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Abstract: - This study aims to provide a review for odor detection, recognition and source localization and ongoing 
approaches taken to address the problem. To this aim sensor structures and chemical detection process are introduced. 
Next, recognition techniques of odor from detected chemicals are explained. To introduce source localization problem, 
the odor dynamics is introduced and models of odor diffusion mechanisms are discussed from different aspects. Next, 
forward and inverse problems for source location are defined and demonstrated in relation to several applications. A 
discussion of commonly utilized estimation methods to solve the localization problem in the literature is provided; 
Triangulation Method, Least Squares Method, Maximum Likelihood Method, PQS are briefly discussed. Finally, a 
case study for mobile odor tracking is presented with simulation results. 
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1 - Introduction 
    Odor detection studies have gained increased interest 
especially a result of terrorist attacks such as the one at 
the Tokyo Subway in 1995. As it is well-known, odor is 
one other sense like vision, hearing, and taste, a main 
difference being that it is based on chemicals [1].  
Detection and tracking of odor when compared with 
sound using propagation based approaches, poses 
additional problems due to its very low dispersion rate as 
well as significant unpredictable external disturbances, 
such as wind effects [2]. Studies in this area are often 
classified under “Plume source localization and 
tracking”, and two main approaches: a) Forward 
problems, which estimate the state of odor (in terms of 
time and density) in advance, b) Inverse problems, 
which estimate the prior state of the odor based on 
current state information, hence perform localization and 
detection [3].  
 
2 - Chemical Sensing 
    Chemical sensing can be achieved by several 
technologies can be grouped commonly by optic based 
sensing technologies, acoustic based  technologies, mass 
spectrometry based technologies, surface stress based 
technologies, electrical based technologies and 
nanotechnology based technologies. Each of them has 
some advantages and disadvantages related by the 
application it is used. However we can define some 
common requirements such as rapid response time, 

lower power consumption, compact size, high selectivity 
and reliability. [4] Optic ones are the followings; Surface 
Plasmon Resonance (SPR), Colorimetric, Fluorescence 
and Chemiluminescence. SPR uses the phenomenon of 
total internal reflection (TIR) at the interface between 
two media sets up an exponentially decaying evanescent 
wave in the medium of lower refractive index. If the 
interface is coated with a thin of metals such as gold or 
silver, the evanescent wave penetrates the film and 
excites plasmon in it. The coupling between the 
incidents light at the interface with the surface plasmon 
waves (SPW) in the thin film makes a characteristic drop 
in the intensity of the reflected light which occurs at a 
particular combination of wavelength, incidence angle 
and refractive index of the medium. When selective 
odor’s chemical reactions happen at this interface, 
changes in the surface properties alter the local refractive 
index at the interface. Then, the angle of the 
characteristic intensity drop changes supplies producing 
a response signal. [5]  
    However this system is not sufficiently sensitive to 
small molecules which are very common in odor 
sensing. Then, most SPR sensors are based on the 
measurement of SPR variations which are related with 
adsorption or a chemical reaction of an analyte with a 
transducing medium result in changes in its optical 
properties [6]. This transducing medium is the first 
factor which determines the selectivity and response 
time for these kinds of sensors. As an example polymer 
films like polyethylene glycol, polydimethylsiloxane is 
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used as transducing mediums for detection of organic 
vapors such as hydrocarbons, aldehydes and [6,7,8,9]. 
Most important disadvantages of this method are its 
difficulty to multiplex. Then this technology can not be 
used in an array format for improving sensor selectivity. 
    Colorimetric technology is second optic based 
technology used for odor detection. Colorimetric sensors 
include an indicator which changes its color if an analyte 
exists. This indicator can be organic or inorganic, but 
generally polymers are used for this purpose. For 
instance, amine-containing (poly)vinyl chloride 
membranes are used to detect 2, 4-dinitrotoluene (DNT) 
a compound commonly present in landmines [10]. 
    Fluorescence technology which is the most popular 
because of the high quantum yields, well separated 
excitation and emission spectra and intrinsic sensitivity,  
is third optic based technology used for odor detection. 
The principle of this kind of sensors is that the target 
odor being sensed alters the fluorescence of the medium 
with which it interacts.[5].  Sensitivity, lifetime, 
reproducibility and stability of these sensor systems are 
their disadvantages. Their selectivity is also poor 
because of their weak interactions caused by the 
absorption of the odor in the polymer matrix containing 
the indicator medium. To overcome this problem about 
selectivity, indicators which are specific for particular 
analytes is developed. One interesting example of 
fluorescent conjugated polymer thin films that have a 
very high affinity for DNT and TNT for use in sensitive 
explosive detection [11]. While complex optical systems 
required like other optical sensors, multiplexing is also 
difficult.[5] 
    Chemiluminescence technology is the last optic based 
technology used for odor detection. Its implementation is 
easier because sensors employ chemically reactive 
species which are capable of directly emitting photons 
following oxidation, then no excitation source is needed 
and signals arise from initially dark backgrounds. [5] 
These sensors have been used generally for oxygen and 
metal-ion sensing and have been extended to detecting 
organic vapors such as chlorinated hydrocarbons, 
hydrazine and ammonia [12]. Although optic based 
technologies have some advantages like EMI 
unsensitivity, disadvantages of them are higher costs, 
complexity which make multiplexing difficult and 
material intensive processes when we compare with 
electrical based models which are easily mass produced 
with integrated circuit technology.  
    Acoustic wave based sensors are second major 
technology group. Acoustic wave properties of the 
sensor can be changed by reaction and/or binding of an 
analyte onto the surface of a sensor or an intermediate 
sensing layer or into the bulk of an applied thin film. 
This is the transduction principle of these sensors. 
Acoustic wave devices can be developed and 

demonstrated for chemical sensing applications in both 
gas and liquid phases [13,14,15,16]. There are three 
main configurations for this technolgy. They vare quartz 
crystal microbalance (QCM), Surface Acoustic wave 
(SAW) devices, and Flexural Plate Wave (FPW) 
devices. All of them has thin film or metal electrodes 
used to convert electrical energy to mechanical energy in 
the form of acoustic waves and an interface that supplies  
reaction  of an analyte and a piezoelectric substrate.  
Array configuration of these devices is developed for use 
in conjunction with pattern recognition for improving 
sensor selectivity [17,18,19]. Their disadvantages are the 
relatively poor long term stability of the sensor coatings 
and also high sensitivity to humidity. Moreover  acoustic 
coupling between the devices fabricated in array format 
cause cross talk and this cross talk increases errors. Also 
impedance mismatch is also an other error source when 
it is used in high frequencies. [5] 
    Mass spectrometry (MS) based technology is an other 
powerful analytical technique. It can permits to identify 
unknown compounds, to quantify known compounds 
and to elucidate the structure and chemical properties of 
molecules. IM sample is injected into the mobile phase 
and molecules are ionized. Then ions are accelerated in 
vacuum by the application of a voltage and last they are 
separated on the basis of their charge o mass ratio by a 
magnetic field. As it can easily be understood from the 
process that it is not suitable for field applications. 
Moreover getting quantitative information from this 
process is also difficult. In this technique mass accurate 
measure of concentration couldn’t be taken, mass is the 
only information we can get. If it is used by a seperation 
process multiple components can be sensed. However it 
is not common.[5] 
    Surface stress technology is an other technology for 
detecting odor. Most commonly used surface stress 
sensors are microcantilevers [20,21]. A microcantilever 
is a highly sensitive mechanical element that deflects 
due to changes in surface stress, charge, mechanical 
force, IR radiation and heat flux. Optical, piezoresistive, 
piezoelectric, capacitive, or electron tunneling methods 
can be used to measure this deflection. [5] 
Microcantilevers can operate in the static mode in which 
we measure deflection itselfor in a dynamic mode in 
which we measure deflection’s resonance frequency. In 
their chemical sensing usage the cantilever deflection 
caused by a differential surface stress change induced by 
the odor which interacts with the coating which is 
selectively applied to one side of the cantilever, is 
measured. An other common using configuration is 
micromembrane. Membranes can be read easier than 
microcantilevers. However they have lower sensitivity 
because they have larger form factors. Using low 
stiffness materials like polymers instead of silicon based 
materials can solve the sensitivity problem, but finding 
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microfabrication compatible polymers is difficult and 
also inserting them into the process is expensive. [5] 
    Chemoresistors are the first sensor group of electrical 
odor sensing technology. They used the change of 
conductivity in MOS (Metal Oxide Semiconductor) or 
organic polymers when chemical reaction with odor 
molecules occurs. By incorporating carbon black 
particles insulating polymers can get conductive. Then 
they can be used in composite chemoresistor array 
[22,23]. In the array usage each chemoresistor should 
contain different polymer. From one resistor we can not 
identify a unique odor, but using pattern recognition at 
the output of the array we can identify the odor. Also 
selectivity is proportional to number of array elements. 
However process fabrication limits that number. [22]. 
Also using sensor array require extensive computation 
power to handle pattern recognition. However selectivity 
is very poor when using one chemoresistor. [5] 
    ChemFETs are other sensor group of electrical odor 
sensing technology. Sensor coating material affects the 
Field Effect Transistor’s (FET) physics. There exist both 
organic and inorganic coating material for this 
technology, and they can be used both for FETs and 
diodes. Using Conducting Polymer (CP) for coating 
material, supplies this sensor to be used with liquid and 
gas application. In that applications CP ban be used both 
as channel and gate. If ChemFETS are used as channel, 
they are called Thin Film Transistors (TFT) and if they 
are used as gate, they are called as Insulated Gate FET 
(IGFET). The current of TFT flows through the CP 
whose conductivity is modulated with odor and electrical 
field. However in IGFETS, CP is only gate conductor, 
and conductivity of the FET doesn’t related with  CP, 
that kind of sensor only depends only on the chemical 
modulation of the CP’s work function. ChemFETs are so 
suitable for array technology, and microfabrication. 
Therefore they are commonly used in array applications. 
[5] 
    Chemocapacitors are other sensor group of electrical 
odor sensing technology and despite of other electrical 
based odor sensing technology insulating polymers 
whose volume and/or dielectric properties has the 
capability of changing by odor concentration, are used in 
this technique. This technology has some disadvantages 
like long time constant and hysteresis. Moreover AC 
excitation and impedance bridge is generally needed for 
measuring capacitance. However fabrication process is 
easier then ChemFETs. [5] 
    Last electrical technology based sensors are 
Amperometric Sensors which are the most popular 
sensors for sensing toxic gases like CO2, H2S and SO2. 
The working principle of amperometric gas sensors 
(AGS) is measuring the current between working and 
counter electrodes and which is a function of analytes 
concentration. The analyte is reacted electrochemically 

and while this process occurs, in terms of Faraday’s law 
either it produces or consumes electrons at the working 
electrode. This method is complement of the other two 
electrochemical sensors. First one is potentiometric 
sensors which measure Nernst potential at zero current. 
Other one is conductometric sensors that measure 
changes in impedance [24]. Response time varies 
milliseconds to minutes with respect to odor type. Good 
sensitivity and selectivity properties with related to their 
low cost, small size and long stable lifetimes are their 
advantages.  However when they are implemented by 
microfabrication, some problems with lifetimes, long 
term stability and multiplexing start to begin. [25] 
    Nowadays nanotechnology is an other improving 
technology in the sensor era. Nano structures like 
nanoparticles, nanotubes, and nanobelts have significant 
properties to be a chemical sensing element. The 
properties of small size and high surface to volume ratio, 
supplies this materials have rapid response time and high 
selectivity. [5] There are some interesting examples in 
the literature. These are; a palladium based 
chemoresistor using electrochemically deposited 
palladium nano wires for hydrogen sensing [26]; single-
walled carbon nanotubes (SWNTs) chemoresistors for 
NO2 and NH3 sensing [27] and tin-oxide nanobelts 
chemoresistors for DMMP (nerve gas simulant) sensing 
[28]. Disadvantages are difficultness of array fabrication 
and multiplexing of these sensors. But technology is 
very recent, and probably these disadvantages can be 
canceled soon. [5] 
    There are also biosensing techniques for odor 
detection. These techniques use protein or enzymes, 
which are sensitive to odor particles, as a sensing 
material and used above expressed techniques to identify 
odor. [29,30,31] 
    An other important issue about detection is drift effect 
and drift correction. Drift effect means sensor response 
to an odor may change over a period of time. There are 
two main types of drift effect long term drift effect and 
short term drift effect.  Short time drift effect’s period is 
in terms of days or weeks and it can be solved by using a 
reference gas and it is compensated by reference gas 
values from other sensor measurements [4]. Long term 
drift’s period is in terms of months or years [32]. It is 
difficult to model this phenomenon.  
    Taking large amount of sample within short period of 
time; is other problem. Then a memory effect occurs and 
samples are influenced by the previous samples. There 
should be put enough time (approx. 3 minutes) to permit 
sensors go to steady state value. [4] 
 
3 - Recognition of Odor  
    Odor detection poses a major problem in practice in-
and-of-itself: While a standard gas sensor measures the 
concentration of one gas only, an odor sensor has to 

WSEAS TRANSACTIONS on SYSTEMS Ahmet Kuzu, Seta Bogosyan and Metin Gokasan

ISSN: 1109-2777 613 Issue 6, Volume 7, June 2008



detect more than one gas, which are the components of 
the odor, also known as odorants. Odor detection 
involves the measurement of several different gas 
concentrations, evaluation of these concentrations via a 
classification method to determine if the combination is 
an odor and finally, a decision process which concludes 
that the given concentration corresponds to a given odor.   
    The biggest problem of recognition of the odor is 
determining the relationship between independent 
measurements. [33] This multivariable process can be 
done by two major view. One view uses statistical 
methods, and other one uses heuristic methods. [33]. 
Although there are lots of statistical methods can be used 
in this problem we will explain most used ones. [4] 
    First of them is Multiple Linear Regression (MLR). 
This technique uses independent variables to predict the 
dependent variable by using least squares fit of the data 
to a function of the following form. [4] 
 

njnjijijjjjjsj xbxbxbxbc +++++= KK2211   (1) 
 
where bij are the partial regression coefficients, the 
discrepancy between the observed and calculated values 
is described by the residual e, xij is the sensor output and 
predicted component concentration values csj. In this 
case independent variables are sensor measurements. 
Our aim is to calculate the regression coefficients for csj 
as close to the real component concentration values [4]. 
Detailed description of the MLR has been outlined in 
[34]. however, we should say that it is mentioned, this 
method has some drawbacks at the sensitivity to noise, 
and the treatment of co-linearity in the gas sensing array. 
[4, 34] 
    Other statistical technique is Partial Least Squares 
(PLS). This technique gets its basics from MLR and 
principal component analysis. Instead of representing 
between relation of regression coefficient between 
sensor outputs (X = {x1j, x2j, . . . , xij}) and predicted 
component concentration values (csj) as MLR a new 
function is used which contains variables W, P, and csj . 
W is the set of coefficient weights and P is a set of 
loadings to describe the relationship between the 
variables. Much in the same way as a mean value gains 
precision as the more measurements are made. [4]  
However PLS gives more precise solution. Because in 
MLR, X should be orthogonal. However in PLS it is not 
needed, and it can also contain partly same information, 
because PLS algorithm extracts latent structures in the 
data which have the character of weighted averages. The 
amount of collinear variables included in the calculations 
improves the precision of latent structure. [4,35] 
    Third statistical technique is Cluster Analysis (CA) 
whose purpose is finding natural grouping in the 
individual observations. Cluster Analysis can be realize 

by different ways. Usage of both agglomerative 
algorithms and divisive algorithms are used. [36]. 
Agglomerative algorithms start from many groups and 
join them with neighbor groups and make larger groups 
and divisive algorithms is the opposite of agglomerative 
algorithms, they start from one big group and divide 
them into small groups. [4] 
    Principal Component Analysis (PCA) is the last 
statistical technique express in this paper. It performs a 
principal component or eigenvector analysis of data and 
projects the observations into a new co-ordinate system. 
The most advantageous property of PCA is it describe 
the major trend in data reduces the size of data. [4] This 
property of PCA also supplies it to be used as a 
preprocessing technique. PCA is often used as input of 
non-linear type classification algorithms [37]. 
    Despite those statistical algorithms as mentioned 
before there also exist heuristic algorithms. Artificial 
Neural Networks (ANN), which model human neural 
system, is the most common used pattern recognition 
techniques in heuristic world. They are also the most 
commonly used algorithms for classifying odor sensor 
arrays output. In the literature there are lots of example 
of using Artificial Neural Networks with eNoses like 
detecting of odor of coffees [38], odor of wines [39], 
odor of  other food sources [40, 41], odor of toxicity for 
medical applications [15_42]. One of their advantageous 
is that they permit to use different type of sensors, which 
supplies using more selective more expensive sensors 
with less selective less expensive sensors. Other 
advantageous of them is that after training process, their 
recognition process occur rapidly and efficiently [4]. 
Detailed explanation of the ANNs can be found from the 
[42]. 
    Other heuristic techniques are fuzzy based techniques. 
The principle of the fuzzy logic is enabling machines to 
deal with human linguistic terms in order to describe 
data that may not be exact or crisp. Fuzzy algorithms are 
generally built by four blocks called fuzzification block, 
fuzzy inference block, rule base block and 
defuzzification block. In fuzzification block sensor 
measurements are converted to linguistic terms like very 
low concentration, low concentration, medium 
concentration, high concentration, very high 
concentration with some membership weights like 
sensor A measures 3.5V that means 0.8 high 
concentration 0.2 medium concentration. Moreover in 
rule based block there are some if then cases like if 
sensor A says low concentration and sensor B says high 
then odor is red wine. In inference block rules in rule 
base block is processed with the inputs of outputs of 
fuzzification block by using fuzz logic. Finally 
defuzzification block again converts fuzzy items to real 
values like 10ppm red wine. Fuzzy algorithms are used 
in several types of classifying systems. It is also used for 
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olfactory classifying; for instance entire odor recognition 
architecture called a “Fuzzy logic-based Recognizer of 
Olfactory Signals” (FROS) was presented in the 
literature. [43] 
    In the following part of this study, this problem will 
be addressed in terms of the detection and tracking of a 
single odorant, thereby reducing the problem to plume 
source localization. Although the problem complexity is 
reduced to a certain extent with the consideration of a 
“plume” as opposed to an “odor”, complications still 
exist due to the stochastic nature of the problem. To 
address these issues approaches such as Process Query 
Systems (PQS) have been developed for the evaluation 
of binary data to decide whether the data is worthy of 
consideration as well as other resulting approaches, such 
as Factor 10, which increase the probability from 0 to 1 
after a certain threshold is passed, and BAGEG which 
proposes a transition regime as given in Figure 1 [1].  
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Figure 1: BAGEG vs. Factor10 Concentration to 
Probability Curves 
 
3 - Modeling of Plume Dynamics  
Plume dynamics models are based on two major 
modeling approaches: Gaussian based models, and 
numerical models. Both approaches are based on the 
Navier-Stokes Equation given below [45, 46]: 
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where represents wind speed field,  represents 
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represents the Reynold number. 
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    This equation has no analytical solution under natural 
wind effects, thus solutions are sought, either under 
simplified boundary conditions, or by using numerical 
models. The numerical model approach solves the 

Navier-Stokes Equation using Computational Fluid 
Dynamics (CFD): In numerical models the system is 
divided into individual cells and instead of closed-form 
solutions, equations are written and solved for each cell 
and time interval. The technique has the potential of 
providing high resolution solutions, but at the expense of 
high memory requirements and high computational 
complexity. [1] 
     The Gaussian based models involve simplified 
boundary conditions. One such example can be given as 
bellow; 
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     where and are diffusion constants; xD yD α  

represents linear wind velocity in x direction and β  
represents linear wind velocity in y direction. The 
solution of this differential equation is the following [3]: 
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     If diffusion is uniform (anisotropic diffusion) in x and 
y direction, then yx DDD == , which leads to 
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     A major assumption is made here based on 
environmental engineering concept, with the 
consideration of a plume’s limits being within the 4σ  
portion of the material, or in other words, in the portion 
that contains the 95% of the material. Sensor readings 
are considered meaningless beyond this point [3]. Hence, 
in a wind-free environment, the biggest possible 
distance, L can be given as below: 
 

DtL 244 == σ     (6) 
 
     Increased constraints give rise to more simplified 
models. By neglecting wind effects, the following 
solution becomes acceptable as an analytical solution for 
Fick´s 2nd law [47]: 
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     where C: dispersed gas amount,  CΓ : gas amount at 
source,  d: distance from source,  D: diffusion constant.  
     Some studies, such as [48,49] use the relative 
dispersion model of the odor (demonstrating decreasing 
concentration with increasing radius), instead of the time 
model of the odor. This results in the elimination of the 
exponential term and introduction of some curves 
approximating the physics. This model introduces a 
certain amount of unreliability, but since the more 
realistic model also considers no wind effect, simplicity 
offered by the new assumption overweighs the provided 
level of accuracy. One such model is given below along 
with the corresponding assumptions:  
 
Assumption 1: The environment is uniform 
Assumption 2: The plume source is assumed to have 
constant strength  
 
     The following equation can be given as an example: 
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     where  represents t-th sample of i-th sensor, iR

iγ represents gain factor, represents k-th source 

intensity, 
kC

kρ represents position of the k-th source, 

represents position of sensor, ir α  represents plume 

attenuation parameter, iω  represents background noise 

which satisfies . For single source K=1 and 
 

),( 2σμN
CCk =

4 - Problem Statement 
     Detection and tracking of odor can be performed 
based on 4 different combinations of mobile or 
stationary sensors or targets. The problem assumes its 
simplest form for the detection of a fixed odor source 
with mobile sensors; i.e. by mounting a minimum of two 
odor sensors onto a mobile robot [50,51,52] The robot 
moves left, right, or straight based on the direction of the 
odor and when no odor is sensed, it zig-zags in the 
environment searching for the odor [53]. 
     In the case of multiple robots, the robots 
communicate and share the data with one another, hence 
shortening the duration of the detection/tracking process. 
In such multirobot systems, spiral robot trajectories are 
also proposed to reduce the wind effect [54,55]. 
     When considering mobile sensors and mobile odor 
sources, the odor source can be treated as fixed if the 
velocity of the mobile sensors is higher than that of the 
dispersion rate of the odor; however, the inverse problem 
must be solved otherwise.  

     The solution is slightly more complicated with fixed 
sensors, in which case the sensors must perform data 
fusion to localize the odor. This requires the solution of 
the inverse problem [3]. The inverse problem can be 
avoided with the use of a very high number of sensors, 
but this approach may not always be practical. However, 
in the case of mobile odor sources, solving the inverse 
problem becomes unavoidable, and might require 
tracking other sources with the use of algorithms 
developed for i.e. seismic, passive infra red, sound 
sensors etc.  [2]. 
 
5 – Localization Algorithms  
The simplest method to estimate location is by using 
weighted averages. As indicated by all models, sensors 
far from the odor source sense the odor at lower levels. 
This implies that the odor source localization can be 
performed to some extent by taking the weighted 
product of the sensed odor amount and the 
corresponding coordinates. It is apparent that resolution 
will improve with increased number of sensors. It can 
also be said that, although not very feasible for fixed 
sensor systems, the algorithm may be considered simple 
and fast for systems using multiple mobile sensors. The 
algorithm will give rise to a large initial error with both 
sensor types, but the error will continuously get smaller 
as mobile sensors move towards the odor source. 
     Triangulation method is the next in simplicity in 
terms of computational complexity. Considering the 
system in Figure 2 and taking equation (8) for α =2, and 
by organizing sensor distances on one side of the 
equation and ignoring the noise, iω , the following 3 
equations are obtained [49]. 
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     It is apparent that an analytical solution exists for the 
solution of the above equations for the 3 unknown 
coordinates.  
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Figure 2: Triangulation geometric representation [49] 
 
 
     The least squares method (LSM) is a slightly more 
complicated approach than direct triangulation [48]. The 
LSM version of the model given by equation (8), with 
the output equation is given below:  
 

i
i

ii
ik

iti d
C

r
CR ωγω

ρ
γ +=+

−
= 22,    (12) 

 

     where 22 )()( sisii yyxxd −+−=  represents the 
Euclidean distance between the node and the plume 
source. For simplification )1,0(~/)( Niiii σμωζ −=   
     The main difference offered in this method is that the 
noise, iω  neglected in the direct triangulation method is 
now to be taken into consideration and the squared error 
is to be minimized by solving the nonlinear least square 
estimation problem, hence yielding a higher accuracy 
solution than that provided by triangulation.    
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     where is estimated source location and )ˆ,ˆ( ss yx iz is 
the computed mean of M measurements at sensor i 
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     Another popular estimation approach related with this 
topic is Maximum Likelihood Estimation (MLE). Before 
discussing the MLE technique, let’s model the system 
using Equation (12). 
     Then, it can be said that 
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     And by defining the following matrices, 
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     Then the model can be expressed with the following 
equation. 
 

ζ+=GDCZ       (20) 
 
     At this point, let’s apply the Maximum Likelihood 
Method. The Joint Probability Density Function can be 
formulated as [48] 
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     where θ  represents the estimated source position ρ , 
and its log likelihood function of θ  is 
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     The Maximum Likelihood Parameter Estimation of 
the θ  can be evaluated by minimizing  
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     Hence, the accurate position of the odor source can be 
estimated using the following expressions:  
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     Moreover, there is the Process Query System (PQS) 
technique, which is based on solving the inverse 
problem. The method developed by Dartmouth 
University has been used by Nofsinger (from the same 
university) to solve the inverse problem of plume source 
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localization by using this framework. Nofsinger chooses 
a model which is different from the others previously 
discussed in this article. The study uses the concept of 
binary sensors, which means that the sensor gives true or 
false as output; i.e.  it smells odor or not, respectively. 
The system focuses on the state transition of the sensors, 
and makes an event at every state transition. The 
algorithm uses this information in a probabilistic way. 
For instance, let P(A) be the probability of an odor 
existing at sensor A, and P(B) , the probability of an 
odor existing at sensor B near sensor A. A forward 
diffusion solution can be defined easily, if we know that 
A is released, then P(B) can be defined as [3] 
 

)|( ABP      (25) 
 
     In the same way, the inverse probability can be 
calculated using Bayes Rule as following  
 

)(
)()|()|(

BP
APABPBAP =    (26) 

 
     The probabilities are calculated reverse in time;hence, 
the estimation of the odor  location leads to the most 
probable source location. The use of binary sensors in 
this algorithm also reduces the time required for data 
conversion [3]  
 
 
6 - Case Study  
     The case study uses the weighted averages approach 
to locate and track a mobile odor target. In the 
simulation, a hub unit and randomly deployed fifty 
sensor modules are considered in a 10 by 10 square 
meter area. The area is assumed to have no air draft, no 
boundaries, hence no reflection effects. The environment 
temperature and the velocity of sound throughout the 
simulations are assumed to be constant. It is also 
assumed that the 2 humans (one carrying the odor 
source) are emitting sound waves periodically. 
     In this study, it is also assumed that the location of 
each sensor module and hub unit is known. Each module 
in the 50-sensor network consists of an odor sensor, 
microphone, accelerometer and pressure sensor. In these 
simulations, due to the similarities of their physics, 
sound sensors and accelerometers are assumed to have 
the same model. The total simulation time is 50 seconds, 
with the sampling times for sound/pressure/ 
accelerometers taken as 100 μsec and that of odor 
sensors (with a slower response) taken as 1 sec. In these 
results, data fusion is performed using a Least Square 
Estimation algorithm, which fuses all motion signals 
separately combining data coming from sensors of the 

same type. Moreover odor signals are fused with 
weighted average algorithm. However, a decision-
making process which evaluates odor and motion signals 
together is also performed in determining the motion of 
the “mobile” explosive and separating it from the 
trajectory of the unarmed human. 
     The results presents the performance of the odor 
sensor based algorithm, which is used to distinguish the 
explosive carrying human from the innocent one.  In the 
figures, the *’s indicate the location of the sensor 
modules; the light grey triangles represent the estimated 
trajectory of the innocent human and dark grey triangles 
represent that of the explosive-carrying human; finally 
the black circles indicate the trajectory of the “mobile” 
explosive estimated based on data collected from the 
odor sensors only. It is easily seen that odor based 
tracking of mobile targets is not adequate just itself. 
However when it is supported with other techniques, it 
supplies separating intruder from the public. Figure 3(a) 
represents the performance of the algorithm fusing data 
from odor sensors with the other sensors in case of 
spinal paths. It can be noted that the algorithm detects 
and tracks the intruder quite well.  The performance of 
the algorithm is also observed to be adequate in Figure 
3(b), where the two humans are walking in parallel, and 
in Figure 3(c) and 3(d), where the paths cross. 
  
7 - Conclusions 
    Although it is well known that odor source 
localization is very important topic in security area, there 
haven’t been a vital improvement in that topic yet. The 
reason is not just the complexity of dynamic equations 
of odor. The reason is the high sensitivity of the system 
on wind. Especially in outdoor applications wind causes 
big problems. Moreover, if the odor become mobile, the 
problem is grown dramatically. If also sensors become 
mobile and they move faster than odor source, the 
problem can be solve, but then mobile sensors make 
system consume more power. By looking the odor 
source localization problem from these sides, it is still a 
huge problem ,waiting to be solved, of the comunity.  
     In spite of many technical difficulties, some of which 
were summarized in this paper, it is the authors’ belief 
that odor source localization techniques will find 
increased applications, particularly in relation to critical 
operations involving security/surveilance in public 
places with enclosed and air-controlled space, such as 
airports. Some potential applications subject to ongoing 
research are  detection of explosives, drugs, or various 
other types of target tracking. It is also possible to forsee 
earlier applications of odor tracking, such as odor source 
voting, and mostly in combination with other more 
mature tracking types, such as motion tracking, sound 
tracking, seismic tracking etc. 
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Figure 3: Simulation of the system for various 
trajectories  
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