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Abstract: - This paper addresses the scheduling problem of parallel machines with mold constraints. Each 
machine has to load one kind of molds to process a specific job in the production environment. Because it takes 
lots of time to change one mold to another on a same machine for producing jobs with different types, it will be 
efficient to put all similar jobs together as a batch production. This way will, however, result in the total tardiness 
of jobs increasing due to the different due dates of jobs. This kind of problems is an NP-hard problem. In this 
paper, we build a model to describe the problem and present a heuristic algorithm to solve it.  
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1   Introduction 
In this paper, we discuss a scheduling problem in 
which there are n jobs and m unrelated parallel 
machines  with l molds. Each job requires a single 
operation which is processed on one machine 
equipped with one mold. A job is the minimal unit 
and can’t be separated. Each job has its type and a 
fixed due date denoted by dj. Each job’s release time 
is current.  
     Each machine only can load no more than one 
mold at a time and a mold is only loaded on one 
machine at a time. If the type of the current job is 
different with the type of the following jobs 
scheduled on the same machine, it needs a setup time 
for changing the online mold to next mold for 
forming the following job. The setup time is fixed, 
machines- and sequence- independent, denoted by S. 
     Unrelated machine means that a machine may 
process different jobs in different speeds. For 
example, machine A processes job i at a low speed, 
but it may process job j at a high speed. On the other 
hand, machine B processes job i at a high speed, but it 
processes job j at a low speed. 
     If all machines have the same speed, then the 
environment is identical to the identical machines in 
parallel. Due to unrelated parallel machines, the 
precessing time of a job depends on which machine it 
works on. 

2 Related research 
The parallel machines’ problem is divided into two 
groups by the type of machines: identical parallel 
machines and unrelated parallel machines. The 
problem of parallel machines with setup time is an 
independent subject to discuss.  
     For identical parallel machines with setup time, 
Wang et al. [1] considered that parallel machine with 
modulo constraints, in which the setup time is 
independent from last modulo but only dependent on 
the next modulo. He presented a heuristic algorithm 
based on list scheduling and then used NBR (net 
benefit of relocation) algorithm to adjust the 
sequence of jobs on each machine for minimizing 
total tardiness. Schutten and Leussink [2] saw setup 
as setup jobs with release dates, due dates and 
processing times. They developed a branch-and- 
bound algorithm to solve the problem for minimizing 
the maximum tardiness of any job. Lee and Pinedo 
[3] considered that jobs were weighted and proposed 
a three-phase heuristic to minimize total weighted 
tardiness. First, factors or statistics were computed. 
Second, a sequence was constructed by a dispatching 
rule. Third, a simulated annealing method was 
applied to improve the solution.  
     For unrelated parallel machines with setup time, 
several studies discuss sequence- or machine- 
dependent setup time. 

WSEAS TRANSACTIONS on SYSTEMS Tzung-Pei Hong, Pei-Chen Sun and Shin-Dai Li

ISSN: 1109-2777 642 Issue 6, Volume 7, June 2008



Chen and Wub [4] developed a heuristic based on 
threshold-accepting methods and tabu lists to 
minimize total tardiness. Tamaki et al. [5] 
transformed the scheduling problem to a 
mathematical programming problem and used SA 
method and genetic algorithm to solve it. Besides, 
Kim et al. [6] considered that each job may refer to a 
lot composed of different items while every item 
within each job has an identical processing time with 
a common due date. They used SA to determine a 
scheduling policy so as to minimize total tardiness. 
Although scheduling of unrelated parallel machine 
with setup time has been studied in recent years, the 
most studies hypothesize that dies or molds can be 
used on any parallel machine in the scheduling. In 
this paper, we deal with the scheduling problem in 
which molds do not be allowed to load on any 
machine. 
 
 
3 Problem definition 
After describing the shecduling problem in section 1, 
we present the problem in mathematical formulas. 
The symbols we defined are shown as follows. 
j: index of jobs (j = 1, 2, …, n), 
h: index of molds (h = 1, 2, …, l), 
k: index of machines (k = 1, 2, …, m). 
The parameters are associated with the job j: 
dj: the due date of job j, 
cj: the complete time of job j, 
pj: the processing time of job j which is processed in 

the standard speed, 
vjk: the speed that machine k can process job j at, it is 

relative to the standard speed,  
pjk: the processing time of job j on machine k and pjk = 

pj/vjk. 

     We take an example to explain the relation of 
processing time of jobs and speeds of machines. 
There is a job j with quantity qj to product, and the 
standard speed v = 1. So the processing time of job j 
are pj = qj/v = 6/1 = 6. Now we have three machines 1, 
2 and 3. Their processing speeds for job j are vj1, vj2 
and vj3, respectively. If vj1 = vj2 = vj3 = v = 1, the 
processing times of job j on three machines will be  
pj1 = pj2 = pj3 = pj = 6. Now we set vj1 = 1, vj2 = 2 and 
vj3 = 3, which means speed of machine 1 is equal to 
standard speed, speed of machine 2 is two times than 
standard speed, and speed of machine 3 is three times 
than standerd speed. The processing time of job j on 
machine 1, machine 2 and machine 3 are pj1 = pj/vj1 = 
(qj/v)/vj1 = 6/(1*1) = 6, pj2 = 6/(1*2) = 3 and pj3 = 
6/(1*3) = 2, respectively. 
 
 

3.1 Fit molds and fit machines  
Every mold has a range of type which it can form. 
The forming range of each mold may be partial 
covered. A subset of molds which can form the 
required type of the job is called fit molds of the job. 
Due to the equipment and attributes of machines, a 
mold is not allowed to equip on any machine. A 
subset of machines which can equip the mold is 
called fit machines of the mold. Hence each job is 
restricted to a specific subset of machines. Figure 1(a) 
shows the relation of jobs, molds, and machines. For 
example, job 3 can be formed by mold 4, mold 5 and 
mold 6. The mold 4 can be loaded on machine 2 and 
3. The mold 5 can be loaded on machine 2 and 4. The 
mold 6 can be loaded on machine 3 and 4. The Figure 
1(b) shows the relation of this example. 

 

 
Figure 1: (a) The relation of jobs, molds, and 
machines. (b) The relation of this example. 

 
     We define the fit molds and fit machines by 
formula (1) and formula (2). 
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     For any job j and mold h, the value of Hjh is 1 or 0. 
For any mold h and machine k, the value of Khk is 1 or 
0. Obviously, these two definitions have to satisfy 
constraints of formula (3) and formula (4), 
respectively. 
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Figure 2: An example of positions. 

3.2 The positions of a job in the schedule  
To model the problem, we want to know that all 
possible positions of a job in the entire feasible 
schedule, which are depended on its t molds and fit 
machines of its t molds. Firstly, we should know all 
possible positions of a job in a t machine. Because 
the amount of jobs which may be processed on a 
machine is the amount of possible positions of job j 
on that machine, we want to know how many jobs 
can be scheduled on a fit machine.For example, 
machine 1 can load mold 4 and 5. The mold 4 is one 
of fit molds of Job 3 and job 7, and the mold 5 is one 
of fit molds of Job 3 and job 6. Hence there are three 
possible jobs which may be scheduled on machine 1. 
That means job 3 has three possible positions on 
machine 1. See Figure 2. 
     We denote the amount of jobs which may be 
processed on machines k by nk. For any machine k,
the nk is derivated by the formula (5).

mlnn

HKHKHK

k

n

j
jllkjkjk

**

,,
1

2211

3.3 The model of the problem  
     We define the symbol Xjkuh to represent the 
position which job j is scheduled on. For any job j,
mold h, machine k, and position u of machine k, the 
value of Xjkuh is 1 or 0. The values of sequence {Xjkuh } 
are a feasible schedule. 
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     The model of the problem is represented by the 
complete time cj of a job j in a feasible schedule, as 
shown in the formula (7).  
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The symbol chku is defined in the formula (8). The 
symbol nk represents the amount of jobs which may 
be processed on machine k.
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     There are some constraints on Xjkuh in the feasible 
schedule, as shown in the formula (9) and formula 
(10).
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     Finally, we define symbol Yhkt to represent the
machine which mold h is equipped on at time t, as 
shown in formula (11). And the formula (12) shows 
the constraint of a mold in the feasible schedule.
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4   The heuristic algorithm 
In this section, we present a heuristic algorithm to
solve the scheduling problem. Table 1 illustrates the
algorithm briefly. We explain details of each step in
the following subsections. 
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Table 1: Heuristic algorithm 
 
STEP 1 Sort job set J s by EDD (Earliest Due Date) rule.  

Find the job with earliest due date in J s, say job j. 
STEP 2 Find all pairs (h, k) of job, where h is a fit mold of job j and k is a fit machine of h. 

STEP 3 For each (h, k)r
3.1 Find its cmgr

j and sort each of them by EDD rule. 
3.2 Find enough points and the interrupt point of the cmgr

j. 
3.3 Calculate the total tardiness or total earliness of cmgr

j and put them into average set 
As. 

STEP 4 
4.1 Get the minimum A* of As. 
4.2 Check the mold h* of A* is available. If no, delete A* from As and goto step 4.1. 

STEP 5 
5.1 Schedule cmgr

j. 
5.2 Delete all jobs of cmgr

j from J s.  
If an interruption was occurred in step 5.1, put the interrupted jobs back to J s. 

5.3 Go to step 1 until J s is empty. 
 

 
4.1 The first step and the second step 
In the first step, the job set J s contains all jobs not 
scheduled yet. The EDD rule will list the job with 
increasing due date, and the one with the earliest due 
date will be listed in the most front. In the second 
step, the order pair (h, k)’s of job j represents all 
combinations of fit molds of job j and fit machines of 
the fit molds. They are all possible choices of job j 
and are indexed with r. We will examine each pair to 
decide which one is a better choice. 
 
4.2 The third step 
When a machine is on the setup time of the changing 
molds, it can not process any job. If the setup time is 
longer, the cost is greater. To reduce times of 
changing molds, the jobs which can be formed by the 
same mold should be gathered to process. So, for 
each pair (h, k)r of job j, we find its cmgr

j (common 
mold group) and sort it by the EDD rule. The group 
collects jobs of J s, which can be processed on the 
machine k equipped with the mold h. Obviously, the 
job j is the leading job of its groups.  
     If a cmg is put on a machine loaded with a fit mold 
to process, the loaded mold should be used to form 
enough jobs before it is unloaded for making the 
setup time cost-effective. So, in the step 3.2, we find 
the enough point of each cmgj. We add the processing 
time of jobs of cmgr

j one by one, until the 
accumulative processing time (APT) is greater than α.  
The last added job is called enough point of cmgr

j. 
The α is a threshold parameter set by experts 
according to the cost-benefit analysis, which means 
how many jobs in cmgr

j are processed, so that the 
setup time of cmgr

j will be cost-effective.  

     The jobs in cmgr
j can be processed by the same 

mold, but their due dates may be different greatly. If 
the difference of due dates of two continual jobs in a 
cmgr

j is great enough, an interruption may be 
considered. That is, the latter job with later due date 
and all jobs in cmgr

j after it can wait for the next 
chance to be scheduled and another cmg with earlier 
due date of its leading jog can be processed first. The 
jobs in cmgr

j after the latter one have later due dates 
then it due to EDD sorting in the step 3.1. From the 
job of enough point to penultimate job of cmgr

j, if the 
difference of due dates between a job and its 
succeeded job is greater than β , we let the front job 
be an interrupted point of cmgr

j. It must be noticed 
that interruptions may increase times of changing 
molds. In different situations, the consideration will 
be different. The β is another parameter set by 
experts. The pseudocode in Table 2 illustrates how to 
find the enough point and interrupted points. 
     When we try to assign cmgr

j of the pair (h, k)r to 
the machine k, one of the following three conditions 
will occur.  
• The machine h has other scheduled cmg and the 

mold of the last scheduled cmg, say cmgi is 
different from the mold h of the pair (h, k)r.  

• The machine h has other scheduled cmg and the 
mold of the last scheduled cmg, say cmgi is the 
same with the mold h of the pair (h, k)r.  

• There is no other scheduled cmg on the machine k. 

     In the first condition, we have two strategies: 
interrupt cmgi and succeed cmgi. 
     For the interrupted strategy, we interrupt the 
scheduled cmgi at one of its interrupted points,
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Table 2: Pseudocode of finding the enough point and interrupted points

input: , , cmgr
j, (h, k)r

APT = 0; 
for w is an index from rst job of cmgr

j to the last job of cmgr
j do

APT = APT + pwk , where k is of  (h, k)r;
if APT  then

let the job with index w be the enough job of  cmgr
j;

break for;
end
if w is on the last job of cmgr

j and the enough 
point is not set yet then

let the last job be the enough point of cmgr
j;

end
end
for the job of enough point of cmgr

j to the penultimate job of cmgr
j do

if  the difference of due dates between the job and its succeeded job then
let the job be an interrupted point of cmgr

j;
end

end

change molds, and let cmgr
j succeed the job of 

interrupted point of cmgi to produce. Because cmgi

may have several interrupted points which are 
indexed with t, we use average tardiness as a 
criterion. For every interrupted point ipt of cmgi, we 
calculate the average tardiness of cmgi, denoted by 
irTr

j(ipt
i). We add the average tardiness of cmgi from 

the job of the interrupted point to the last job and the 
total tardiness of cmgr

j from the first job to the job of 
its enough point, then divide the sum by the total 
number of jobs involved in the tardiness calculation 
to find the average tardiness. See the formula (13). 
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     The n(epj) is the amount of jobs of cmgr
j from the 

first job to the job of its enough point. The n(ipt
i) is

the amount of jobs of cmgi from the job of its 
interrupted point to its last job. The n(cmgr

j) is the 
amount of jobs of whole cmgr

j.
     If the average tardiness is zero, the average 
earliness is substituted for the average tardiness to 
finding better interrupted point of this strategy. The 

formula of average earliness is similar to the average 
tardiness, as shown in the formula (14). 
     For the not-interrupted strategy, we do not 
interrupt the scheduled cmgi, but succeed it. The 
average tardiness still is a criterion. We calculate the 
average tardiness of cmgr

j from the first job to the job 
of its enough point, which is denoted by nirTr

j (see 
formula (15)). The parameters and indexes of this 
symbol mean cmgr

j do not interrupt the scheduled 
cmgi. If the average tardiness is zero, average 
earliness nirEr

j is calculated to substitute for the 
average tardiness as preceding strategy (see formula 
(16)).
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     In the second condition, the mold of the pair (h, k)r
is same as an online mold. It is the most reasonable
strategy that cmgr

j succeeds cmgi to process. We also
calculate the average tardiness scTr

j of the cmgr
j,

which only is influenced by the jobs in the cmgr
j, as 

shown in formula (17). If scTr
j is zero, the average

earliness scEr
j will also replace it. The formula of

scEr
j is formula (18). 
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     In the third condition, the only strategy is one that 
cmgr

j is directly assigned on the machine k of the pair 
(h, k)r, being the the first cmg of the machine. In 
reality there is the first setup time, but we leave it out 
to simplify problem. The formulas of average 
tardiness and earliness of this strategy is just like 
those of the second condition, but we give them 
different symbols to discriminate, denoted by Tr

j and 
Er

j, respectively. 
     Once the average tardiness or earliness is 
calculated, we put it into the average set As for 
comparison in step 4. Table 3 illustrates the 
pseudocode of calculating. 

Table 3: Computating average tardiness and average 
earliness 

input: cmgi, cmgr
j, (h, k)r  

if another cmgi is scheduled on the machine k then 
if the mold used by cmgi is same as mold h 
then 

foreach interrupted jobs of cmgi do 
calculate irT and nirT ; 
if irT or nirT are zero then 

calculate irE or nirE; 
put irE or nirE into As; 

else 
put irT or nirT into As; 

end 
end 

else 
calculate scT ; 
if scT is zero then 

calculate scE; put scE into As; 
else 

put scT into As; 
end 

end 
else 

calculate T ; 
if T is zero then 

calculate E; put E into As; 
else 

put T into As; 
end 

end 
 
4.3 The fourth step and the fifth step 
We take the minimal value of the average set As, 
denoted by A*. The A* decides which pair and what 
strategy of the pair will be adopted. It means that if 
we adopt the strategy of A* to schedule cmgj on the 
machine and load the mold designated by the pair of 
A*, denoted by h*and k*, the average tardiness will be 
smallest. We determine whether mold h* is available 
or not at that time by checking whether mold h* is 
used on another fit machine. If the mold is not 
available, we delete the A* from As and find the 
minimal of As again. 

 If the mold is available, we schedule cmgr
j on 

machine k* and load mold h* and adopt the strategy 
decided by A*. Then we delete jobs of cmgr

j from job 
set J s. If an interruption is occurred in the step 5.1, we 
put the interrupted jobs back to J s. The algorithm will 
repeat until J s is empty. 
 
4.4 No starvation 
Because cmg can be interrupted, some jobs may be 
putted back into J s many times. Each job has a fixed 
due date, so any job will be the leading job of its cmg 
during a finite time. Even there are no other jobs 
which have same mold with the job and the complete 
time of the job is not greater then α , the algorithm 
still set it being the enough point of the cmg 
containing the only job itself.  
     In the step 4.2., the procedure of checking mold 
will delete the choice with not available mold. Would 
it happen that there is no any choice after the deleting 
procedure? The answer is no. Assume cmgj has only 
one mold h. For pair (h, k1), the mold h is not 
available, because it is equipped on another fit 
machine k2 at the same time. Due to the step 2.1, the 
pair (h, k2) is also one choice of cmgj and h is 
available certainly for this pair. 
 
 
5   An example of algorithm 
Here an example is used to illustrate the algorithm. 
There are 11 jobs, 4 unrelated parallel machines, and 
6 molds. Table 4 shows the data which influence the 
scheduling in this example included processing time 
(pjk), due date (dj), fit molds of jobs (Hjh), fit machines 
of molds (Khk), and speed of machines for each job 
(vik).  
     The J s is sorted by EDD and job 1 has the earliest 
due date. We find all pairs of job 1 and their cmgs, As 
shown in the Figure 3. 

 
Figure 3: All pairs of job 1 and their cmgs. 

     Then we give α = 15 and β = 15 to find the enough 
point and interrupt points. For cmg1

1 of pair (A, 1)1, 
the processing time of job 1 on machine A is p1A = 
p1/v1A = 6/1 = 6, so the complete time of job 1 is c1 = 
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Table 4: Data of an example 

 
 

 

 

 

6. For α  is 15, job 1 is not enough, neither is the job 
4. Until to job 5, the complete time of job 5 is c5 = 16 
>15, so job 5 is the enough point of cmg1

1. The 
complete time is the accumulative processing time. 
Besides, the difference of due dates of job 5 and job 2 
is 19 which is greater than β (=15). We set job 5 be a 
job of in interrupted point of cmg1

1. The illustration is 
shown in Figure 4.  
     Because there is no other cmg on machine A, the 
strategy we take is scheduling cmg1

1 on it directly. 
Then the average tardiness of the strategy is T1

1= 1/4 
[max (0, 6−8) + max (0, 11−24) + max (0, 16−26) + 
max (0, 34−45)] = 0. Since the value is zero, we 

calculate the average earliness E1
1 of cmg1

1 to 
substitute T1

1, which is 1/4[(6 − 8) + (11 −24) + (16 
−26) + (34 − 45)] = −25 and put it into average set As.      
     As the same procedure, we calculate the average 
tardiness of cmg2

1 of (A, 2)2, average earliness of 
cmg3

1 of (C, 1)3, and average tardiness of cmg4
1 of   

(C, 2)4, which are T2
1= 1.9, E3

1= −4.25, and T4
1= 2.25, 

respectively. The average set As is {−25, 1.9, −4.25, 
2.25} and the minimum A* is E1

1= −25, which means 
the pair (A, 1) is the better choice and the cmg1

1 can 
be scheduled directly on machine A. For this is the 
first run of the algorithm, mold 1 should be available. 
We schedule the cmg1

1 which contains job 1, job 4, 
job 5 and job 2 on machine A equipped with mold 1 
and delete those jobs form J s.  
     In the next run, the job with earliest due date is job 
9 and its all pairs are (A, 2)1, (A, 3)2, and (C, 2)3. See 
Figure 5(a).  
 

 
Figure 5: (a) All pairs and cmgs of job 9. (b) The 

enough point of cmg1
9. 

     For the cmg1
9 of (A, 2)1, we try it on machine A to 

find its enough point and interrupted points, as shown 
in Figure 5(b). Obviously, even for the last job of 
cmg1

9, that is job 8, the complete time is smaller than 
15. In this situation, we let the last job be the enough 
point and the cmg has no interrupted point. 
     Because there is a scheduled cmg on machine A, 
we have two strategies: interrupt or not-interrupt. The  

 

 
 

Figure 4: The enough point and interrupt points of cmg1
1. 
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(a) 

 
(b) 

Figure 6: Two strategies of cmg1
9: (a) interrupt the cmg1

1. (b) not interrupt the cmg1
1. 

 
 

 

Figure 7: the outcome of the algorithm for this example. 
 
 

average tardiness of interrupted strategy is irT1
9 = 

16.23 and the average tardiness of not-interrupted 
strategy is nirT1

9= 36.8. Figure 6 illustrates those two 
strategies. 
     For the (A, 3)2, and (C, 2)3, we also calculate their 
average tardiness by the same procedure. Finally 
average set As is {16.23, 36.8, 13.5, 37.5, 2.25} and 
the minimum of As is T3

9 = 2.25. The pair (C, 2)3 is 
chosen, and cmg3

9 can be scheduled on machine C 
directly. Since mold 2 is available, the schedule of 
cmg3

9 is done and the jobs of cmg3
9 are deleted from 

job set J s. The rest runs of the algorithm are similar. 
Figure 7 shows the outcome of the algorithm for this 
example. 

 

 
6   Experiments 
In reality, this is the scheduling problem of a steel 
tube production company. A steel tube is formed 

from a steel sheet by a forming process on a tube 
forming machine. The company has 10 parallel 
unrelated tube forming machines and 206 molds. A 
job we called in this paper is a work order of steel 
tubes. Since this problem is mapping from a realistic 
problem, we compare the efficiency of heuristic 
algorithm with that of manual processing.  
     We simulate the reality production environment 
by speeds of 10 unrelated parallel machines for jobs 
(vjk), the data of fit molds of jobs (Hjh) and fit 
machines of molds (Khk). And we simulate the job set 
of the day before the first traced day which have 332 
not processed jobs. The traced days are days on 
which the traced jobs import into the job set of 
scheduling system. We take 95 jobs which are 
imported jobs of five continual work days as 
evaluated data. We trace the evaluated data in the 
scheduling process.  
     Because a work day has only eight work hours, 
traced  jobs which  even  are schedeuled   may  not  be 

WSEAS TRANSACTIONS on SYSTEMS Tzung-Pei Hong, Pei-Chen Sun and Shin-Dai Li

ISSN: 1109-2777 649 Issue 6, Volume 7, June 2008



 

                                            

Simulated 
job set 

Figure 8: The design of experiments.  
 
 

processed in a day. Moreover new jobs import into 
job set day by day, those jobs will influence the 
schedule of traced jobs. Those jobs are called extend 
jobs. In this scheduling process of this experiment, 
there are 578 extend jobs from the first traced day to 
the end day on which all traced jobs are be processed. 
The design of experiments is illustrated in Figure 8.  
     Accodrding to the scheduling export of the 
company, the setup time of changing mald cost about 
3 hours for once. So a mold should be on a fit 
machine at least 2 days, which means α  is 16 (hours) 
for eight work hours per day. Moreover, if there is an 
interrupted is need, it takes helf day (3 hours of 8 
hours per day) to change mold, and at least 2 day to 
process new cmg, and then another helf day to 
change previous mold back. The total needed time is 
3 day, so the β  is set by 5 day (40 hours) for 
theoretical safety. But in reality, there are many 
unpredictable factors for changing mold, the 
scheduling export usually avoid unexpected 
changing mold. Hance we are suggested to set the 
condition of interruption more strictly. We take β  by 
5 days, 7 day and 10 day to experiment respectively.      
    We compare the total tardiness, the number of 
tardy jobs and the average tardiness of evaluated jobs 
scheduled by the scheduling system with those 
scheduled by manual scheduling. The results show 
that the proposed approach can greatly impove the 
scheduling results.  
 
 
7.   Conclusions and future work 
The purpose of this paper is to solve a reality 
scheduling problem. The problem is modeled in 

mathematical expressions. We provide a heuristic 
algorithm as a solution and design an experiment to 
compare with the manual. There are many aspects not 
taken into account in this solution like material 
supplication. We will continue to extend the 
scheduling problem to solve the reality problem 
comprehensively in the future. 
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