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Abstract: - In this paper a comparison of classical, adaptive and neural control strategies for a robotic 
manipulator with two revolute joints is presented. The conventional computed-torque method is presented, as 
a starting point for the design of the adaptive and neural control techniques. Two adaptive control strategies, 
a non-model based neural control strategy and a model based neural control strategy are implemented. 
Computer simulations are performed for the control of a rigid manipulator with two revolute joints, in order 
to verify the performances of the control strategies and to make some useful comparisons. If a classical 
controller already controls a robot the advantage of proposed structure is that extension to a model based 
neural controller for performances improvement is easy. 
 
Key-Words: - robotic manipulator, neural control, computed torque control, adaptive control, trajectory 
tracking. 
 
1.  Introduction 
 
The present paper is addressed to robotic 
manipulators control. Rigid robot systems are 
subjects of the research in a both robotic and 
control fields. The reported research leads to a 
variety of control methods for rigid robot systems 
[3]. The present paper is addressed to a robotic 
manipulator control. High speed and high precision 
trajectory tracking are frequently requirements for 
applications of robotic arms. 
Conventional controllers for robotic structures are 
based on independent control schemes in which 
each joint is controlled separately ([3], [6]) by a 
simple servo loop. This classical control scheme 
(for example a PD control) is inadequate for precise 
trajectory tracking.  
The imposed performances for industrial 
applications require the consideration of the 
complete dynamics of the robotic manipulator. 
Furthermore, in real-time applications, the ignoring 
parts of the robot dynamics or errors in the 
parameters of the robotic manipulator may cause 
the inefficiency of this classical control (such as PD 
controller). 
An alternative solution to PD control is the 
computed torque technique. This classical method 
is in fact a nonlinear technique that takes account of 
the dynamic coupling between the robot links. The 
main disadvantage of this structure is the 
assumption of an exactly known dynamic model. 
However, the basic idea of this method remains 

important and it is the base of the neural and 
adaptive control structures ([1], [2], [6], [7], [18], 
[19]). 
Even in well-structured industrial applications, 
robotic arms are subject of the structured 
uncertainty, i.e. the parameter uncertainty due to 
unknown load, friction coefficients and so on. 
When the dynamic model of the system is not 
known a priori or is not available, a control law is 
erected based on an estimated model. This is the 
basic idea behind adaptive control strategies [6]. 
Over the last few years several authors ([5], [7], [8], 
[10], [20], [21], [22]) have considered the use of 
neural networks within a control system for robotic 
arms. 
The organization of this paper is the following. In 
section 2 the classical control strategies are 
presented. Subsection 2.1 deals with the computed 
torque method based on the so-called inverse 
dynamics of the robotic manipulator. Subsection 
2.2 deals with adaptive control method. In section 3 
various neural control schemes have been studied, 
proposed and compared. Model based neural 
control structures are implemented. The artificial 
neural network is used to generate auxiliary joint 
control torque to compensate for the uncertainties 
in the computed torque based primary robotic 
manipulator. Subsection 3.1 deals with the 
feedforward neural control, subsection 3.2 deals 
with feedback neural control and subsection 3.3 
deals with feedback error based neural control. The 
section 4 is dedicated to the nonlinear model of a 
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planar robotic manipulator with two revolute joints 
and to the computer simulation and comparisons. 
Finally, the section 5 collects the conclusions. 
 
 
2.  Control Strategies 
 
The robotic manipulator is modeled as a set of n 
rigid bodies connected in series with one end fixed 
to the ground and the other end free. The bodies are 
connected via either revolute or prismatic joints and 
a torque actuator acts at each joint.  
The dynamic equation of an n-link robotic 
manipulator is given by ([3], [9]): 
 
 ( ) ( ) ( ) ( )qFqGqq,qVqqJT &&&&& +++=  (1) 
 

where:  
  

- T  is an (n×1) vector of joint torques; 
- J(q) is the (n×n) manipulator inertia matrix; 
- ( )q,qV &  is an (n×n) matrix representing 

centrifugal and Coriolis effects; 
- G(q) is an (n×1) vector representing gravity; 
- ( )qF &  is an (n×1) vector representing friction 

forces; 
- q,q,q &&&  are the (n×1) vectors of joint positions, 

speed and accelerations, respectively. 
 

The equations (1) form a set of coupled nonlinear 
ordinary differential equations which are quite 
complex, even for simple robotic arms.  
For simplicity, we denote 
 

( ) ( ) ( ) ( )q,qHqFqGqq,qV &&&& =++  
 
so that (1) can be rewritten as: 
 

 ( ) ( )q,qHqqJT &&& +=  (2) 
 
 
2.1.  Computed Torque Control 
 
The computed-torque method is a conventional 
control technique, which takes account of the 
dynamic coupling between the manipulator links. 
This method, also called the inverse model control 
technique [1], [10] leads to a completely decoupled 
error dynamics equation. The structure of this 
control strategy is illustrated in Fig. 1. 
A used computed-torque control scheme is based 
on the exactly linearization of the nonlinear 
dynamics of the robotic manipulator. If the 

dynamic model is exact, the dynamic perturbations 
are exactly cancelled. The total torque driving the 
robotic manipulator is given by ([1]): 
 

 ( ) ( ) ( ) ( ) =+++′= qF̂qĜqq,qV̂TqĴT &&&  
 

 ( ) ( )q,qĤTqĴ &+′=                      (3) 
 

where: Ĥ,F̂,Ĝ,V̂,Ĵ  are estimates of J, V, G, F, H, 
respectively, and T ′  is defined as:  
 

 eKeKqT PVd ++=′ &&&  (4) 
 

The closed loop equation is found to be: 
 
 =++ eKeKe PV &&&  
 

 ( ) ( ) ( ) ( ) ( )[ ]=+++= − qF~qG~qq,qV~qqJ~qĴ 1 &&&&&   
 

 ( ) ( ) ( )[ ]q,qH~qqJ~qĴ 1 &&& += −  (5) 
 

where ;ĜGG~;V̂VV~;ĴJJ~ −=−=−=   

ĤHH~;F̂FF~ −=−=  are the modelling errors 
and the tracking error  is  e = qd - q. 
 

 
If the robotic manipulator's parameters are perfectly 
known, the closed loop equation (5) takes a linear, 
decoupled form: 
 

 0eKeKe pv =++ &&&  (6) 
 

The computed-torque control method has 
performance problems because of its reliance on a 
fixed dynamic model. The robotic arm structures 
have to face uncertainty in the dynamics 
parameters. Two classes of approach have been 
studied to maintain performances in the presence of 
parametric uncertainties - the robust control and the 
adaptive control. The next section deals with the 
adaptive control strategy for the robotic manipulator. 
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2.2.  Adaptive Control 
 
Adaptive controllers can be a good alternative when 
it is neither possible nor economical to make a 
thorough investigation of the causes of the process 
variations. In other situations, some of the 
dynamics may be well understood, but other parts 
are unknown. This is the case of robots, for which 
the geometry, motors and gearboxes do not change, 
but the load does change. An adaptive controller 
can be defined as a controller with adjustable 
parameters and a mechanism for adjusting the 
parameters [11]. The modern adaptive control 
approach consists in the explicit introduction of the 
linear parameterization of the robot dynamics. The 
adaptive controllers can be classified into three 
major categories [10]: direct, indirect and 
composite. 
The direct adaptive controllers use tracking errors 
of the joint motion to drive parameter adaptation. 
The main goal of the control strategy is to reduce 
the tracking errors. Such a direct technique is an 
adaptive control method based on computed torque 
control. This method has been pioneered by Craig 
et al. [12], and the properties of stability and 
convergence are established in [6], [15]. The 
controller is in fact composed of a modified 
computed-torque control and an adaptation law. 
Next, this direct adaptive strategy is used for the 
robot arm structure (1). Let's consider θ  the vector 
of the uncertain (unknown) parameters, which are 
the viscous friction coefficients, the Coulomb 
friction coefficients and the load mass. Then, the 
dynamics of the robot arm can be written as: 
 
 ( ) ( ) ( ) ( )θθθθ ,,,,, qFqGqqqVqqJT &&&&& +++=  (7) 
 
A linear parameterization of (7) is: 
 

 ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) θ

θθθθ
),,(,

,,,,,
qqqRqFqGqqqVqqJ

qFqGqqqVqqJ

CCCC &&&&&&&&

&&&&&

++++=
=+++  (8) 

 
where ( ) ( ) ( ) ( ).,.,.,. CCCC FGVJ  represent the known 
(certain) part of the dynamics and ),,( qqqR &&&  is the 
regressor matrix. 
The design of the control law is reached by using in 
(7) the vector of the estimated parameters. The 
linearization (8) allows us to obtain the torque: 
 

 ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) θ

θθθθ
ˆ),,(,

ˆ,ˆ,ˆ,,ˆ,

qqqRqFqGqqqVqqJ

qFqGqqqVqqJT

CCCC &&&&&&&&

&&&&&

++++=

=+++=  (9) 

 
where θ̂  is the vector of estimated parameters. 

From the equations (4), (9) the closed loop 
dynamics is obtained: 
 
 θθ

~
),,())(ˆ,( qqqReKeKeqJ pv &&&&&& =++  (10) 

 

with θθθ
∆

−= ˆ~  the estimation parameter error vector. 
If the inertia matrix is nonsingular, we can write: 
 
 θθ

~
),,()ˆ,(1 qqqRqJeKeKe pv &&&&&& −=++  (11) 

 
The state representation of (11) can be obtained if 
the state Teex ][ &

∆
=  is used: 

 
 θθ

~
),,()ˆ,(1 qqqRqJBxAx mm &&&& −+=  (12) 

 

where 











−−

=
vp

m KK
I

A
0

, 







=

I
Bm

0 . 

 
We can choose a gradient type adaptation law for 
the on-line estimation of the parameters: 
 

 PxBqJqqqR
dt

td
dt

td T
m

T ⋅⋅−== − )ˆ,(),,()(ˆ)(
~

1 θΩθθ
&&&  (13) 

 
with 0>= TΩΩ  the amplification matrix and 

0>= TPP  is a quadratic nn ×  matrix, solution of 
the Lyapunov equation: 
 
 QPAPA m

T
m −=+  (14) 

 
where 0>= TQQ . 
 
Remark: The Lyapunov function θθ

~~TT PxxV +=  
can be used to show that the tracking errors go to 
zero. 
The final adaptive control law consists of the 
computed-torque Eq. (3) and the estimates provided 
by the adaptation law (13). 
The global convergence of the direct adaptive 
controller based on computed-torque method is 
demonstrated in [15]. The disadvantages of this 
adaptive method are the use of the acceleration 
measurements and the necessity of inversion of the 
estimated inertia matrix. The advantages are the 
simplicity of the method (comparatively to a least 
squares indirect method for example) and the 
rejection of the parametric disturbances, inherent 
for an adaptive method. 
The indirect adaptive control method for 
manipulators has been pioneered by Middleton and 
Goodwin [4], who used prediction errors on the 
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filtered joint torques to generate parameter 
estimates to be used in the control law. 
Such indirect adaptive controller can be composed 
of a modified computed-torque control and a 
modified least-squares estimator. The design of this 
indirect control law for the manipulator (1) is based 
on the estimate of the torque: 
 
 ( ) ( ) ( ) ( ) θ̂),,(,ˆ qqqRqFqGqqqVqqJT CCCC &&&&&&&& ++++= (15) 
 

where θ̂  is the vector of estimated parameters. 
 
Now we can calculate the prediction error for the 
torque from (8), (15) 
 
 θθθε

∆ ~
),,()ˆ(),,(ˆ qqqRqqqRTT &&&&&& =−⋅=−=  (16) 

 

with θθθ
∆

−= ˆ~  the estimation parameter error vector. 
 
The prediction error is filtered to eliminate the 
measurements of the accelerations in the control 
law. First, the torque T is filtered through a first-
degree filter with the transfer function 

f

f

s
sH

ω
ω
+

=)( , where fω  is the crossover frequency 

of the filter. The filtered torque is the convolution 
 
 )(*)( tTthT f =  (17) 
 

where h(t) is the impulse response of  H(s). 
 
The estimated torque is also filtered. We define 
 
 ( ) ( ) ( ) ( )qFqGqqqVqqJT CCCCC &&&&& +++= ,  (18) 
 

and from (15), (18) the estimated torque can be 
written as 
 

 θ̂),,(ˆ qqqRTT C &&&+=  (19) 
 

We have 
 

 )(*)()( tTthtT CCf =  (20) 
 )(*)()( tRtht =Φ  (21) 
 
In the relations (20), (21), CfT  and the filtered 
regressor matrix Φ  depend only of the state q(t) 
and of the time derivative )(tq& , and not of the 
accelerations [3]. 
 

))(),(()());(),(()( tqtqttqtqTtT CfCf && ΦΦ ==  
 

We obtain the filtered estimated torque from (19), 
(20), (21) 
 

 θΦ ˆˆ ⋅+= Cff TT  (22) 
 

Now we can obtain the filtered prediction error, 
which will be used in the adaptation law. From 
(16), (17), (22) the filtered prediction error is 
 
 )(*)(ˆ)()(ˆ tTthttTTT Cffff −⋅+=−= θΦε  (23) 
 

The torque T can be written as 
 

θ⋅+= RTT C  
therefore the filtered prediction error becomes 
 

 θΦθΦε ⋅−−⋅+= )()(*)(ˆ)()(*)( ttTthttTth CCf  
  θΦ

~
))(),(( ⋅= tqtq &            (24) 

 
The adaptation parameter law is based on a least-
squares estimator [1] that it has as input the filtered 
prediction error (24). The equations of the 
adaptation law are 
 

 )(),()()(ˆ)(
~

tqqt
dt

td
dt

td
f

T εΦΓθθ
&−==  (25) 

 )(),(),()()( tqqqqt
dt

td TT ΓΦΦΓΓ
&&−=  (26) 

 
with .0)0()0( >= TΓΓ  The matrix 0)()( >= tt TΓΓ  is 
the amplification matrix. 
The final indirect adaptive control law consists of 
the computed-torque equation (3) and the estimates 
provided by the adaptation law (25), (26): 
 

 ( ) ( ) ( ) ( )
)ˆ,()ˆ,()ˆ,,()ˆ,(

ˆˆ,ˆˆ

θθθθ qFqGqqqVTqJ

qFqGqqqVTqJT

&&&

&&&

+++′=

+++′=  (27) 

 
with T' given by (4). 
The indirect adaptive control structure is presented 
in Fig. 2. 
 

Fig. 2. 
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The least-squares estimator (25), (26) has good 
convergence and stability properties [3]. A 
disadvantage can be the complexity of the 
algorithm and the correlation between the 
prediction error and the estimation parameter error 
[1], [3]. This disadvantage can be canceled by 
addition of a stabilizing signal to the control law 
[1]. 
Remark: Indirect controllers allow the various 
parameter-estimation algorithms to be used to 
select time variations of the adaptation gains. 
Composite adaptive controllers for manipulators 
have been developed by Slotine and Li [16]. These 
adaptive control strategies use both tracking errors 
in the joint motions and prediction errors on the 
filtered torque to drive the parameter adaptation. 
 
 
3.  Neural Control 
 
Various neural control schemes have been studied, 
proposed and compared. The differences in these 
schemes are in the role that artificial neural network 
(ANN) is playing in the control system and the way 
it is trained for achieving desired trajectory tracking 
performance [2], [10], [14], [20], [21], [22]. 
Two classes of approach have been studied: non-
model based neural control and model based neural 
control. Non-model based neural control consists of 
PD feedback controller and an ANN. The inverse 
dynamics is learned by measuring the input and 
output signals in the manipulator and then adjusting 
the connection weights vector by using a learning 
algorithm. After the learning was finished, the 
actual trajectory of the manipulator followed well 
the desired trajectory. But, when the desired 

trajectory was changed to one not used in the 
training of ANN, the error between the actual and 
desired trajectory became large. This means that the 
ANN had fitted a relationship between the 
input/output data but had no succeeded in learning 
the inverse-dynamics model [10]. 
We want that training doesn't depend on desired 
trajectory. Hence, we proposed to train the ANN 
with ( )eeqqq d &&&& ,,,, (fig. 3). 
For training of ANN, there are two possibilities: 
off-line or on-line. From the viewpoint of real time 
control it's better to train ANN on-line. But, from 
the viewpoint of initial weights and biases, rate of 
convergence and stability of learning it's better to 
train ANN off-line. The tracking performance was 
better if ANN was trained off-line and then ANN 
was used to improve the performance of PD 
feedback controller [13]. 
In this section, model based neural control 
structures for a robotic manipulator is implemented. 
Various neural control schemes have been studied, 
proposed and compared. The differences in these 
schemes are in the role that artificial neural network 
(ANN) is playing in the control system and the way 
it is trained for achieving desired trajectory tracking 
performance. 
The most popular control scheme is one which uses 
ANN to generate auxiliary joint control torque to 
compensate for the uncertainties in the computed 
torque based primary robotic manipulator controller 
that is designed based on a nominal robotic 
manipulator dynamic model. This is accomplished 
by implementing the neural controller in either a 
feedforward or a feedback configuration, and the 
ANN is trained on-line. 
Based on the computed torque method, a training 

( )tq&&
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signal is derived for neural controller. Comparison 
studies based on a robotic planar manipulator have 
been made for the neural controller implemented in 
both feedforward and feedback configurations. 
A feedback error based neural controller is 
proposed. In this approach, a feedback error 
function is minimized and the advantage over 
Jacobian based approach is that Jacobian estimation 
is not required. 
 
 
3.1. Feedforward Neural Controller 
 
The feedforward neural controller (Fig. 3) is 
designed to achieve perturbation rejection for a 
computed torque control system of a robotic 
manipulator. 
The ANN output cancels out the uncertainties 
caused by inaccurate robotic manipulator’s model 
in the computed torque controller. The robot joint 
torques are: 
 

 
( )( ) ( )ddfd q,qĤTqĴT &++′= φ  (28) 

 

The closed loop error system is 
 

 ( ) f
1

PV H~qJ~ĴeKeKe φ−+=++ − &&&&&  (29) 
 

Since the control objective is to generate φf to 
reduce u to zero, we therefore propose to use u: 
 

 eKeKeu PV ++= &&&  (30) 
 

as the error signal for training the ANN. The ideal 
value of φf  at u = 0 then is: 
 

 ( )H~qJ~Ĵ 1
f += − &&φ  (31) 

 

Minimizing the error signal u allows achieving 
ideal computed torque control directly. 
 
 
3.2. Feedback Neural Controller 
 
The main difference between feedforward and 
feedback neural controller schemes is that the joint 
variables used in the ANN inputs and the computed 
torque controller are either the desired values qd(t) 
or the actual values q(t). The ANN inputs can be 
either qd(t), ( ) ( )tq,tq dd &&&  or q(t), ( ) ( )tq,tq &&& , or the 
time-delayed values qd(t), qd(t-1), qd(t-2) or q(t), 
q(t-1), q(t-2). Delay time is chosen as the sampling 
period of the controller. In simulations the ANN 
performs better when time-delayed joint values are 
used instead of the velocity and acceleration values 
calculated from finite difference approximations 
based on samples of q(t). 
For feedback neural controller (Fig. 4) the robotic 
manipulator joint torques are: 
 
 ( )( ) ( )q,qĤTqĴT b &++′= φ  (32) 
 

The three-layer feedforward neural network is used 
as the compensator. It is composed of an input layer 
(6 neurons), a nonlinear hidden layer, and a linear 
output layer (2 neurons). 
The weight updating law minimizes the objective 
function J which is a quadratic function of the 
training signal u: 
 

 J = ( )uu
2
1 T  (33) 

 

For simplicity, we use φ for φf or φb. Differentiating 
equation (33) and making use of (29) yields the 

q(t-2) 
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gradient of J  as follows: 
 

 u
w

u
w
u

w

TT

∂
∂

−=
∂
∂

=
∂
∂ φJ  (34) 

 
The backpropagation update rule for the weights 
with a momentum term is: 
 

 ( ) ( ) ( )1twu
w

1tw
w

tw
T

−+
∂

∂
=−+

∂
∂

−= ∆α
φ

η∆αη∆
J    

  (35) 
 
where η is learning rate and α is the momentum 
coefficient. 
 
 
3.3.  Feedback Error Based Neural 
Controller 
 
In this approach, a feedback error function is 
minimized and the advantage over Jacobian based 
approach is that Jacobian estimation is not required. 
The inputs to the neural controller (Fig. 5) are the 
required trajectories qd(t), ( ) ( )tq,tq dd &&& . The 
compensating signals from ANN, φp, φv, φa, are 
added to the desired trajectories. The control law is: 
 
 ( ) ( )( ) ĤeKeKqĴT pPvVad ++++++= φφφ &&&  (36) 
 
 

Combining (36) with dynamic equation of robotic 
manipulator yields: 
 

 ( ) Φ−+=++= − H~qJ~ĴeKeKeu 1
PV &&&&&  (37) 

 

where  pPvVa KK φφφΦ ++= . Ideally, at u = 0, the 

ideal value of Φ is: 
 

 ( )H~qJ~Ĵ 1 += − &&Φ  (38) 
 

The error function u is minimized and the objective 
function is the same (33). The gradient of  J  is: 
 

 u
w

u
w
u

w

TT

∂
∂

−=
∂
∂

=
∂
∂ ΦJ  (39) 

 

The backpropagation updating rule for the weights 
with momentum term is: 

 

 ( ) ( ) ( )1twu
w

1tw
w

tw
T

−+
∂

∂
=−+

∂
∂

−= ∆α
Φ

η∆αη∆
J (40) 

   
 

4.  Simulation Studies 
 
The control of the simple planar robotic 
manipulator with two revolute joints shown in Fig. 
6 will be considered. 
The elements of the dynamic equation (1) for this 
robotic manipulator with electrical motor dynamics 
are: 

 

( ) ( )







+
+







+
++++

=

2
22

2
22

2212
2
22

2212
2
22

2
112212

2
2221

2
1

nJlm
cllmlm

cllmlm
nJcllm2lmmmlqJ

(41) 

 
 

 ( ) ( )







 +−
=

0q
qq20

sllmq,qV
1

21
2212 &

&&
&  (42) 
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 ( ) ( )







 ++
=

1222

12221121

sglm
sglmsglmm

qG  (43) 

 

 ( ) ( )
( )






+
+

=
2222

1111

qsignCqv
qsignCqv
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with  m1 = mass of link 1;   m2 = m20 + mp;   
 m20 = mass of link 2;  mp = mass of 

payload; 
l1 = length of link 1;  l2 = length of link 2; 
ci = cos (qi);    si = sin (qi);       
c12 = cos (q1+ q2);    s12 = sin (q1 + q2) 

 Ji = moments of inertia for electrical motor i. 
 ni = factor of reduction gear i. 
 vi = viscous friction for joint  i. 
 Ci = Coulomb friction for joint i. 
 
For simulation and comparisons, the planar robot 
manipulator with two revolute joints (1), (41)-(44) 
is used. The simulation model parameters are (SI 
units): 
 

-  m1 = 10, m2 consists of  mass of link 2, m20 = 2.5 
and mass of payload, mp 

-  l1 = 1, l2 = 0.5, link lengths 
 

The robot manipulator starts at position (q1 = 0, q2 = 
0) and the control objective is to track the desired 
trajectory given by: 

 

( )t4,0sin4.0q d1 π⋅=  
 

( )t5,0sin5.0q d2 π⋅−=  
 

When the model of the robot manipulator is known, 
the use of the computed-torque method is 
recommended. The equations (8), (9) are used and a 
simulation has been done for the tuning parameters 
Kp1 = 50, Kp2 = 50, Kv1 = 6, Kv2 = 15. The time 
evolution of errors in this simulated case (with 

unknown parameters mp, v1, v2, C1, C2) is presented 
in Fig. 7. 
 

For feedforward and feedback neural controller (6 x 
10 x 2) with update backpropagation rule (35) the 
tracking errors are presented in Fig. 8 and Fig. 9. 

 
For feedback error based neural controller (6 x 9 x 
2) with update backpropagation rule (40) the 
tracking errors are presented in Fig. 10. 
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The comparisons between the control strategies can 
be done by visualization of tracking errors, but 
accurate comparisons can be done by considering a 
criterion based on averaged square tracking errors 
(see [17]): 
 

 dtte
T

I
T

)(1
0

2
11 ∫=  (45) 

 

 dtte
T

I
T

)(1
0

2
22 ∫=  (46) 

 
where T is the total simulation time. 
 
The obtained results from calculus of I1 and I2 for 
the studied control strategies (manipulator with two 
revolute joints) are presented in Table 1. 
 

Table 1. Performance Criterion 
 

Performances Control Strategies 
I1 I2 

Classical PD controller 
(exactly known model and 
manipulator parameters) 

4.2*10-4 3.1*10-4 

Computed-torque method 
(exactly known model and 
manipulator parameters) 

1.2*10-4 0.8*10-4 

Direct adaptive controller 
(gradient adaptation law)  

1.7*10-4 1.0*10-4 

Indirect adaptive controller 
(least-squares estimator as 
adaptation law) 

1.1*10-4 0.7*10-4 

Non-model based neural 
controller 

2*10-4 1.1*10-4 

Model based neural 
controller 

0.9*10-4 0.5*10-4 

 
 

5. Conclusions 
 
Classical and neural strategies have been applied to 
the control of a simple planar robotic manipulator 
with two revolute joints. 
The computed-torque method solves the precision 
tracking problem using an exactly linearization of 
the nonlinearities of the robotic manipulator model. 
The main disadvantage is the assumption of an 
exactly known dynamic model. If the model is 
imprecise known, a model based neural control law 
based on the computed torque method is 
implemented. The simulation results prove that the 
tracking performances are better. 
The simulation showed that the proposed neural 
controllers obtain results comparable to those 
achieved using adaptive control strategies. 
If a classical controller already controls a robotic 
manipulator the advantage of proposed structures is 
that extension to a neural controller for 
performances improvement is easy. 
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