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Abstract: We explain the set of rules behind of theLabViewtoolbox for bifurcation analysis of Filippov systems
denominatedSPTCont 1.0. This software can detect nonsmooth bifurcations inn-dimensional systems using
integration-free algorithms based on the evaluation of the vector fields on the discontinuity boundary (DB). In this
paper, we present the characteristic point sequences that the software detects to guarantee the existence of local
and global nonsmooth bifurcations in planar Filippov systems (n = 2). These sequences can be extended to three-
dimensional or higher dimension Filippov systems. Boolean-valued functions are used to formulate the conditions
of existence for each point defined in the sequences. Dynamics on DB and cycles are defined in function of the
set of points. The full catalog of codim 1 local and global bifurcations is used to define the characteristic point
sequence when the bifurcation parameter is varied. Finally, an illustrative example is analyzed using step-by-step
routines ofSPTCont 1.0.
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1 Introduction
Nonsmooth dynamics can be found in many physi-
cal systems such as electric motors, power convert-
ers, brakes, gears and joints. Switchings in electri-
cal systems [1], [2], impacting motion in mechanical
systems [3], [4], stick-slip motion in oscillators with
friction [5], [6] and hybrid dynamics in control sys-
tems [7] are being studied with nonsmooth dynamical
theory.

Nonsmooth characteristics were often neglected
in mathematical models due to their difficulties of
analysis and simulation. Actually, there is great in-
terest to understand nonsmooth effects to try to min-
imise undesirable consequences such as wear of com-
ponents, surface damage, fatigue failure and noise [8].
Many considerations based on bifurcations theory for
smooth systems are violated and many new phenom-
ena are observed such as sliding, crossing or grazing
bifurcations.

Figure 1(a) shows a basic example of nonsmooth
system. The undamped dry friction oscillator com-
prises a block resting on a belt, moving with velocity
v. The motion of block with massm along the belt
is opposed by a spring (with stiffnessk) connected to
a fixed support. The spring exerts a restoring force
on the block that is opposed by the friction force cre-
ated by the belt. This system can be modelled with the

Figure 1: Basic example of nonsmooth systems:(a). Un-
damped dry friction oscillator on a rotating belt.(b). Coulomb
friction model (H is the relative velocity).(c). Nonsmooth dy-
namics with sliding motion.

equationgiven in (1).

mẍ + kx = f sgn (v − ẋ) (1)

In an equivalent way, this system can be expressed
with the non-dimensionless system of first order
ODEs given by equation (2).

{
ẋ = y

ẏ = −x + f sgnH where H = (v − y)
(2)
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Figure2: Examples more complex of nonsmooth systems.(a). Friction oscillator with two masses,(b). Friction oscillator with three
masses,(c). Mechanical model with gravitational force,(d)., Pendulum-car model and(e). Friction oscillators with impact.

The Coulomb friction model is presented in fig-
ure 1(b)according to equation (3). When the velocity
of the block is less than the velocity of the belt the
friction is positive and constant and when the velocity
of the block is greater than that of the belt the friction
is negative.

F =
{

+f, y < v
−f, y > v

(3)

Systems where sliding motion is possible are
known as Filippov systems. In the simple Filippov
system presented in figure 1(a), the block will move
with the belt until the spring tension increases enough
to overcome the frictional force and then the block
will start to move again. These zones are known as
sliding zones due to the system forcing the motion to
slide along the surface before it can leave to join an-
other vector field. Examples of nonsmooth dynam-
ics with sliding motion are presented in figure 1(c).
When the sliding motion on the discontinuity bound-
ary (DB) is possible, the analysis is more compli-
cated. Moreover, the complexity can increase when
the number of elements with nonsmooth interaction
(as masses) is higher or when impacts motions are
possible. Examples of Filippov systems with more
complex models are presented in figure 2 [9], [7].

We explain the set of rules behind of theLabView
toolbox for bifurcation analysis of Filippov systems
denominatedSPTCont 1.0. The paper is organized
as follows. In section II we present the generalities
of SPTCont 1.0 while the concepts of Filippov sys-
tems and the SPT method are presented in section III.
Dynamics on DB and cycles in function of the char-
acteristic points are summarized in the section IV. In

the sections V and VI we present the characteristic
point sequences for representative local and global bi-
furcations, respectively. An illustrative example is de-
tailed in section VII. Finally, the conclusions and fu-
ture work are discussed in the section VIII.

2 Generalities of SPTCont 1.0

The number of specialized software in nonsmooth dy-
namics is reduced [10], [11]. In [12] and [6], they
are presented two toolboxes for analysis and continu-
ation of nonsmooth bifurcations in Filippov systems.
The platforms used in these toolboxes are Matlab and
AUTO97.

A LabView toolbox was proposed in [13] for bi-
furcation analysis of Filippov systems denominated
SPTCont 1.0. LabView platform allows the devel-
opment of user interface with graphical controls and
indicators easily. Also, the fully object-oriented char-
acter of LabVIEW code allows functions reuse with-
out modifications.

SPTCont 1.0 toolbox is included in the
GAONDYSY software developed with language G
for analysis of non-smooth dynamical systems [14].
Many libraries of LabVIEW with functions of graph-
ics generation, mathematics and data analysis are used
too. SPTCont 1.0 uses integration-free algorithms
based on the evaluation of the vector fields on the
discontinuity boundary (DB). The routines apply the
classification of points and events on DB recently pro-
posed [15], [16], [17]. Local and global bifurcations
can be detected using the numerical methodSingular
Point Trackingor SPT.

This software can detect nonsmooth bifurcations
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Figure3: (a). SPTCont structure with integration-free algorithms,(b). Vector fields and discontinuity boundary (DB),(c). Angular
ranges in the analysis point on DB,(d)., Example of local dynamic(e). Example of global dynamic.

in n-dimensionalsystems using integration-free algo-
rithms based on the evaluation of the vector fields on
the discontinuity boundary (DB).

In the figure 3(a) we present the general structure
of theSPTCont 1.0. The input of the equations and
the parameters are managed for diferent windows us-
ing the same enviroment ofGAONDYSY [14]. In the
same way, the outpus are data of graphics have in-
dapendent windows. The graphical elements are pro-
vided by the LabVIEW package.

Depending on the Filippov system dimension
(2D, 3D, ...,nD) is executed a different SPT (Singular
Point Tracking) routine. In the case 2D, the disconti-
nuity boundary (DB) is a line, while in the case 3D the
DB is plane. Modules for continuation of non-smooth
bifuracations, detection of local and global bifurca-
tions and generation of phase portraits are integrated
to theSPTCont 1.0 toolbox.

Two principal advantages have the software in the
analysis of nonsmooth systems. First, the software
has educational and didactic subroutines for amateur
users. Second, the software has functions for speci-
alyzed users where the integration-free algorithms in
the SPT avoid the well know numerical problems of
these algorithms. If the integration is unavoidable, for
example in detection of global bifurcations, the SPT
method computes the initial condition of the simula-
tion to reduce the compute time. TheSPTCont 1.0
was proven with the catalog of local and global bifur-
cations that it was proposed recently in [18].

In the next section, Filippov systems are defined
and the SPT is explained. The set of rules behind of
SPTCont 1.0 toolbox are given in function of the
points defined usingBoolean-valued functionsB(.)

that returnTrue or False when their arguments are
evaluated. In these functions we use the logical con-
nectivesAND, ORandNOTdenoted by∧ , ∨ and¬,
respectively.

3 Filippov Systems and SPT method
Let{Fi(x), Fj(x),H(x)} be a set of equations that de-
fines the piecewise-smooth autonomous system (de-
nominated Filippov system) given by equation (4)
wherex ⊂ R2 andα ∈ R is the bifurcation parameter.

ẋ =
{

Fi(x, α) if x ∈ Zi

Fj(x, α) if x ∈ Zj

Σ =
{

x ∈ R2 : H(x, α) = 0
}

Zi =
{

x ∈ R2 : H(x, α) < 0
}

Zj =
{

x ∈ R2 : H(x, α) > 0
}

(4)

Filippov systemscan be described by a set of first-
order ordinary differential equations with a discontin-
uous right-hand side [19]. The vector fieldsFi andFj

are sufficiently smooth vector functions andZi and
Zj are Smooth Zones. The discontinuity boundary,
(DB) denoted byΣ, is defined by the scalar function
H(x). The sign ofH(x) indicates a smooth zone that
is bounded by theDB (figure 3(b)).

In the last years, the dynamical and bifurcation
behavior of Filippov systems has been studied widely
[20], [18], [21], [22], [23], [24]. In Filippov systems,
the sliding motion is possible. A lot of papers have
been restricted to systems without sliding motion be-
cause the analysis is more simplified [18].

An analysis pointxb on theDB (xb ∈ Σ) is de-
fined and the normal vector (Hn) and tangent vector
(Ht) to the DB inxb are computed. In this point, the
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Figure4: (a). Non-singular and singular points on DB.(b). to (h). Examples of typical combinations of points on DB.

vector fieldsFi andFj are evaluated. With reference
to Ht, the angles of vector fieldsϕi andϕj in anti-
clockwise direction are computed. These angles are
given by (5).

ϕ(i,j) =
{

θ(i,j) if F(i,j)y > 0
2π − θ(i,j) if F(i,j)y < 0

(5)

whereF(i,j)y is the y-component ofFi or Fj andθ(i,j)

is given by:

θ(i,j) = cos−1

(〈
Ht, F(i,j)

〉

|Ht|
∣∣F(i,j)

∣∣

)
(6)

Theprojections of each vector field in the vectorsHt

and Hn are defined in this way:F
n
→
i = 〈Hn, Fi〉,

F
t→

i = 〈Ht, Fi〉, F
n
→
j = 〈Hn, Fj〉 andF

t→
j = 〈Ht, Fj〉,

where〈· · · , · · ·〉 denotes a scalar product.
Let Φa(x, t) and Φb(x, t) be the flows that take

initial conditionsx in Fi andFj , respectively (figure
3(e)).

{
∂
∂tΦa (x, t) = Fi (Φa (x, t)) Φa (x, 0) = x
∂
∂tΦb (x, t) = Fj (Φb (x, t)) Φb (x, 0) = x

(7)

The solutions of (4) are uniquely defined forward
and backward in time. However, the system (4) is not
invertible because the orbits can overlap on DB with
sliding [18](figure 3(d)). In sliding situations, a con-
vex combinationG(x) of the vectorsFi andFj is de-
fined as theFilippov Method[25]. TheG vector can
be written as:

G (x) = λFi (x) + (1− λ) Fj (x) (8)

where,

λ =
〈Ht(x), Fj(x)〉

〈Ht(x), Fj(x)− Fi(x)〉 (9)

Theprojection ofG(x) in the vectorsHt andHn are:

G
t→ = 〈Ht, G〉 andG

n
→ = 〈Hn, G〉. UsingG

t→ are
defined the Boolean-valued functions :̂ML andM̂R.
The sliding motion is toward the right if̂MR is TRUE
and the sliding motion is toward the left if̂ML is
TRUE(equation (10)).





MR = B
(
G

t→ (xb) > 0
)

ML = B
(
G

t→ (xb) < 0
) (10)

Knowledge of the point types on DB is important to
define state portraitsof (4). Any homeomorphism
h : R2 → R2 should map the sliding and crossing
segments of the original system onto the sliding and
crossing segments of the transformed system, there-
fore, we can study generic systems and then apply
topological equivalencecriterions.

Ranges of angles are defined to evaluate the con-
ditions of each vector fields and to characterize each
point type. These ranges are referenced toHt and they
are presented in the figure 3(c).

Two main ranges are considered:ΘJ =
{θ ∈ (0, π)} andΘI = {θ ∈ (π, 2π)}. A tolerance
angle∆θ is defined (with∆θ → 0) to detect the criti-
cal values:θ = 0 andθ = π.

The main ranges (ΘJ and ΘI ) and the auxiliar
ranges (ΘJR, ΘJL, ΘIR, ΘIL) are defined in function
of ∆θ as they are presented in the equation 11. The
tangent and normal angles are converted in ranges of
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anglestoo, as they are presented in the equation (12).





ΘJ = (∆θ, π −∆θ)
ΘI = (π + ∆θ, 2π −∆θ)
ΘJR = (∆θ, π/2−∆θ)

ΘJL = (π/2 + ∆θ, π −∆θ)
ΘIL = (π + ∆θ, 3π/2−∆θ)
ΘIR = (3π/2 + ∆θ, 2π −∆θ)

(11)





ΘTR = (2π −∆θ,∆θ)
ΘTL = (π −∆θ, π + ∆θ)

ΘNJ = (π/2−∆θ, π/2 + ∆θ)
ΘNI = (3π/2−∆θ, 3π/2 + ∆θ)

(12)

Boolean-valued functionsB(.) are defined using
the angular ranges of the equations (11) and (12).
Both anglesϕi and ϕj are computed and evaluated
in the set of boolean rules. A typo of point on DB is
defined depending on the boolean results.

The boolean-valued functions for the main ranges
ΘI andΘJ are presented in the equation (13).

{
Bi

I = B (ϕi ∈ ΘI) Bj
I = B (ϕj ∈ ΘI)

Bi
J = B (ϕi ∈ ΘJ) Bj

J = B (ϕj ∈ ΘJ)
(13)

The boolean-valued functions for the auxiliar
rangesΘIR, ΘIL, ΘJR andΘJL are presented in the
equation (14).





Bi
IR = B (ϕi ∈ ΘIR) Bj

IR = B (ϕj ∈ ΘIR)
Bi

IL = B (ϕi ∈ ΘIL) Bj
IL = B (ϕj ∈ ΘIL)

Bi
JR = B (ϕi ∈ ΘJR) Bj

JR = B (ϕj ∈ ΘJR)
Bi

JL = B (ϕi ∈ ΘJL) Bj
JL = B (ϕj ∈ ΘJL)

(14)
Special points are detected when the anglesϕi

andϕj are located in the rangesΘT or ΘN , or when
these angles are not defined in the whole rangeΘ. In
these cases, the boolean-valued functions are given by
the equation (15).





Bi
T = B (ϕi /∈ ΘT ) Bj

T = B (ϕj /∈ ΘT )
Bi

N = B (ϕi /∈ ΘN ) Bj
N = B (ϕj /∈ ΘN )

Bi
X = B (ϕi /∈ Θ) Bj

X = B (ϕj /∈ Θ)
(15)

The boolean-valued functions in the specific tan-
gent rangesΘTR andΘTL are presented in the equa-
tion (16).

{
Bi

TR = B (ϕi ∈ ΘTR) Bj
TR = B (ϕj ∈ ΘTR)

Bi
TL = B (ϕi ∈ ΘTL) Bj

TL = B (ϕj ∈ ΘTL)
(16)

While the boolean-valued functions in the spe-
cific normal rangesΘNI and ΘNJ are presented in
the equation (17).

{
Bi

NI = B (ϕi ∈ ΘNI) Bj
NI = B (ϕj ∈ ΘNI)

Bi
NJ = B (ϕi ∈ ΘNJ) Bj

NJ = B (ϕj ∈ ΘNJ)
(17)

Three types of points can be distinguished on the
discontinuity boundary (DB): Crossing points(C),
Sliding points(S) and Singular sliding points(Ω).
Forty-one different points are characterized on DB
using theBoolean-valued functionspresented in the
equations (13) to (17).

Figure 4(a) presents the symbol and the asso-
ciated number of each point. The singular sliding
points (Ω) can be divided into six subsets: Tan-
gent points(ΩT ), Vanished points(ΩV ), Tangent-
Tangent points(ΩΠ), Tangent-Vanished points(ΩΨ),
Quadrant or Pseudo-equilibrium points(ΩQ) and
Quadrant-Vanished points(Ωφ). The general condi-
tions for the singular sliding points are presented in
the equation (18).





T = Bi
T ∨Bj

T V = Bi
X ∨Bj

X Π = Bi
T ∧Bj

T

Ψ =
(
Bi

T ∧Bj
X

)
∨

(
Bi

X ∧Bj
T

)

Q = B ((π −∆θ) < |ϕi − ϕj | < (π + ∆θ))
Ψ =

(
Bi

X ∧Bj
X

)
∨

(
Bi

X ∧Bj
N

)
∨

(
Bi

N ∧Bj
X

)

(18)
Crossing and sliding flows are the predominant

behaviors on DB of the Filippov systems. Depending
on the direction of the crossing orbits, two crossing
(C) points can be defined:Cij andCji. Four sliding
(S) points are determined depending on the stability
and the sliding motion direction.

The analysis pointxb is a crossing point fromZi

to Zj if the boolean-valued functionCij presented in
the equation (20) isTRUE. The anglesϕi andϕi are
contained in the rangeΘJ . The analysis pointxb is
a crossing point fromZj to Zi if the boolean-valued
functionCji presented in the equation (20) isTRUE.
The anglesϕi andϕi are contained in the rangeΘI .

C =

{
1) Cij = Bi

J ∧Bj
J

2) Cji = Bi
I ∧Bj

I

(19)

Let S be a boolean-valued function defined as
S : xb → {TRUE, FALSE}, which returnTRUEfor a
pointxb in Σ where the vectorsFi andFj are not anti-
collinear and they are have nontrivial normal compo-
nents of the opposed sign, andFALSEotherwise.

If the angleϕi is contained in the rangeΘJ and
ϕj is contained in the rangeΘI then the pointxb is
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Figure5: (a). and(b). Standard cyclesLst , (c). and(d). Grazing cycles,(e). Crossing cycle(f). Switching cycle,(g). and(h). Sliding
cycles.

denominatedStablesliding point(Ss). If the angleϕi

is contained in the rangeΘI andϕj is contained in
the rangeΘJ then the pointxb is denominatedUnsta-
ble sliding point(Su). The sliding direction is defined
with the equation (10).

S =





3) Sr
s = Bi

J ∧Bj
I ∧MR ∧ ¬Q

4) Sl
s = Bi

J ∧Bj
I ∧ML ∧ ¬Q

5) Sr
u = Bi

I ∧Bj
J ∧MR ∧ ¬Q

6) Sl
u = Bi

I ∧Bj
J ∧ML ∧ ¬Q

(20)

If xb belongs toΣ and C is FALSE and S is
FALSE, thenxb is a singular sliding point. Six types
of singular sliding point are defined:

– Type ΩT (Tangent): The vector fieldsFi or Fj

are Tangents on the analysis point (xb).

Eight different points can be distinguished whose
numerical codes and boolean-valued functions
are given in equation (21). In each caseFi or
Fj has null normal component.

ΩT =





7) T sr
i = T ∧Bj

I ∧MR

8) T sl
i = T ∧Bj

I ∧ML

9) T sr
j = T ∧Bi

J ∧MR

10) T sl
j = T ∧Bi

J ∧ML

11) T ur
i = T ∧Bj

J ∧MR

12) T ul
i = T ∧Bj

J ∧ML

13) T ur
j = T ∧Bi

I ∧MR

14) T ul
j = T ∧Bi

I ∧ML

(21)

– Type ΩT (Vanished): The vector fieldsFi or Fj

are Vanished on the analysis point (xb).

Eight different points can be defined using the
boolean-valued functions presented in equation
(22). In these casesFi or Fj have normal and
tangent components equals to zero.

ΩV =





15) V sr
i = V ∧Bj

IR ∧MR

16) V sl
i = V ∧Bj

IL ∧ML

17) V sr
j = V ∧Bi

JL ∧MR

18) V sl
j = V ∧Bi

JL ∧ML

19) V ur
i = V ∧Bj

JR ∧MR

20) V ul
i = V ∧Bj

JL ∧ML

21) V ur
j = V ∧Bi

IR ∧MR

22) V ul
j = V ∧Bi

IL ∧ML

(22)

– Type ΩΠ (Tangent-Tangent): The vector fields
Fi andFj are Tangents on the analysis point (xb).

Four different points are considered according to
the boolean-valued functions presented in equa-
tion (23). Both vector fieldsFi andFj are tan-
gents to DB.

ΩΠ =





23) Πrr = Bi
TR ∧Bj

TR

24) Πll = Bi
TL ∧Bj

TL

25) Πrl = Bi
TR ∧Bj

TL

26) Πlr = Bi
TL ∧Bj

TR

(23)

– TypeΩΨ (Tangent-Vanished): The vector fields
Fi or Fj are Tangents or they are vanished on the
analysis point (xb).
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Figure6: (1). Phase portraits of Local bifurcations.(2). DB bifurcation diagram.(3). Singular point sequences.(a) Boundary Node
bifurcation (BN1)(b). Boundary Focus bifurcation (BF5).(c) Double Tangency bifurcation (DT1)(d). Two Tangencies Visibles (VV2).
(e) Visible-Invisible Tangencies bifurcation (VI1)(f). Pseudo-saddle-node bifurcation (PSN).
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Four different points are defined and their
boolean-valued functions are presented in equa-
tion (24). One vector fields is vanished and the
other is tangent.

ΩΨ =





27) Ψx
r = Ψ ∧Bi

TR

28) Ψx
l = Ψ ∧Bi

TL

29) Ψr
x = Ψ ∧Bj

TR

30) Ψl
x = Ψ ∧Bj

TL

(24)

– Type ΩQ (Quadrant): The vector fieldsFi and
Fj are anti-collinear on the analysis point (xb).

Six different points are considered depending on
the angular range where the condition Q (equa-
tion (18)) is satisfied. The numerical codes and
the boolean-valued functions of the points Q are
presented in equation (25).

ΩQ =





31) Qil
jr = Q ∧Bi

JR

32) Qir
jl = Q ∧Bi

JL

33) Qni
nj = Q ∧Bi

NJ

34) Qjr
il = Q ∧Bi

IL

35) Qjl
ir = Q ∧Bi

IR

36) Qnj
ni = Q ∧Bi

NI

(25)

– Type Ωφ (Quadrant-Vanished): The vector
fields Fi or Fj are vanished and the other field
is normal toHt on the analysis point (xb).

Five different points are characterized with the
boolean-valued functions given in equation (26).

Ωφ =





37) φx
nj = Bi

NJ ∧Bj
X

38) φni
x = Bi

X ∧Bj
NI

39) φx
ni = Bi

NI ∧Bj
X

40) φnj
x = Bi

X ∧Bj
NJ

41) φx
x = Bi

X ∧Bj
X

(26)

Each point has associated a symbol just as it is
presented in the figure 4(a).

4 Modelling of Dynamics on DB and
Sliding Cycles

In this section, we use the forty-one points defined in
the previous section to analyze different scenarios on
DB. Seven basic scenarios are determined. Figure 4
presents examples for each scenario.

Figure7: (1). Phase portraits of Global bifurcations.(2). DB
bifurcation diagram.(3). Singular point sequences.(a) Grazing
bifurcation(b). Switching bifurcation.(c) Crossing bifurcation.
(d). Pseudo-homoclinic bifurcation (VI1).
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In each scenario, a sequence of three points is de-
termined. The central point is a singular sliding point
(Ω). The laterals points are crossing (C) points or
nonsingular sliding (S) points. Letxb1, xb2 andxb3 be
three consecutive analysis points on DB. We assume
thatxb2 is a singular sliding point and we characterize
the neighboring points (xb1 andxb3).

– Change of direction of crossing orbits
(Cij ↔ Cji). The lateral points should
be C type (Cij or Cji) and the central
point should be contained in the setΩcc ={

Πrr,Πll, Πrl,Πlr,Ψx
r , Ψr

x, Ψx
l ,Ψl

x, Qni
nj , Q

nj
ni , φ

x
x

}
.

Λcc =
{

(xb1, xb2, xb3) = (Cij , Ωcc, Cji)
(xb1, xb2, xb3) = (Cji, Ωcc, Cij)

(27)

In equation (27) is presented the generic
sequences while some examples are
shown in equation (28). The numeri-
cal codes of the central point can be
{23, 24, 25, 26, 27, 28, 29, 30, 33, 36, 37, 41}.





(1, 23, 2) (2, 24, 1)
(1, 26, 2) (1, 36, 2)
(2, 33, 1) (2, 23, 1)
(1, 41, 2) (2, 25, 1)





(28)

– Change of crossing boundary to stable sliding
boundary, and vice versa(Cij ↔ Sl

s, Cij ↔
Sr

s , Cji ↔ Sl
s, Cji ↔ Sr

s ). The lateral points
should beC type or Ss and the central point
should beΩcss type whereΩcss = {T s, V s, Φs}.

Λcss =
{

(xb1, xb2, xb3) = (C, Ωcss, Ss)
(xb1, xb2, xb3) = (Ss, Ωcss, C)

(29)

The numerical codes of the central point can
be {7, 8, 9, 10, 15, 16, 17, 18, 37, 38, 41}. The
generic sequences are given in equation (29) and
some examples are presented in equation (30).





(1, 8, 4) (3, 7, 2)
(4, 16, 1) (2, 15, 3)
(2, 38, 4) (3, 38, 2)
(3, 37, 1) (2, 15, 3)





(30)

– Change of crossing boundary to unstable slid-
ing boundary, and vice versa (Cij ↔ Sl

u,

Cij ↔ Sr
u, Cji ↔ Sl

u, Cji ↔ Sr
u). The lat-

eral points should beC type orSu and the cen-
tral point should beΩcus type whereΩcus =
{T u, V u,Φu}.

Λcus =
{

(xb1, xb2, xb3) = (C, Ωcus, Su)
(xb1, xb2, xb3) = (Su, Ωcus, C)

(31)

The numerical codes of the central point can be
{11, 12, 13, 14, 19, 20, 21, 22, 37, 39, 40}. The
generic sequences are given in equation (31) and
some examples are presented in equation (32).





(1, 12, 6) (5, 13, 1)
(6, 21, 1) (2, 14, 6)
(5, 39, 1) (2, 19, 6)
(2, 40, 6) (1, 39, 6)





(32)

– Change of direction of stable sliding bound-
ary. (S l

s ↔ Sr
s ). The lateral points should be

Sl
s or Sl

s types and the central point should beQs

type whereQs = {Qil
jr, Q

ir
jl , Q

ni
nj}.

Λslr =
{

(xb1, xb2, xb3) =
(
Sl

s, Q
s, Sr

s

)
(xb1, xb2, xb3) =

(
Sr

s , Q
s, Sl

s

) (33)

Six different sequences given by (33) can be de-
fined. These possibilities are presented in equa-
tion (34). The numerical codes of the central
point can be{31, 32, 33}.





(3, 31, 4) (4, 32, 3)
(4, 31, 3) (3, 33, 4)
(3, 32, 4) (4, 33, 3)



 (34)

– Change of direction of unstable sliding bound-
ary. (S l

u ↔ Sr
u). The lateral points should beSl

u
or Sl

u types and the central point should beQu

type whereQu = {Qjl
ir, Q

jr
il , Qnj

ni}.

Λulr =
{

(xb1, xb2, xb3) =
(
Sl

u, Qu, Sr
u

)
(xb1, xb2, xb3) =

(
Sr

u, Qu, Sl
u

)
(35)

Six different sequences given by (35) can be de-
fined. These possibilities are presented in equa-
tion (36). The numerical codes of the central
point can be{34, 35, 36}.





(5, 34, 6) (6, 35, 5)
(6, 34, 5) (5, 36, 6)
(5, 35, 6) (6, 36, 5)



 (36)
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– Change of stability in sliding boundary .
(Sl

s ↔ Sl
u, Sr

s ↔ Sr
u). The lateral points should

be S type and the central point should beΩus

type whereΩus = {Π,Ψ}.

Λus =
{

(xb1, xb2, xb3) = (Ss,Ωus, Su)
(xb1, xb2, xb3) = (Su, Ωus, Ss)

(37)

The numerical codes of the central point can be
{23, 24, 25, 26, 27, 28, 29, 30}. The generic se-
quences are given in equation (37) and some ex-
amples are presented in equation (38).





(5, 23, 3) (6, 28, 4)
(4, 24, 6) (4, 30, 6)
(5, 26, 3) (3, 29, 5)



 (38)

– Change of direction in the velocity of sta-
ble sliding boundary: Both lateral points sta-
ble sliding point with the same direction, but a
mesure that can be associated with the velocities
on sliding boundary are different.

Λvs =
{

(xb1, xb2, xb3) =
(
Sl

s, Q
s, Sl

s

)
(xb1, xb2, xb3) = (Sr

s , Q
s, Sr

s )
(39)

The following boolean-valued function isTRUE:

B (∆Gt (xb1) > 0) ∧B (∆Gt (xb3) < 0)

where,

∆Gt (xbi) = |Gt (xbi)| − |Gt (xbi + δ)|

Six different sequences given by (39) can be de-
fined. These possibilities are presented in equa-
tion (40). The numerical codes of the central
point can be{31, 32, 33}.





(3, 31, 3) (4, 31, 4)
(3, 32, 3) (4, 32, 4)
(3, 33, 3) (4, 33, 4)



 (40)

In Filippov systems, the periodic solutions or cy-
cles can be divided instandard(Lst), sliding (Ls) or
crossing(Lc) cycles. We can use the set of points
characterized previously to define the characteristic
sequences of each cycle.

– Standard cyclesLst:

In the standard cycles, the flow lies entirely inZi

or Zj zone. Two basic cases can be defined.

If the flow lies entirely in Zi: Φa (x, t0) =
Φa (x, t0 + tσ) wheretσ is the time period of the
cycle. The sequence associate to this standard
cycle is denoted byA |← and it is presented in fig-
ure 5(a).

If the flow lies entirely in Zj : Φb (x, t0) =
Φb (x, t0 + tσ). The sequence associate to this
standard cycle is denoted byB |← and it is pre-
sented in figure 5(b).

– Crossing cyclesLc:

The crossing cycles have crossing or singular
sliding points (TypeC or Ω) on DB. The flow
passes fromZi to Zj or from Zj to Zi without
sliding motion.

An example of crossing cycle is presented in fig-
ure 5(e). The periodic sequence of this example
is (2, A, 1, B) |←

– Sliding cyclesLs:

The sliding cycles have a sliding stable points (Sl
s

or Sr
s ) on DB. The sliding cycles can have flow

in one or more vector fields.

In figure 5 (g), the sliding cycle only includes
flow in Zi. The characteristic sequence is
(7, A, 3) |←.

In figure 5 (h), the sliding cycle includes flow
in Zi and Zj . The characteristic sequence is
(7, A, 1, B, 3) |←.

5 SPT Method in Local Bifurcation
Analysis

All bifurcations of Filippov systems can be classified
asLocal andGlobal bifurcations [18]. The local bi-
furcations can be detected analyzing the points on the
discontinuity boundary.

Let nΩ be the number of singular points on DB.
Therefore, a sequence of(2nΩ + 1) points can be de-
termined:

(
xb1, xb2, ..., xb(2nΩ+1)

)
.

The points:
(
xb1, xb3, ..., xb(2nΩ+1)

)
are cross-

ing points (C = {Cij , Cji}) or nonsingular slid-
ing points (S = {Sr

s , S
l
s, S

r
u, Sl

u}). The other
points:

(
xb2, xb4, ..., xb(2nΩ)

)
are singular points (Ω =

{T, V, Π, Ψ, Q, φ}).
The existence of singular sliding points on DB

determines the existence of the events on DB. The
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changeof the event type when the parameter vector
p is varied determines the existence of nonsmooth bi-
furcations. The bifurcation points can be detected of
several ways. Changes in the number of the singular
points on DB or the events on DB whenp is varied
imply the existence of bifurcation points. Also, the
intersection of two or more singular point curves im-
plies a bifurcation point in the intersection point.

Bif Fi Fj H(x)

BN1
( −3x1 − x2

−x1 − 3x2

) (
0
−1

)
x2 + α

BF5
( −x1 − 2x2

4x1 + 2x2

) (
0
1

)
x2 + α

DT1
(

1
α + x2

1

) (
0
−1

)
x2

VV2
( −1

α + x1

) (
1− x1

x1

)
x2

VI1
(

1− x1

α + x1

) (
1− x1

2x1

)
x2

PSN
(

α + x2
1

1

) (
0
−1

)
x2

Table 1: Configurations{Fi, Fj , H} of topological normal
forms of local bifurcations.

In [18] the codimension-one nonsmooth bifur-
cations were classified. Next, we present the gen-
eral consideration to detect the local nonsmooth bi-
furcations using the SPT method. Anormal chain
ΛN (xb, p) = {Λ1 (xb, p1) ,Λ2 (xb, p2) , Λ3 (xb, p3)}
can be defined in each case when the parameter vec-
tor p is varied. The central elementΛ2 (xb, p2) repro-
duces the behavior in the critic value ofp, while side
elements have the behavior before an after the bifur-
cation, respectively.

The equilibrium points of the vector fieldsFi or
Fj can collide with the discontinuity boundary. When
a hyperbolic equilibrium collides with the DB, the
system has aBoundary-Equilibrium bifurcation. De-
pending of the equilibrium type the bifurcation is de-
noted as Boundary-Focus (BF), Boundary-Node (BN)
or Boundary-Saddle (BS).

BF1 =





Λ1 (xb, p1) =
(
Cji, T

sl
j , Sl

s

)

Λ2 (xb, p2) =
(
Cji, φ

ni
x , Sl

s

)

Λ3 (xb, p3) =
(
Cji, T

sr
i , Sr

s , Q
ni
nj , S

l
s

)

(41)
The BF, BN and BS bifurcations are character-

ized by the intersection between a tangent curveT
and a pseudo-equilibrium curveQ when the param-
eter is varied. In the bifurcation point the system has

a singular point typeV or typeφ.

BN2 =





Λ1 (xb, p1) =
(
Cij , T

ur
i , Sr

u, Qnj
ni , S

l
u

)

Λ2 (xb, p2) =
(
Cij , φ

nj
x , Sl

u

)

Λ3 (xb, p3) =
(
Cij , T

ul
i , Sl

u

)
(42)

Examples of BF, BN and BS bifurcations are pre-
sented in the equations (41), (42) and (43), respec-
tively.

BS3 =





Λ1 (xb, p1) =
(
Sl

s, T
sl
i , Cji

)
Λ2 (xb, p2) =

(
Sl

s, φ
ni
x , Cji

)

Λ3 (xb, p3) =
(
Sl

s, Q
ni
nj , S

r
s , T

sr
i , Cij

)

(43)
Figure 6 shows the bifurcation diagrams and char-

acteristic sequences of BN1 and BF5 bifurcations.
The topological normal forms are given in 1.

The collisions of two tangent points when a pa-
rameter is varied are local codim 1 bifurcations. In
[18] these bifurcations are classified depending the
characteristics of the tangent points in the following
classes:Double tangency(DT), Visible-Visibletan-
gencies (VV),Visible-Invisible tangencies (VI) and
Invisible-Invisibletangencies (II).

V V 1 =





Λ1 (xb, p1) =
(
Sr

s , T
sr
i , Cji, T

ur
j , Sr

u

)

Λ2 (xb, p2) = (Sr
s , Πrr, S

r
u)

Λ3 (xb, p3) =
(
Sr

s , T
sr
j , Cij , T

ur
i , Sr

u

)

(44)
To detect DT, VV, VI and II bifurcations we can

track the tangent curvesT and determine the bifurca-
tion point when a point typeΠ or Ψ is detected. The
normal chainsfor VV1 and VI2 bifurcations are pre-
sented in the equations (44) and (45), respectively.

V I2 =





Λ1 (xb, p1) =
(
Sl

s, T
sl
i , Cji, T

ur
j , Sr

u, Qjr
il , Sl

u

)

Λ2 (xb, p2) =
(
Sl

s, Πll, S
l
u

)

Λ3 (xb, p3) =
(
Sl

s, Q
ir
jl , S

r
s , T

sr
j , Cij , T

ul
i , Sl

u

)

(45)
Figure 6 shows the bifurcation diagrams and char-

acteristic sequences of DT1, VV2 and VI1 bifurca-
tions. The topological normal forms are given in 1.

6 SPT Method in Global Bifurcation
Analysis

To analyze global bifurcations which involve sliding
on the discontinuity boundary the integration is un-
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avoidable, however using the SPT method explained
previously, we can determine the initial condition of
the integration to reduce the compute time.

Grazing, crossingandswitchingbifurcations can
be detected easily using SPT method. In the critic val-
ues the cycles are denoted byLg, Lcr andLsw, re-
spectively.

A normal sequences ΦN (xb, p, t) ={
Φ1 (x, p1, t) , Φ2 (x, p2, t) ,Φ3 (x, p3, t)

}
can be

defined in each case when the parameter vectorp
is varied. The central elementΦ2 (x, p2, t) repro-
duces the behavior in the critic value ofp, while
side elements have the behavior before an after the
bifurcation, respectively.

The Filippov system has a grazing bifurcation
point when a standard cycle collides with the DB in
a tangent pointT . The tangent point should be con-
tained in the subsetT s = {T sr

i ; T sl
i ; T sr

j ;T sl
j }.

Gg =





Φ1 (x, p1, t) = Ls

Φ2 (x, p2, t) = Lg

Φ3 (x, p3, t) = Lst

(46)

The normal sequenceof grazing bifurcationis
presented in the equation (46). The initial condition
Φ(t0) of the orbit is the tangent pointT . If the tan-
gent vector field inT is Fi (points: T sr

i or T sl
i ) then

we integrate the equatioṅx = Fi (x, p). Otherwise, if
the tangent vector field inT is Fj (points: T sr

j ; T sl
j )

then we integrate the equationẋ = Fj (x, p). In the
equation (47), the conditions of the flow in grazing
bifurcation are summarized.





Φ1 (t0) = T ; Φ1 (t1) = Ss; Φ1 (xb, t) /∈ C
Φ2 (t0) = T ; Φ2 (t0 + ktσ) = T ; Φ2 (xb, t) /∈ {S, C}

Φ3 (t0) = T ; Φ3 (x, t) /∈ ∑
(47)

The crossing bifurcation point happens when a
crossing cycle returns to tangent point without slid-
ing points on DB. Both field vectorsFi andFj should
be integrated to verify the crossing bifurcation. The
normal sequenceof crossing bifurcation is presented
in the equation (48).

Gcr =





Φ1 (x, p1, t) = Ls

Φ2 (x, p2, t) = Lcr

Φ3 (x, p3, t) = Lc

(48)

The initial conditionΦ(t0) of the orbit is the tan-
gent pointT . If the tangent vector field inT is Fi

(points: T sr
i or T sl

i ) then we integrate the equation
ẋ = Fi (x, p). In a timetσ the crossing cycleLcr re-
turns to the tangent pointT without sliding points on

DB. In the equation (49), the conditions of the flow in
grazing bifurcation are summarized.





Φ1 (t0) = T ; Φ1 (t1) = Ss; Φ1 (xb, t) /∈ C
Φ2 (t0) = T ; Φ2 (t1) = C; Φ2 (t2) = T

Φ2 (xb, t) /∈ S
Φ3 (t0) = T ; Φ3 (t1) = C; Φ3 (t2) = Ss

(49)
In the switching bifurcation point the solution

travels an entire stable sliding segment and returns to
a tangent point defined as initial conditionT1. Two
tangent pointsT1 andT2 are necessary in the switch-
ing bifurcation. The initial conditionT1 is defined de-
pending of the sliding segment direction.

Gsw =





Φ1 (x, p1, t) = Ls

Φ2 (x, p2, t) = Lsw

Φ3 (x, p3, t) = Ls

(50)

Thenormal sequenceof switching bifurcation is
presented in the equation (50). The switching cycle
Lsw arrives ofT1 to T2 in a timet1, after the solution
slides and returns toT1 in a timet2 without crossing
points on DB. In the equation (51), the conditions of
the flow in switching bifurcation are summarized.





Φ1 (t0) = T1; Φ1 (t1) = Ss; Φ1 (xb, t) /∈ C
Φ2 (t0) = T1; Φ2 (t1) = T2; Φ2 (t2) = T1

Φ2 (xb, t) /∈ C
Φ3 (t0) = T1; Φ3 (t1) = C; Φ3 (t2) = Ss

(51)
Figure 7 shows the bifurcation diagrams and char-

acteristic sequences of grazing, crossing and switch-
ing bifurcations.

7 Illustrative Example

In this section, we study a mechanical system using
the SPT method. The system selected is a friction
oscillator composed by a cam-follower system and a
mass slider.

The chosen cam is a cylindrical or drum cam.
This cam can have symmetrical cam profile or asym-
metrical cam profile. The mass sliderm is mounted on
a follower element which runs forward with a speedv.

A schematic drawing of the mechanical system
is shown in figure 8(a). According to the model de-
scribed in figure 8(a)we can plot the free body dia-
gram as shown in figure 8(b) whereFi = mẍ repre-
sents the inertial force of the mass slider andFf rep-
resents the friction force. Therefore,

mẍ = Ff

WSEAS TRANSACTIONS on SYSTEMS
Ivan Arango and John 
Alexander Taborda

ISSN: 1109-2777 851 Issue 10, Volume 7, October 2008



Let vr be the relative velocity defined as the dif-
ference between the follower velocity and the mass
slider velocity:vr = v − ẋ. Depending on the direc-
tion of static friction force, the mass slider can present
sliding or not.

Figure8: Cam-follower wit mass slider.(a). Schematic draw-
ing of the mechanical system.(b). Free body diagram.(c). Fric-
tion force curve.

The friction force is expressed as equation (52)
where the friction force depends on the follower ac-
celeration. When the follower velocity no changes,
the friction force is zero.

Ffs = (mυ̇)(sign(υ̇))(sign(υ)) (52)

During sliding, the friction model is given by
equation (53) whereσ2 is the viscous friction coef-
ficient,FC is the Coulomb friction,vstr is the stribeck
velocity andδ is a shape factor. The friction force
curve is shown in figure 8(c).

Ffk = k0 +
[
FC + k1(exp(− |kv|δ)

]
[sign(vr)]

(53)
with,

kv =
(
vr/vr − vstr

)

k0 = σ2vr

k1 = (Ffs − FC)

Assuming thatx1 is associated to mass slider po-
sition andx2 is associated to mass slider velocity, the
dynamic equation can be expressed as:

[
ẋ1

ẋ2

]
=

[
x2

−Ffk
m (x2)

]
(54)

The simulation parameters are: Time period (T)
is 1 second, Coulomb friction force is1N , maximum

friction force is1.5N , shape factorδ is 0.79, stribeck
velocity is1.5m/s, maximum high cam is0.05m and
dynamic friction coefficient is0.2.

(a)Sequence of behaviors

(b) Vector fields

(c) Analysis with SPT method

Figure 9: Nonsmooth local dynamics of cam-follower with
mass slider. (σ = π, ω = 600rpm)

Using the symmetrical cam profile, the system
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is simulated and the phase portrait is created. With
ω = 600rpm the mass presents multi-sliding behav-
iors. The mass slider behavior is presented in figure 9.
The multi-sliding response can be characterized with
the type of points on DB.

The multi-sliding orbit is divided
into periodic sequences of points:
{· · · ,ΩT , Ss, ΩT , C,ΩT , Ss,ΩT · · ·}. For ex-
ample, the SPT method detects the sequence:
(· · · , 9, 3, 7, 2, 7, 3, 7, · · · ) in the piece of flow
presented in figure 9(c).

Figure10: Nonsmooth global dynamics of cam-follower with
mass slider.

Global dynamics on cam-follower with slider
mass can be studied with SPT method too. Forω ≈
60rpm the system has standard cycles. Figure 10(a)
shows a cycleLst with the sequence:B |←.

For ω ≈ 120rpm the system has multi-sliding
cycles. Figure 10(c)shows a cycleLms with the se-
quence:(ΩT , B, Ss, ΩT , B, Ss, ΩT , B) |←.

For ω > 4000rpm the system has sliding cycles.
Figure 10(b)and (d) shows a cycleLs with the se-
quences:(ΩT , B, Ss) |← and(ΩT , A, Ss) |←.

8 Conclusion

We have presented the fundamental set of rules behind
of theLabViewtoolbox for bifurcation analysis of Fil-
ippov systems denominatedSPTCont 1.0. We have
shown the characteristic point sequences thatSPT-
Cont 1.0 detects to guarantee the existence of local
and global nonsmooth bifurcations in planar Filippov
systems (n = 2). Dynamics on DB and cycles have
been defined in function of the set of points. The full
catalog of codim 1 local and global bifurcations have
been used to define the characteristic point sequence
when the bifurcation parameter is varied.
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