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Abstract: - Demand forecasting; which sound basis for decision making process, is among the key activities that 
directly affect the supply chain performance. As the demand pattern varies from system to system, determination of the 
appropriate forecasting model that best fits the demand pattern is a hard decision in management of supply chains. The 
whiplash effect can be express as the variability of the demand information between stages of the supply chain and the 
increase of this variability as the information moves upstream through the chain. The usage of proper demand 
forecasting model that is adequate for the demand pattern is an important step for smoothing this undesirable 
variability. This paper evaluates the effects of fuzzy linear regression, fuzzy time series and fuzzy grey GM (1,1) 
forecasting models on supply chain performance quantifying the demand variability (i.e. whiplash) through the stages 
of a near beer game  supply chain simulation model expanded with fuzzy parameters.   
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1   Introduction 
Supply chain (Sc) models are dynamic complex systems 
including many sophisticated activities such as constant 
on time information, scheduling, production, 
distribution, services and decision making processes 
which are all required for satisfying the customer 
demand. A simple definition for these complex systems 
can be express as “the network of organizations that are 
involved, through upstream and downstream linkages, in 
the different process and activities that produce value in 
the form of products and services in the hand of ultimate 
customer” [1]. Although the information flow in Sc 
systems consists of cumulative data about costs 
parameters, production activities, inventory systems and 
levels, logistic activities and many other related 
processes; bethinking of the definition exposes that the 
performance of a successful Sc system concerns mostly 
with accurate and appropriate demand information as 
this vital data influences all decision making processes 
of Sc [2].  
    A well-known phenomenon of Sc systems is the 
variability of the demand information between the stages 
of the supply chain (i.e. the whiplash or bullwhip effect 
(WE).) This variability increases as the demand data 
moves upstream from the customer to the other stages of 
the SC system engendering undesirable excess inventory 
levels, defective labor force, cost increases, overload 
errors in production activities and etc. Forrester [3, 4] 
with a simple Sc simulation consisted of retailer, 
wholesaler, distributor and factory levels, discovered the 

existence of WE as ‘demand amplification’ in Sc model. 
He argued about the possible causes and suggested same 
ideas to control the WE. He emphasized on the decision 
making process in each phase of SC and betrayed that 
this process could be the main reason the demand 
amplification through the chain from the retailer to the 
factory level [2]. He also denoted that, time lags for 
clerical work, purchasing and transportation, lead times 
and specific factory capability could be other likely 
reasons of WE. Like Forrester, Sterman [5, 6] also 
focused on the existence and causes of WE. He used an 
experimental Sc simulation that simulate the beer 
distribution in a simple Sc consists of four echelons; 
retailer, wholesaler, distributor, factory which is then 
became a well-known Sc simulation model; “Beer 
Distribution Game”, widely used for teaching the 
behavior, concept and structure of Sc. The model was so 
simple but despite to its simplicity, it successfully 
showed the impact of the decision process in echelon on 
the demand variability. Main objective is to govern each 
echelon achieving the desired inventory and pipeline 
levels minimizing the total cost including inventory and 
shortage costs. Fig.1 illustrates the general system 
structure of a beer game [7]. Sterman apprised that 
inaccurate judgments made by the participants and the 
adoption of these judgments to the Sc system are the 
main reason of this phenomenon. Larsen et.al [8]; using 
a Sterman based beer game model, showed that the 
structure of a production-distribution chain produce 
broad variety of dynamic behaviors. In the study, 
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different types of behaviors are summarized with 
Lypunov exponents. There were two important 
assumptions in the model; i) the parameters of the 
decision rule is constant, (i.e, remain the same through 
the entire solution), ii) decisions in each stage 
constituted under the information available in each stage. 
After showing the effect of inventory control policies on 
dynamics and costs, Larsen et.al. concluded that “a 
sophisticated management information system” and 
reducing time lags are important keys for reduction in 
demand amplification and costs. Also they claimed that 
“interlocking” common parameters in ordering policies 
might cause high cost and intricacy dynamics.  
 

 
Fig.1. The general system structure of a beer game.  

 
Lee et.al. [9, 10, 11, 12] declared causes of WE as: price 
fluctuations, rationing game,  order batching, lead times 
and demand forecast updating; which is also the main 
scope of this paper. Baganha et.al. [13], Graves [14], 
Drezner et.al [15], Chen et.al.[16] and Li et.al. [17] also 
studied WE from the perspective of information sharing 
and demand forecasting / updating.  
     Accurate demand forecasting is one of the major 
minimization tools for WE but, finding the adequate 
model for the demand pattern is snarl [2]. Though past 
the studies about forecasting bring to light that, under 
relatively few data information and uncertainties (just 
like the situation in many Sc systems) the fuzzy 
forecasting models such as fuzzy time series (FTs) [18, 
19, 20, 21, 22, 23], fuzzy linear regression (FR) [24, 25, 
26], fuzzy grey GM(1,1) (FGG) [27] and other applied 
forecasting models [28, 29] performed successfully,  not 
much attention is paid on these systematic for their usage 
in Sc management. This paper focuses on the effects of 
selected fuzzy forecasting models on the Sc performance 
via demand variability in the system. 
     The rest of this paper is organized as follow. In 

section 2, FR, FTs and FGG forecasting models are 
introduced. Section 3 deals with the quantification of 
WE for evaluation of Sc performance. In sections 4 and 
5 proposed Sc simulation model is discussed and the 
effects of selected forecasting models on Sc performance 
are examined. Finally in section 6 research findings and 
conclusions are presented.  
 
 
2   FR, FTs, FGG Forecasting Models 
 
 
2.1 FR Forecasting Model 
Linear regression; which shows the relation between 
response or dependent variable y  and independent or 
explanatory variable x , can be formulate considering the 
relation of  y  to x  as a linear function of parameters   
with  XxfY θ== )(   where θ  is the vector of 
coefficients and X is the matrix of independent variable 
[2]. The application of linear regression model is suitable 
for the systems in which the data sets observed are 
distributed according to a statistical model (i.e. 
unobserved error term is mutually independent and 
identically distributed). But generally, fitting the demand 
pattern of a real Sc to a specific statistical distribution is 
not possible. The FR model introduced by Tanaka et al. 
[24, 25] in which “deviations reflect the vagueness of the 
system structure expressed by the fuzzy parameters of 
the regression model” (i.e. possibilistic) is suitable for 
the declared demand patterns and basically can be 
formulate as: 
 
                                                                                       (1) 
 
where kc  is the central value and ks  is the spread value, 
of the kth fuzzy coefficient; ( )kkk scA ,= , usually 
presented as a triangular fuzzy number (TFN). And this 
representation is fact that relaxes the crisp linear 
regression model. Using fuzzy triangular membership 
function for kA , the minimum fuzziness for kY  can be 
maintained with the following linear programming (LP) 
model which minimizes the total spread for the fuzzy 
output parameter [2, 25, 30]. 
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equation which defines the degree of belonging of 
observations (that characterized by h )         to         .    
 
                    nihyY ii ...,3,2,1,)( =≥µ                   (3) 

 
 

2.2 FTs Forecasting Model 
For dynamic systems like Scs, when historical demand 
data that will use to calculate the desirable forecast value 
are linguistic values and (or) are in small amounts, fuzzy 
time series model best fit the aspect [21, 22, 23]. Song 
et.al. [18, 19, 20]; fuzzifying  the enrollments of the 
University of Alabama, used fuzzy time series in 
forecasting problems and proposed a first-order time-
variant fuzzy time series with first-order time-invariant 
fuzzy time series for the solution of the forecasting 
problems. Later Song et.al. [20] introduced a new FTs 
model and betrayed that best results are held by applying 
neural network for defuzzifying data. Wang [21], Li 
et.al.[22] and Hwang et.al. [31] also successfully used 
FTs forecasting model. 
     In this paper Hwang’s FTs forecasting models is 
selected and used for FTs demand forecasting. The 
model can be summarized as follow: 

i. First, the variation between two continuous 
historical data is to be calculated and minimum / 
maximum increases (i.e. minD / maxD ) are to be 
determined,  

ii. Next step is to define the universe discourse; 
dU , with following equation using minD  and maxD . 

 
                    ]D , [ 2max1min DDDU d +−=              (4) 
 
where 1D  and 2D  are positive values that fits for 
separating dU  into equal lengths. 
iii. Then fuzzy sets on  dU  are to be defined (i.e. 

defining fuzzy time series ( )(tF ) and variation data is 
to be fuzzified. Defining  )(tF  as  
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where the memberships zip  are 10 ≤≤ zip . The fuzzy 
sets A of U  then can be represented as; 
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Fuzzifications of variations are determined according to  

iu  that they fit.   

iv. And the final step includes composing the 
relation matrix; )(tR , which is governed by operation 
and criterion matrixes (i.e. )( ),( tZtO w ) and 
defuzzifying the calculated variation [20,23] which will 
be used for estimating the forthcoming value using the 
relation of the chance value gathered from relation 
matrix . In this step the windows basis; w , have to be 
determined which shows the number of periods of 
variations that will be used for forecasting. For period t , 

)( ),( tZtO w  and )(tR  is defined as follow [31]:  
 

[ ]nZZZtFtZ . ..... ,  ,   Z,)1()( 321=−=       (7) 
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where mj ≤≤1  and  , x jijij ZOR = wi ≤≤1  . Then 
the estimated variation will be determined with the 
following equality. 

 
                                                                       (10) 
 

Where )( ijj RMaxr = ; wi 2,...., ,1=  and 

mj ....., 2, 1,= . The forecast value for the period t  is 
calculated by defuzzification of )(tF and adding this 
value to the actual data of the period 1−t  and this 
operation concludes the FTs forecasting method. 

 
 

ky kY























=






















−
−

=

wmww

m

m

w

OOO

OOO
OOO

tF
tF

tO

     ...    
.        .       .      .   
.        .       .      .   

     ...    
     ...    

1)-w-F(t
.     
.     

)3(
)2(

)(

21

22221

11211























=

mm

mm

mm

ZOZOZO

ZOZOZO
ZOZOZO

tR

x     ...  x  1x
.        .       .      .   
.        .       .      .   

x     ...  x  1x
x     ...  x  1x

)(

1111211

1111211

1111211























=

wmww

m

m

RRR

RRR
RRR

tR

     ...    
.        .       .      .   
.        .       .      .   

     ...    
     ...    

)(

21

22221

11211

[ ]mrrrtF ....... , ,)( 21=

WSEAS TRANSACTIONS on SYSTEMS Hakan Tozan

ISSN: 1109-2777 602 Issue 5, Volume 7, May 2008



2.2 FGG Forecasting Model 
The grey system theory introduced by Deng [32, 33] can 
simply be summarized as a methodology that concerns 
with the systems comprising uncertainties and lack of  
sufficient amount of information; in which, the term 
‘grey’ indicates the system information that lies between 
the clearly and certainly known ones  and the unknown 
part of the system [2].The discrete time sequence data is 
used to expose a regular differential equation with the 
accumulated generating operation (AGO); which 
establishes a regularity to on hand to data series, and 
inverse accumulated generic operation (IAGO). In grey 
differential model GM (n,m), terms n and m represents 
the order of ordinary differential equation and the 
number of grey variable respectively, defining the order 
of AGO and IAGO. Grey forecasting which is one of the 
most important part of the grey system theory, can 
basically be define as the use of past or current data of a 
system to develop a grey model for predicting the future 
trend of the system output (demand, time, ect.). As 
increases in n and m also increases the computation time 
exponentially causing likely correctness defects, most 
widely use model in grey system theory is GM (1,1) 
which has same important advantages those can be 
summarized as the usage for any kind of data 
distribution including small data sets and less 
requirement for computation [2]. The computation 
system structure of the Grey GM (1,1) model which also 
forms a base for FGG forecasting model can be 
summarized as follow [27]. 
     Let 0D show on hand data collected from the system 
as; 
 
                                                                                     (11)                           
 
where n represents the number of data. The generated 
AGO series of 0D ; 1D , then can be denoted as  
 
                                                                                     (12) 
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, ni ,...,2,1=∀ . Composing a 

differential equation for 
1D  as in equation (13) and 

depicting differential equation as a discrete time series 
with one unit sampling interval the relation described in 
equation (14) can be constructed. 
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                                                              , 1≥∀t           (14)          
 

where a  and b  denotes the unknown developed 
coefficient and the unknown grey control variable 
respectively. For 1≥∀t  equation (14) is equal to 0

1+tD  
and for nt ....,3 ,2 ,1=  equation (13) can be redesign in a 
matrix form as in equation (16) by setting the second 
part of the first order grey model to 1

averageD ; 
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After applying least square method, solutions of a and 
b  can be obtained and using this two parameters 
equation (13) can also be solved and output forecast 
value can be determined with the following equations. 
 
                                                                                    (17) 
 
                                                                                    (18) 
 
where 1

1+′tD  is the estimated cumulated value of 1
1+tD  

and 0
1+′tD  is the forecast value for 1≥∀t . 

     In addition to the facts defined for the usage of grey 
systems and grey forecasting model above; if the data 
sets collected from the system are linguistic, FGG 
forecasting models may perform successfully. The FGG 
forecasting model introduced by Tsaur [27]; which 
assumes data series collected from the system are 
symmetrical triangular fuzzy numbers (TFN), is very 
similar to the crisp one and can be explained with the 
following equations. The original data series collected 
from the model is:      
 
                                                                                     (19) 
 
where n is the number data collected from the system. 
And 1ˆ ′D ; the new fuzzy data sequence generated with 
AGO, can be shown with the following equation as:  
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where  1ˆ
kD ; nk ,...,2,1=∀ , is a symmetrical TFN with 

central and  spread values   ,
1

0∑
=

k

i
iD  

∑=
=∀

k

i is
1

0 k1,2,...,i    respectively. And the fuzzy 

GM(1,1) model is denoted as;  
 
                                                                        (21)  

 
where a is the developing coefficient and STFN b̂  
denotes the fuzzy grey input with the central value b  
and the spread value 1b  and the membership function for 
b̂  is constructed as follow. 
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By setting the sampling interval one unit as in crisp 
model               can be rewritten as 
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As the spread determines fuzziness; values of unknown 
variables 1b and  , ba  can be obtained from the solution 
of the following LP model with the objective function 
that minimizes the spread value of STFN b̂ . 
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After solving the LP problem; similar to the crisp grey 
GM(1,1) model, Tsaur suggested that estimated fuzzy 
number        with lower bound low

kD ,1ˆ  and upper bound 
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kD ,1ˆ ; ( )upr
k
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kk DDD ,1,11 ˆ,ˆˆ = , could be obtained. Finally 

the fuzzy forecast value for period k+1; 
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3   The Measuring Sc Performance with 
Quantified WE  
This study evaluates the Sc performance by quantifying 
the demand variability (i.e. WE) in various stages of the 
proposed Sc simulation defining WE as the ratio of 
demand variances of two consequent stages [16]. The 
smaller the WE the better the Sc performance will be.  
     Chen et al.[16]; assuming the customer demand in 
period t  to the retailer ( tD ) as random variables; 
defined tD  with the following equation. 
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whereµ and ρ denotes a non negativity constant and 
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indicates the relationship between demands 0=ρ  
betrays the independent identically distributed (i.d.d.) 
demand). The variance of tD  is emerged as  
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                                                                                     (32) 
 
As tq  at period t  can be negative (equation (32)) an 
important assumption is made as the “excess inventory is 
returned without cost” in Chen et.al. model. Using the 
estimates of lead time demand and standard deviation of 
the forecast in the period, Equation (32) can be rewritten 
as follow; 
 
                                                                                     (33) 
 
where L

tD̂  and L
tσ̂  represents the estimate of mean lead 

time and the estimate of standard deviations of L  period 
forecast error respectively and te  is the one period 
forecast error.. Using variance and covariance Dt  

)( tqVar can be determined with the following equation. 
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 where p is the number of observations.  
     Makui et.al. [34] proposed another approach for 
quantifying WE using Lyapunov exponent (LPE). 
Authors stated that LPE; which may use for 
quantification of the irregularities of non-linear system 
dynamics, may also be use for quantifying BWE for Cdi 
and nonCdi if LPE is sensed as a factor for expanding an 
error term of a system. The relation between 

)( sqVar and )(DVar can be stated as ; 
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where n denotes the number of observations for the 
calculation of  forecast value of demand average and 

sLt  is the lead time at stage s 
 
 
4 The Simulation Model 
In this study a near beer distribution game model is used; 
which is extended from the Paik’s [35] model with 
predetermined cost items (holding, setup / production), 
inventory restrictions, production restrictions and delay 
functions. The model proposed here, is simply a two 
staged Sc system consists of a retailer and a factory. Due 
to its common use and successful primed fuzzy 
functions; MatLab is the adjudicated simulation tool. 
Demand information in each period can be either crisp or 
fuzzy depending on the forecasting model that will be 
analyzed; similar to our previous model [2]. The model 
evaluates the Sc performance by computing the ratio of 
demand variances of consequent stages; i.e. 

1/
+iSiS VarDVarD  , where iSD  denotes the demand 

from stage S  to upstream stage 1+iS  (i.e 
frci ,,= where c, r, f represent customer, retailer, 

factory respectively). The cost, delay and factory 
production capacity parameters are variable and their 
values depend on the analyzer. The generic decision rule 
in each time period t  can be summarized with the 
following equation [2, 6]. 
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The ordering decision system of the beer game model is 
illustrated in Fig.2 [6, 35]. Simple exponential 
smoothing (EXS) model is used as a crisp forecasting 
technique for comparison. The formulation of EXS is as 
follow; 
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where tF  is the forecast value for period t , 1−tD  is 
observation of demand in period 1−t , 1−tF  is the 
calculated forecast value of the previous period 1−t  and 
α  is the smoothing constant; 0 < 1≤α .  
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       Fig.2. The ordering decision system of the beer game 
 
     The customer order received from retailer in period t  
is taken as a base for forecasting the forthcoming 
demand, and each time the order received, forecasting 
function update its structure according to the new 
demand information. After estimating the forthcoming 
demand; simulation model, using the decision rule in 
(37) and other parameters (i.e. cost, lead time, 
availability, demand pattern etc.), makes an ordering 
decision to upper echelon of Sc. And the ratio of 
variability between the customer orders, retailer orders 
and manufacturing decision of factory shows the 
performance of Sc system based on the selected 
forecasting model. The value of adjustment parameters 
used for correction of inventory and supply line is the 
same as Sterman’s and Paik’s model.  
     The formulation of system structure in each stage is 
as follow; 
 
 
                                                                                     (39) 
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where, OD is the order decision, FW  is the forecast 
value determined from the selected forecasting model, 
INV  and DINV are inventory and desired inventory, 
SA  and SD  are the supply line and desired supply line, 
OB   is the orders backlogged, IO  is the incoming 
orders, OS  and IS  are outgoing and incoming 
shipments, SC  is the safety constant, DL is the total 
delay in stage i  at period t . α  and β  represents the 
adjustment parameters for inventory and supply line 
respectively. 
 
 
5  Experiment   
The following figures in the next page illustrate 
randomly generated cD  (the same for all simulation 
runs), and calculated rD  and fD  values derived from 
the simulations using selected forecasting methods for a 
time horizon of 30 periods. And to reflect the response 
of Sc performance to the selected forecasting model, the 
calculated standard deviation values are given Table-1 
(variance values can also obtain using Table-1). In the 
simulations, the production capacity of factory is taken 
as 100 units per period and on hand inventory in each 
echelon at time zero is set to again 100 units. The set of 

cD  values for 30 periods; setD , are given below..   
 
       ={66.2297; 62.7269; 76.2016; 56.5420; 36.5401; 
47.0135; 1.0196 ; 59.4657; 52.3389; 38.1779; 36.9058; 
28.3868; 49.0454; 57.5869; 43.3928; 40.0020; 49.2804; 
46.5048; 30.8547; 75.8510; 58.8182; 75.6188; 40.0454; 
27.6257; 66.1530; 50.8240; 34.8758; 48.2174; 9.8230; 
71.6784}. 
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   Fig.3. The demand response to EXS forecasting   
…...........model (i.e. W.E.) 
 
    
 
 
 
 
 
 

 
   Fig.2. Demand response to FR forecasting model 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
   Fig.3. Demand response to FR forecasting model 
 
 
 
 
 
 
 

 
 
 

    

 Fig.2. Demand response to FR forecasting model 
 
 
 

 Table-1. Standard deviation values 
 

 
 

Forecasting Model 
 EXS FR FTs FGG 

cSd  18.24 18.24 18.24 18.24 

rSd  65.39 28.86 34.58 81.13 

fSd  33.28 29.42 23.8 44 
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6 Research Findings and Conclusion 
In this study the effects of selected fuzzy forecasting 
models; FR, FTs and FGG, on Sc performance are 
analyzed using computed demand variability as a ratio of 
variances of consequent stages (i.e.WE). For comparing 
the obtained results of the simulation using fuzzy 
forecasting, EXS forecasting model is chosen as a base 
crisp forecasting model. A simple numerical example is 
made using random generated demand data.   The results 
exposed that the fuzzy forecasting models used in the 
study; except FGG, quickly captured the demand pattern 
and considerably increased the performance of proposed 
Sc system decreasing demand variability and through the 
chain. Further researches can be made using fuzzy lead 
times as to more adapt the model to complex real-world 
Sc systems. 
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