Sun and Shin-Dai Li

ISSN: 1109-2777 645 Issue 6, Volume 7, June 2008

Table 2: Pseudocode of finding the enough point and interrupted points

input: , , cmgr
j, (h, k)r

APT = 0;
for w is an index from rst job of cmgr

j to the last job of cmgr
j do

APT = APT + pwk , where k is of (h, k)r;
if APT then

let the job with index w be the enough job of cmgr
j;

break for;
end
if w is on the last job of cmgr

j and the enough
point is not set yet then

let the last job be the enough point of cmgr
j;

end
end
for the job of enough point of cmgr

j to the penultimate job of cmgr
j do

if the difference of due dates between the job and its succeeded job then
let the job be an interrupted point of cmgr

j;
end

end

change molds, and let cmgr
j succeed the job of

interrupted point of cmgi to produce. Because cmgi

may have several interrupted points which are
indexed with t, we use average tardiness as a
criterion. For every interrupted point ipt of cmgi, we
calculate the average tardiness of cmgi, denoted by
irTr

j(ipt
i). We add the average tardiness of cmgi from

the job of the interrupted point to the last job and the
total tardiness of cmgr

j from the first job to the job of
its enough point, then divide the sum by the total
number of jobs involved in the tardiness calculation
to find the average tardiness. See the formula (13).

)(

1

)(

1

),0max(

),0max(
)()(

1)(

i
t

j

ipn

b
bb

epn

a
aai

t
j

i
t

j
r

dc

dc
ipnepn

ipirT

)(

1

)(

1

)(

)(
)()(

1)(

i
t

j

ipn

b
bb

epn

a
aai

t
j

i
t

j
r

dc

dc
ipnepn

ipirE

 The n(epj) is the amount of jobs of cmgr
j from the

first job to the job of its enough point. The n(ipt
i) is

the amount of jobs of cmgi from the job of its
interrupted point to its last job. The n(cmgr

j) is the
amount of jobs of whole cmgr

j.
 If the average tardiness is zero, the average
earliness is substituted for the average tardiness to
finding better interrupted point of this strategy. The

formula of average earliness is similar to the average
tardiness, as shown in the formula (14).
 For the not-interrupted strategy, we do not
interrupt the scheduled cmgi, but succeed it. The
average tardiness still is a criterion. We calculate the
average tardiness of cmgr

j from the first job to the job
of its enough point, which is denoted by nirTr

j (see
formula (15)). The parameters and indexes of this
symbol mean cmgr

j do not interrupt the scheduled
cmgi. If the average tardiness is zero, average
earliness nirEr

j is calculated to substitute for the
average tardiness as preceding strategy (see formula
(16)).

)(

1
),0max(

)(
1

jepn

a
aaj

j
r dc

epn
nirT (15)

)(

1
)(

)(
1

jepn

a
aaj

j
r dc

epn
nirE (16)

(13)

 In the second condition, the mold of the pair (h, k)r
is same as an online mold. It is the most reasonable
strategy that cmgr

j succeeds cmgi to process. We also
calculate the average tardiness scTr

j of the cmgr
j,

which only is influenced by the jobs in the cmgr
j, as

shown in formula (17). If scTr
j is zero, the average

earliness scEr
j will also replace it. The formula of

scEr
j is formula (18).

(14)

)(

1
),0max(

)(
1

j
rcmgn

a
aaj

r

j
r dc

cmgn
scT (17)

)(

1
)(

)(
1

j
rcmgn

a
aaj

r

j
r dc

cmgn
scE (18)

WSEAS TRANSACTIONS on SYSTEMS Tzung-Pei Hong, Pei-Chen Sun and Shin-Dai Li

ISSN: 1109-2777 646 Issue 6, Volume 7, June 2008

 In the third condition, the only strategy is one that
cmgr

j is directly assigned on the machine k of the pair
(h, k)r, being the the first cmg of the machine. In
reality there is the first setup time, but we leave it out
to simplify problem. The formulas of average
tardiness and earliness of this strategy is just like
those of the second condition, but we give them
different symbols to discriminate, denoted by Tr

j and
Er

j, respectively.
 Once the average tardiness or earliness is
calculated, we put it into the average set As for
comparison in step 4. Table 3 illustrates the
pseudocode of calculating.

Table 3: Computating average tardiness and average
earliness

input: cmgi, cmgr
j, (h, k)r

if another cmgi is scheduled on the machine k then
if the mold used by cmgi is same as mold h
then

foreach interrupted jobs of cmgi do
calculate irT and nirT ;
if irT or nirT are zero then

calculate irE or nirE;
put irE or nirE into As;

else
put irT or nirT into As;

end
end

else
calculate scT ;
if scT is zero then

calculate scE; put scE into As;
else

put scT into As;
end

end
else

calculate T ;
if T is zero then

calculate E; put E into As;
else

put T into As;
end

end

4.3 The fourth step and the fifth step
We take the minimal value of the average set As,
denoted by A*. The A* decides which pair and what
strategy of the pair will be adopted. It means that if
we adopt the strategy of A* to schedule cmgj on the
machine and load the mold designated by the pair of
A*, denoted by h*and k*, the average tardiness will be
smallest. We determine whether mold h* is available
or not at that time by checking whether mold h* is
used on another fit machine. If the mold is not
available, we delete the A* from As and find the
minimal of As again.

 If the mold is available, we schedule cmgr
j on

machine k* and load mold h* and adopt the strategy
decided by A*. Then we delete jobs of cmgr

j from job
set J s. If an interruption is occurred in the step 5.1, we
put the interrupted jobs back to J s. The algorithm will
repeat until J s is empty.

4.4 No starvation
Because cmg can be interrupted, some jobs may be
putted back into J s many times. Each job has a fixed
due date, so any job will be the leading job of its cmg
during a finite time. Even there are no other jobs
which have same mold with the job and the complete
time of the job is not greater then α , the algorithm
still set it being the enough point of the cmg
containing the only job itself.
 In the step 4.2., the procedure of checking mold
will delete the choice with not available mold. Would
it happen that there is no any choice after the deleting
procedure? The answer is no. Assume cmgj has only
one mold h. For pair (h, k1), the mold h is not
available, because it is equipped on another fit
machine k2 at the same time. Due to the step 2.1, the
pair (h, k2) is also one choice of cmgj and h is
available certainly for this pair.

5 An example of algorithm
Here an example is used to illustrate the algorithm.
There are 11 jobs, 4 unrelated parallel machines, and
6 molds. Table 4 shows the data which influence the
scheduling in this example included processing time
(pjk), due date (dj), fit molds of jobs (Hjh), fit machines
of molds (Khk), and speed of machines for each job
(vik).
 The J s is sorted by EDD and job 1 has the earliest
due date. We find all pairs of job 1 and their cmgs, As
shown in the Figure 3.

Figure 3: All pairs of job 1 and their cmgs.

 Then we give α = 15 and β = 15 to find the enough
point and interrupt points. For cmg1

1 of pair (A, 1)1,
the processing time of job 1 on machine A is p1A =
p1/v1A = 6/1 = 6, so the complete time of job 1 is c1 =

WSEAS TRANSACTIONS on SYSTEMS Tzung-Pei Hong, Pei-Chen Sun and Shin-Dai Li

ISSN: 1109-2777 647 Issue 6, Volume 7, June 2008

Table 4: Data of an example

6. For α is 15, job 1 is not enough, neither is the job
4. Until to job 5, the complete time of job 5 is c5 = 16
>15, so job 5 is the enough point of cmg1

1. The
complete time is the accumulative processing time.
Besides, the difference of due dates of job 5 and job 2
is 19 which is greater than β (=15). We set job 5 be a
job of in interrupted point of cmg1

1. The illustration is
shown in Figure 4.
 Because there is no other cmg on machine A, the
strategy we take is scheduling cmg1

1 on it directly.
Then the average tardiness of the strategy is T1

1= 1/4
[max (0, 6−8) + max (0, 11−24) + max (0, 16−26) +
max (0, 34−45)] = 0. Since the value is zero, we

calculate the average earliness E1
1 of cmg1

1 to
substitute T1

1, which is 1/4[(6 − 8) + (11 −24) + (16
−26) + (34 − 45)] = −25 and put it into average set As.
 As the same procedure, we calculate the average
tardiness of cmg2

1 of (A, 2)2, average earliness of
cmg3

1 of (C, 1)3, and average tardiness of cmg4
1 of

(C, 2)4, which are T2
1= 1.9, E3

1= −4.25, and T4
1= 2.25,

respectively. The average set As is {−25, 1.9, −4.25,
2.25} and the minimum A* is E1

1= −25, which means
the pair (A, 1) is the better choice and the cmg1

1 can
be scheduled directly on machine A. For this is the
first run of the algorithm, mold 1 should be available.
We schedule the cmg1

1 which contains job 1, job 4,
job 5 and job 2 on machine A equipped with mold 1
and delete those jobs form J s.
 In the next run, the job with earliest due date is job
9 and its all pairs are (A, 2)1, (A, 3)2, and (C, 2)3. See
Figure 5(a).

Figure 5: (a) All pairs and cmgs of job 9. (b) The

enough point of cmg1
9.

 For the cmg1
9 of (A, 2)1, we try it on machine A to

find its enough point and interrupted points, as shown
in Figure 5(b). Obviously, even for the last job of
cmg1

9, that is job 8, the complete time is smaller than
15. In this situation, we let the last job be the enough
point and the cmg has no interrupted point.
 Because there is a scheduled cmg on machine A,
we have two strategies: interrupt or not-interrupt. The

Figure 4: The enough point and interrupt points of cmg1
1.

WSEAS TRANSACTIONS on SYSTEMS Tzung-Pei Hong, Pei-Chen Sun and Shin-Dai Li

ISSN: 1109-2777 648 Issue 6, Volume 7, June 2008

(a)

(b)

Figure 6: Two strategies of cmg1
9: (a) interrupt the cmg1

1. (b) not interrupt the cmg1
1.

Figure 7: the outcome of the algorithm for this example.

average tardiness of interrupted strategy is irT1
9 =

16.23 and the average tardiness of not-interrupted
strategy is nirT1

9= 36.8. Figure 6 illustrates those two
strategies.
 For the (A, 3)2, and (C, 2)3, we also calculate their
average tardiness by the same procedure. Finally
average set As is {16.23, 36.8, 13.5, 37.5, 2.25} and
the minimum of As is T3

9 = 2.25. The pair (C, 2)3 is
chosen, and cmg3

9 can be scheduled on machine C
directly. Since mold 2 is available, the schedule of
cmg3

9 is done and the jobs of cmg3
9 are deleted from

job set J s. The rest runs of the algorithm are similar.
Figure 7 shows the outcome of the algorithm for this
example.

6 Experiments
In reality, this is the scheduling problem of a steel
tube production company. A steel tube is formed

from a steel sheet by a forming process on a tube
forming machine. The company has 10 parallel
unrelated tube forming machines and 206 molds. A
job we called in this paper is a work order of steel
tubes. Since this problem is mapping from a realistic
problem, we compare the efficiency of heuristic
algorithm with that of manual processing.
 We simulate the reality production environment
by speeds of 10 unrelated parallel machines for jobs
(vjk), the data of fit molds of jobs (Hjh) and fit
machines of molds (Khk). And we simulate the job set
of the day before the first traced day which have 332
not processed jobs. The traced days are days on
which the traced jobs import into the job set of
scheduling system. We take 95 jobs which are
imported jobs of five continual work days as
evaluated data. We trace the evaluated data in the
scheduling process.
 Because a work day has only eight work hours,
traced jobs which even are schedeuled may not be

WSEAS TRANSACTIONS on SYSTEMS Tzung-Pei Hong, Pei-Chen Sun and Shin-Dai Li

ISSN: 1109-2777 649 Issue 6, Volume 7, June 2008

Simulated
job set

Figure 8: The design of experiments.

processed in a day. Moreover new jobs import into
job set day by day, those jobs will influence the
schedule of traced jobs. Those jobs are called extend
jobs. In this scheduling process of this experiment,
there are 578 extend jobs from the first traced day to
the end day on which all traced jobs are be processed.
The design of experiments is illustrated in Figure 8.
 Accodrding to the scheduling export of the
company, the setup time of changing mald cost about
3 hours for once. So a mold should be on a fit
machine at least 2 days, which means α is 16 (hours)
for eight work hours per day. Moreover, if there is an
interrupted is need, it takes helf day (3 hours of 8
hours per day) to change mold, and at least 2 day to
process new cmg, and then another helf day to
change previous mold back. The total needed time is
3 day, so the β is set by 5 day (40 hours) for
theoretical safety. But in reality, there are many
unpredictable factors for changing mold, the
scheduling export usually avoid unexpected
changing mold. Hance we are suggested to set the
condition of interruption more strictly. We take β by
5 days, 7 day and 10 day to experiment respectively.
 We compare the total tardiness, the number of
tardy jobs and the average tardiness of evaluated jobs
scheduled by the scheduling system with those
scheduled by manual scheduling. The results show
that the proposed approach can greatly impove the
scheduling results.

7. Conclusions and future work
The purpose of this paper is to solve a reality
scheduling problem. The problem is modeled in

mathematical expressions. We provide a heuristic
algorithm as a solution and design an experiment to
compare with the manual. There are many aspects not
taken into account in this solution like material
supplication. We will continue to extend the
scheduling problem to solve the reality problem
comprehensively in the future.

References:
[1]Cheng-Yao Wang, Lin Gao, Ding-Wei Wang,

Zhi-Song Yin, Shu-Ning Wang. Minimize Total
Tardiness of the Parallel Machine with Modulo
Constraint. Journal of Systems Engineering,
Vol.14, No. 4, 1999, pp. 345-350.

[2]J.M.J. Schutten, R.A.M. Leussink. Parallel
Machine Scheduling with Release dates, Due
dates and Family Setup Times. International
Journal of Production Economics, Vol. 46-47,
1996, pp. 119-125.

[3]Young-Hoon Lee, Michael Pinedo. Scheduling
Jobs on Parallel Machines with
Sequence-dependent Setup Times. European
Journal of Operational Research Vol. 100, 1997,
pp. 464-474.

[4]Jeng-Fung Chen, Tai-His Wub. Total Tardiness
Minimization on Unrelated Parallel Machine
Scheduling with Auxiliary Equipment
Constraints. Omega, Vol. 34, 2006, pp. 81-89

[5]Hisashi Tamaki, Yoshishige asegawa, Junji
Kozasa, Mituhiko Araki. Application of Search
Methods to Scheduling Problem in Plastics
Forming Plant: A Binary Representation
Approach. The 32nd IEEE Conference on
Decision and Control, 1993, pp. 45-50.

WSEAS TRANSACTIONS on SYSTEMS Tzung-Pei Hong, Pei-Chen Sun and Shin-Dai Li

ISSN: 1109-2777 650 Issue 6, Volume 7, June 2008

[6]Dong-Won Kim, Kyong-Hee Kim, Wooseung
Jang, F. Frank Chen. Unrelated Parallel Machine
Scheduling with Setup Times Using Simulated
Annealing. Robotics and Computer-Integrated
Manufacturing, Vol. 18, 2002, pp. 223-231.

WSEAS TRANSACTIONS on SYSTEMS Tzung-Pei Hong, Pei-Chen Sun and Shin-Dai Li

ISSN: 1109-2777 651 Issue 6, Volume 7, June 2008

