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Abstract: We explain the set of rules behind of thabViewtoolbox for bifurcation analysis of Filippov systems
denominatedSPTCont 1.0. This software can detect nonsmooth bifurcations{dimensional systems using
integration-free algorithms based on the evaluation of the vector fields on the discontinuity boundary (DB). In this
paper, we present the characteristic point sequences that the software detects to guarantee the existence of loc
and global nonsmooth bifurcations in planar Filippov systems (2). These sequences can be extended to three-
dimensional or higher dimension Filippov systems. Boolean-valued functions are used to formulate the conditions
of existence for each point defined in the sequences. Dynamics on DB and cycles are defined in function of the
set of points. The full catalog of codim 1 local and global bifurcations is used to define the characteristic point
sequence when the bifurcation parameter is varied. Finally, an illustrative example is analyzed using step-by-stey
routines ofSPTCont 1.0.
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1 Introduction Yk b)

Nonsmooth dynamics can be found in many physi- i /

cal systems such as electric motors, power convert- @) (@ H

ers, brakes, gears and joints. Switchings in electri- 2 -

cal systems [1],/[2], impacting motion in mechanical »

systems|[B],[4], stick-slip motion in oscillators with DISCONTINUITY BOUNDARY

friction [5], [6] and hybrid dynamics in control sys- /v{\ T @

tems [ 7] are being studied with nonsmooth dynamical /@\ =

theory. M sunmw
Nonsmooth characteristics were often neglected ZONES

in mathematical models due to their difficulties of
analysis and simulation. Actually, there is great in-  Figure 1: Basic example of nonsmooth systeméz). Un-
terest to understand nonsmooth effects to try to min- damped dry friction oscillator on a rotating beltb). Coulomb
imise undesirable consequences such as wear of com-friction model ({ is the relative velocity).(c). Nonsmooth dy-
ponents, surface damage, fatigue failure and nolse [8]. namics with sliding motion.
Many considerations based on bifurcations theory for
smooth systems are violated and many new phenom-
ena are observed such as sliding, crossing or grazing equationgiven in (1).
bifurcations. . )

Figure 1(g shows a basic example of nonsmooth mi +kx = fsgn(v— 1) (1)

system. The undamped dry friction oscillator com- | an equivalent way, this system can be expressed
v. The motion of block with mass: along the belt ODEs given by equation (2).

is opposed by a spring (with stiffnes¥ connected to

a fixed support. The spring exerts a restoring force T=y
on the block that is opposed by the friction force cre- y=—x+ fsgn H where H = (v—y)
ated by the belt. This system can be modelled with the 2
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Figure2: Examples more complex of nonsmooth systeifis.. Friction oscillator with two masse$b). Friction oscillator with three
masses(c). Mechanical model with gravitational forcg])., Pendulum-car model ar(@). Friction oscillators with impact.

The Coulomb friction model is presented in fig-
urel1(b)according to equation (3). When the velocity
of the block is less than the velocity of the belt the
friction is positive and constant and when the velocity
of the block is greater than that of the belt the friction

+f, y<w

is negative.
b= { —fa Y > (3)

Systems where sliding motion is possible are
known as Filippov systems. In the simple Filippov
system presented in figure 1(a), the block will move
with the belt until the spring tension increases enough
to overcome the frictional force and then the block
will start to move again. These zones are known as
sliding zones due to the system forcing the motion to
slide along the surface before it can leave to join an-
other vector field. Examples of nonsmooth dynam-
ics with sliding motion are presented in figure 1(c).
When the sliding motion on the discontinuity bound-
ary (DB) is possible, the analysis is more compli-
cated. Moreover, the complexity can increase when
the number of elements with nonsmooth interaction
(as masses) is higher or when impacts motions are
possible. Examples of Filippov systems with more
complex models are presented in figure 2 [9], [7].

We explain the set of rules behind of thabView
toolbox for bifurcation analysis of Filippov systems
denominatedSPTCont 1.0. The paper is organized
as follows. In section Il we present the generalities
of SPTCont 1.0 while the concepts of Filippov sys-
tems and the SPT method are presented in section Il
Dynamics on DB and cycles in function of the char-
acteristic points are summarized in the section IV. In
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the sections V and VI we present the characteristic
point sequences for representative local and global bi-
furcations, respectively. An illustrative example is de-
tailed in section VII. Finally, the conclusions and fu-
ture work are discussed in the section VIII.

2 Generalities of SPTCont 1.0

The number of specialized software in nonsmooth dy-
namics is reduced [10], [11]. In_[12] and![6], they
are presented two toolboxes for analysis and continu-
ation of nonsmooth bifurcations in Filippov systems.
The platforms used in these toolboxes are Matlab and
AUTO97.

A LabView toolbox was proposed in [13] for bi-
furcation analysis of Filippov systems denominated
SPTCont 1.0. LabView platform allows the devel-
opment of user interface with graphical controls and
indicators easily. Also, the fully object-oriented char-
acter of LabVIEW code allows functions reuse with-
out modifications.

SPTCont 1.0 toolbox is included in the
GAONDYSY software developed with language G
for analysis of non-smooth dynamical systems [14].
Many libraries of LabVIEW with functions of graph-
ics generation, mathematics and data analysis are used
too. SPTCont 1.0 uses integration-free algorithms
based on the evaluation of the vector fields on the
discontinuity boundary (DB). The routines apply the
classification of points and events on DB recently pro-
posed[[15],/115],[17]. Local and global bifurcations
can be detected using the numerical metBawhular
Point Trackingor SPT

This software can detect nonsmooth bifurcations
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Figure 3: (a). SPTCont structure with integration-free algorithnis). Vector fields and discontinuity boundary (DBY;). Angular
ranges in the analysis point on D)., Example of local dynami¢e). Example of global dynamic.

in n-dimensionakystems using integration-free algo- that returnTrue or False when their arguments are
rithms based on the evaluation of the vector fields on evaluated. In these functions we use the logical con-
the discontinuity boundary (DB). nectivesAND ORandNOTdenoted byA , v and—,

In the figure 3(2) we present the general structure respectively.
of the SPTCont 1.0. The input of the equations and
the parameters are managed for diferent windows us- o
ing t%e same enviroment ngONDYSY [14]. In the 3 FlllppOV SyStemS and SPT method
same way, the outpus are data of graphics have in- Let{F;(x),F;(x), H(x)} be a set of equations that de-
dapendent windows. The graphical elements are pro- fines the piecewise-smooth autonomous system (de-
vided by the LabVIEW package. nominated Filippov system) given by equatiori (4)

Depending on the Filippov system dimension Wherex C R? anda € R is the bifurcation parameter.
(2D, 3D, ...,nD) is executed a different SPT (Singular

Point Tracking) routine. In the case 2D, the disconti- « — { Filx,a) if x€Z

nuity boundary (DB) is a line, while in the case 3D the Fi(x,a) if x€Z

DB is plane. Modules for continuation of non-smooth Y ={x€R?: H(x,a) =0} (4)
bifuracations, detection of local and global bifurca- Zi={x€eR?*: H(X,a) <0}

tions and generation of phase portraits are integrated Zj = {x €R?:H(X,a) > 0}

o theSPTC.:or.n 1.0 toolbox. _ Filippov systemsan be described by a set of first-
Two principal advantages have the software inthe order ordinary differential equations with a discontin-
analysis of nonsmooth systems. First, the software yous right-hand sidé [19]. The vector fielisandF;
has educational and didactic subroutines for amateur e sufficiently smooth vector functions add and
users. Second, the software has functions for speci- Z; are Smooth Zones The discontinuity boundary,
alyzed users where the integration-free algorithms in (DB) denoted by, is defined by the scalar function

the SPT avoid the well know numerical problems of  p(x). The sign ofH (x) indicates a smooth zone that
these algorithms. If the integration is unavoidable, for s pounded by th®B (figure 3¢)).

example in detection of global bifurcations, the SPT In the last years, the dynamical and bifurcation
method computes the initial condition of the simula-  pehavior of Filippov systems has been studied widely
tion to reduce_ the compute time. TB®TCont 1.Q [20], [18], [21], [22], [23], [24]. In Filippov systems,

was proven with the catalog of local and global bifur-  the sliding motion is possible. A lot of papers have
cations that it was proposed recently/in/[18]. been restricted to systems without sliding motion be-

In the next section, Filippov systems are defined cause the analysis is more simplificd/[18].
and the SPT is explained. The set of rules behind of An analysis pointx; on theDB (x, € ) is de-
SPTCont 1.0 toolbox are given in function of the  fined and the normal vectoH(,) and tangent vector
points defined usindoolean-valued function®(.) (H;) to the DB inx;, are computed. In this point, the
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Figure4: (a). Non-singular and singular points on D). to (h). Examples of typical combinations of points on DB.

vector fieldsF; andF; are evaluated. With reference
to H;, the angles of vector fieldg; and; in anti-
clockwise direction are computed. These angles are
given by (5).

Pig) = {

whereFy; ;, is the y-component df; or F; andd,
is given by:

i) = cos ! (

The projections of each vector field in the vectdts
and H,, are defined in this way:F;~ (Hp, Fi),
t

n t
F;” = (Hy,Fi), Fy” = (Hp, Fj) and F;™ = (Hy, Fy),
where(--- ,---) denotes a scalar product.
Let ®,(x,t) and ®,(X,t) be the flows that take
initial conditionsx in F; andF;, respectively (figure

3(¢))-

g U Fuju20 g
2m — Q(M) Zf F(z,j)y <0

i.5)

(He,Fiig))

6
Hel |Fiipl ©

., (X,0) =X
@y (Xx,0) =X 0
The solutions of.(4) are uniquely defined forward
and backward in time. However, the systern (4) is not
invertible because the orbits can overlap on DB with
sliding [1€](figure 3(d)). In sliding situations, a con-
vex combinatiorG(x) of the vectors; andF; is de-
fined as the-ilippov Method[25]. The G vector can
be written as:

G(X)=AF; (X)+ (1 =N F;(x) (8)

ISSN: 1109-2777 843

where,

(9)

Theprojection ofG(x) in the vectordH, andH,, are:
GY = (H,,G) andG™ = (H,,G). UsingG" are
defined the Boolean-valued functiond/;, and M.
The sliding motion is toward the right ¥/ is TRUE

and the sliding motion is toward the left if/; is
TRUE(equation((10)).

Mp =B (G (23) > 0

t (10)
Mp =B (G~ (x) <0

Knowledge of the point types on DB is important to
define state portraitsof (4). Any homeomorphism

h : R?> — R? should map the sliding and crossing
segments of the original system onto the sliding and
crossing segments of the transformed system, there-
fore, we can study generic systems and then apply
topological equivalenceriterions.

Ranges of angles are defined to evaluate the con-
ditions of each vector fields and to characterize each
pointtype. These ranges are referenceadtand they
are presented in the figure 3(c).

Two main ranges are considered® ;
{6 € (0,7)} and©; = {0 € (m,2m)}. A tolerance
angleAy is defined (withAy — 0) to detect the criti-
cal valuesd = 0 andf = .

The main rangesd; and ©;) and the auxiliar
ranges© jr, © 1., O1r, ©;1) are defined in function
of Ay as they are presented in the equatioh 11. The
tangent and normal angles are converted in ranges of
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anglestoo, as they are presented in the equation (12).

@J: (Aeaﬂ__AG)
O = (m+ Ap, 2m — Ay)
OJr = (A, /2 — Ay)

11
@JL:(F/Q—i-A@,?T—A@) ( )
O, = (7T—|—A9,37T/2 — Ag)
@[R:(37T/2+A9,27T—A9)
Orr = (271' — AQ,AQ)
Orp = (W_A977T+A9) (12)

Ong = (7/2 = A9, /2 + Ay)
Onr = (3m/2 — Ag,3m/2 + Ay)

Boolean-valued functionB(.) are defined using
the angular ranges of the equations!(11) and (12).
Both anglesy; and ¢; are computed and evaluated
in the set of boolean rules. A typo of point on DB is
defined depending on the boolean results.

The boolean-valued functions for the main ranges
O©; andO ; are presented in the equation/(13).

{B}:B(gpie@ﬂ Bj = B(p; € ©r) (13)

B, =B(pi€0y) B, =B(p;cOy)
The boolean-valued functions for the auxiliar

range9;g, O11, ©5r andO ;, are presented in the
equation((14).

Bip=B(pi € Orr) Bip = B(pj € Orr)
B}L = (goi S @IL) B.}L = ((pj S @IL)
B =B (pi € Oyr) Bjp=B(p; € Or)
By =B(pi€0©,1) Bj=B(p;€0y5)

Special points are detected when the angles
andy; are located in the rang&dr or © y, or when
these angles are not defined in the whole raggén

lvan Arango and John
Alexander Taborda

While the boolean-valued functions in the spe-
cific normal range®y; and Oy ; are presented in
the equation (17).

By = B(pi €On1) By;=B(p; € Onr)
By;=B(pi € ©Ony) By;=B(p; € Ony)
17)

Three types of points can be distinguished on the
discontinuity boundary (DB): Crossing poinf§’),
Sliding points(S) and Singular sliding point$(2).
Forty-one different points are characterized on DB
using theBoolean-valued functiongresented in the
equations (13) to (17).

Figure[4(a) presents the symbol and the asso-
ciated number of each point. The singular sliding
points (©2) can be divided into six subsets: Tan-
gent points(Qr), Vanished pointgy ), Tangent-
Tangent point$(;), Tangent-Vanished point$)y ),
Quadrant or Pseudo-equilibrium poin{§)g) and
Quadrant-Vanished point$24). The general condi-
tions for the singular sliding points are presented in
the equation (18).

T=DB.VB), V=DByVB; 1=DB.ADB,
U= (Bg’p ABY) v (B A BY)
Q= B((m—Ag) < lpi = pj| < (m+ A9))
= (B A B )V (B A BY) v (Biy A BY)
(18)

Crossing and sliding flows are the predominant
behaviors on DB of the Filippov systems. Depending
on the direction of the crossing orbits, two crossing
(C) points can be defined”;; andC};. Four sliding
(S) points are determined depending on the stability
and the sliding motion direction.

The analysis poink; is a crossing point fronk;
to Z; if the boolean-valued functio@’;; presented in

these cases, the boolean-valued functions are given by the equation/(20) i§RUE The anglesy; andy; are

the equation (15).

Bp=DB(¢i ¢ Or) By =B(p; ¢ Or)
By =B(pi ¢ Oy) By =B(p; ¢ On)
By =DB(pi¢©) Bx=DB(y; ¢0)
(15)
The boolean-valued functions in the specific tan-
gent range®rr andOr, are presented in the equa-
tion (16).

B%’L =B (902' c @TL) B%’L =B ((pj c GTL)

{ Bir = B(pi € OrR) B%R = B (p; € OrR)
(16)

ISSN: 1109-2777 844

contained in the rang® ;. The analysis poink, is
a crossing point fron¥; to Z; if the boolean-valued
function C; presented in the equation (20)TRUE
The anglesy; andy; are contained in the range;.

x

Let S be a boolean-valued function defined as
S : X, — {TRUEFALSE}, which returnTRUEfor a
pointx, in 3 where the vector; andF; are not anti-
collinear and they are have nontrivial normal compo-
nents of the opposed sign, aRALSE otherwise.

If the angley; is contained in the rang® ; and
@; is contained in the rang®; then the point, is

1) Cjj=B,AB

; - 19
2) Cjz‘:B}/\B} (19)

Issue 10, Volume 7, October 2008
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Figureb: (a). and(b). Standard cycleg; , (c). and(d). Grazing cycles(e). Crossing cycld f). Switching cycle(g). and(h). Sliding

cycles.

denominatedbtablesliding point(Ss). If the angley;
is contained in the rang®; and ¢; is contained in
the rangeo ; then the poink, is denominated/nsta-
ble sliding point(S, ). The sliding direction is defined
with the equation (10).

3) S =DBjAB]AMpA-Q
I _ i J -
s Si—B{ABJlAMLA Q)
5) Sy =BjAB)AMgA-Q
6) SL=BiAB,AM,A-Q

If x, belongs toX and C is FALSE and S is
FALSE, thenx, is a singular sliding point. Six types
of singular sliding point are defined:

— Type Qr (Tangent). The vector fieldd; or F;
are Tangents on the analysis poixy)(

Eight different points can be distinguished whose
numerical codes and boolean-valued functions
are given in equatiori (21). In each casgor

F; has null normal component.

7) T =TAB)]AMpg
8) Tf'=TABIAM
9) T;"=TAB)NMg
10) T$'=TABy,AM
Op = 10 T =TABI ML
11) T;" =T ABj; A Mg
12) TH =T AB)AM,
13) T}" =T ABjAMp
14) T =TABjAM

ISSN: 1109-2777 845

— Type Qr (Vanished) The vector fieldd=; or F;

are Vanished on the analysis poirg)

Eight different points can be defined using the
boolean-valued functions presented in equation
(22). In these cases; or F; have normal and
tangent components equals to zero.

((15) V" =V ABjz A Mg
16) V=V ABj, AM,
17) V"=V ABY, A Mg
18) V=V AB,, AM
Oy = )Y N ¢7)
19) V=V AB%, A Mg
20) V=V AB), AM
21) V" =V ABip A Mg
22) VM=V ABj AM

— Type Qp (Tangent-Tangent) The vector fields

F; andF; are Tangents on the analysis poixy)(

Four different points are considered according to
the boolean-valued functions presented in equa-
tion (23). Both vector field$; andF; are tan-
gents to DB.

) I, =B ABpp
) Iy= B, A By,
25) Il = Bhp A By,
) :B%L/\B]TR

Q= (23)

— Type Qg (Tangent-Vanished) The vector fields

F; or F; are Tangents or they are vanished on the
analysis pointxy).
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Figure6: (1). Phase portraits of Local bifurcation&). DB bifurcation diagram(3). Singular point sequenceéa) Boundary Node
bifurcation (BN1)(b). Boundary Focus bifurcation (BF5])c) Double Tangency bifurcation (DT1){). Two Tangencies Visibles (VV2).
(e) Visible-Invisible Tangencies bifurcation (VI1)). Pseudo-saddle-node bifurcation (PSN).
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Four different points are defined and their
boolean-valued functions are presented in equa-
tion (24). One vector fields is vanished and the
other is tangent.

27) W = U A Biy

) 28) VP =UABL
v = 29) U =T AB, (24)

30) UL =UAB),

— Type Qg (Quadrant): The vector fields=; and
F; are anti-collinear on the analysis poirg).

Six different points are considered depending on
the angular range where the condition Q (equa- 1
tion (18)) is satisfied. The numerical codes and ¢ < = <
the boolean-valued functions of the points Q are L )
presented in equation (25).

; ; -
31) QI =QABy a, I
32) - Q A Bz
ot JE %z
Og =4 33 Qu=QABy; o
@ 34) QT =QABi,
35) QL =QA Bir
36) Qni =QA By,

— Type €, (Quadrant-Vanished). The vector
fields F; or F; are vanished and the other field
is normal toH; on the analysis poinky,).

Five different points are characterized with the
boolean-valued functions given in equation! (26).

37) ¢o; = Bi, A Bk
8) ¢ = B% ABy;
Q=4 39) ¢ = By, AB% (26)
)
)

()

40) ¢¥ = Bi A B3,
41

¢5 = By A B

Each point has associated a symbol just as it is
presented in the figure 4(a).

4 Modelling of Dynamics on DB and
L Figure7: (1). Phase portraits of Global bifurcation&). DB
Slldmg CyC|eS bifurcation diagram(3). Singular point sequenceéz) Grazing

. . . . . bifurcation (b). Switching bifurcation.(c¢) Crossing bifurcation.
In this section, we use the forty-one points defined in (). pseudo-homoclinic bifurcation (VI1).

the previous section to analyze different scenarios on
DB. Seven basic scenarios are determined. Figure 4
presents examples for each scenario.
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In each scenario, a sequence of three points is de-
termined. The central point is a singular sliding point
(©2). The laterals points are crossing)( points or
nonsingular sliding.§) points. Letx,;, Xy andx,s be
three consecutive analysis points on DB. We assume
thatz, is a singular sliding point and we characterize
the neighboring pointsx; andxps).

— Change of direction of crossing orbits
(Cij < Cj;). The lateral points should
be C type (G; or Cj) and the central
point should be contained in the s&.. =

{0y T T Ty, W2, 0, 07, WL, Qi Q0 62 ).

nj’ ¥ni’

A — { (Xp15 X2, Xp3) = (Cijs Qee, Cji)
“ (Xp1, X2, X63) = (Cjii, Qee, Ci)
(27)

In equation [(27) is presented the generic
sequences while some examples are
shown in equation [(28). The numeri-
cal codes of the central point can be
{23, 24, 25,26, 27,28, 29, 30, 33, 36, 37,41}.

(1,23,2) (2,24,1)
(1,26,2) (1,36,2)
(2,33,1) (2,23,1) (28)
(1,41,2) (2,25,1)

— Change of crossing boundary to stable sliding
boundary, and vice versa(C;; « S., Ci; <
Sr, Cji « SL, Cj; « SY). The lateral points
should beC type or S; and the central point
should be s, type whereQ).s; = {1, V', 5}

A _ { (Xb17xb2a Xb3) = (Ca chs; Ss)
s (Xb17 Xb27 Xb3) - (Ssa QCSS; C)
(29)
The numerical codes of the central point can
be {7,8,9,10,15,16,17,18,37,38,41}. The
generic sequences are given in equation (29) and
some examples are presented in equation (30).

(30)

— Change of crossing boundary to unstable slid-
ing boundary, and vice versa(C;; < S.,

ISSN: 1109-2777 848
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Cij — Sz, Cji — Sql“ Cji — SZ) The lat-
eral points should bé' type orS, and the cen-
tral point should beQ2.,s type whereQ.,; =

{T*, V", U},

A _ { (th Xp2, Xb3) = (07 chs; Su)
s (th Xp2, Xb3) = (Sua chsa C)
(31)
The numerical codes of the central point can be
{11,12,13,14, 19,20, 21,22, 37,39,40}. The
generic sequences are given in equation (31) and
some examples are presented in equation (32).

(1,12,6) (5,13,1)
(6,21,1) (2,14,6)
(5.39.1) (2.19,6) (32)
(2,40,6) (1,39,6)

Change of direction of stable sliding bound-
ary. (S. < Sr). The lateral points should be
St or St types and the central point should@é

type whereQ® = {Q¥, Q%}, Qi }.

(Xb1, Xp2, Xp3) = (SL, Q%, S7)
Ay = »@55:) (33
! { (Xb1, Xp2, Xp3) = (ST, Q%, SL) (33)

Six different sequences given by (33) can be de-
fined. These possibilities are presented in equa-
tion (34). The numerical codes of the central
point can be{31, 32, 33}.

(3,31,4) (4,32,3)
(4,31,3) (3,33,4) (34)
(3,32,4) (4,33,3)

Change of direction of unstable sliding bound-
ary. (S!, < S7). The lateral points should
or S, types and the central point should &&

type whereQ¥ = {Qfﬁ flr, Q3.

Ao = { (Xp1, Xp2, Xp3) = (94, Q% S7,)
ulr — _ r u Ql

(Xp1, Xb2, X53) = (S, Q" Sh)

(35)

Six different sequences given hy (35) can be de-
fined. These possibilities are presented in equa-
tion (36). The numerical codes of the central
point can be{34, 35, 36}.

(5,34,6) (6,35,5)

(6,34,5) (5,36,6) (36)
(5,35,6) (6,36,5)
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— Change of stability in sliding boundary.
(SL — SL, 8"« ST). The lateral points should
be S type and the central point should bg,
type whereQ2,,; = {II, U}.

A= { (Xb17 Xp2, Xb3) = (Ss, Qu57 Su)
s (Xb17Xb27Xb3> = ( ’UJQUS?SS)
(37)
The numerical codes of the central point can be
{23,24,25,26,27,28,29,30}. The generic se-
guences are given in equation (37) and some ex-
amples are presented in equation (38).

(5,23,3) (6,28,4)
(4,24,6) (4,30,6) (38)
(5,26,3) (3,29,5)

Change of direction in the velocity of sta-
ble sliding boundary: Both lateral points sta-
ble sliding point with the same direction, but a
mesure that can be associated with the velocities
on sliding boundary are different.

_ (gl 0s
O o e S
The following boolean-valued function TRUE:

B (Agt (Xp1) > 0) A B (Agt (Xp3) < 0)
where,

Agt (Xpi) = |Gt (Xpi)| — |Gt (i + 0)]

Six different sequences given by (39) can be de-
fined. These possibilities are presented in equa-
tion (40). The numerical codes of the central
point can be{31, 32, 33}.

(3,31,3) (4,31,4)
(3,32,3) (4,32,4) (40)
(3,33,3) (4,33,4)

In Filippov systems, the periodic solutions or cy-

cles can be divided istandard(L;), sliding (Ls) or
crossing(L.) cycles. We can use the set of points
characterized previously to define the characteristic
sequences of each cycle.
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— Standard cyclesL;:

In the standard cycles, the flow lies entirely4n
or Z; zone. Two basic cases can be defined.

If the flow lies entirely inZ;: &, (X,ty) =

b, (X, to + t,) Wheret, is the time period of the
cycle. The sequence associate to this standard
cycle is denoted b)@ and it is presented in fig-

urel5(a).

If the flow lies entirely inZ;: & (X,ty) =
Dy, (X, tp + t,). The sequence associate to this
standard cycle is denoted b?j and it is pre-

sented in figure%b).

— Crossing cyclesL,:

The crossing cycles have crossing or singular
sliding points (TypeC or 2) on DB. The flow
passes fron¥Z; to Z; or from Z; to Z; without
sliding motion.

An example of crossing cycle is presented in fig-
ure5(e). The periodic sequence of this example
is(2,4,1,B) |

— Sliding cyclesL;:

The sliding cycles have a sliding stable poirf$ (
or S7) on DB. The sliding cycles can have flow
in one or more vector fields.

In figure'5 (g), the sliding cycle only includes
flow in Z;. The characteristic sequence is

(7,4,3) |.

In figure'5 (h), the sliding cycle includes flow
in Z; and Z;. The characteristic sequence is
(7,A4,1,B,3) |.

5 SPT Method in Local Bifurcation
Analysis

All bifurcations of Filippov systems can be classified
asLocal andGlobal bifurcations [18]. The local bi-
furcations can be detected analyzing the points on the
discontinuity boundary.

Let ng be the number of singular points on DB.
Therefore, a sequence @ng + 1) points can be de-
termined: (Xp1, X2, --s Xp(2n0+1) ) -

The points: (Xp1, Xs3, - Xp(2n+1)) @re Cross-
ing points C' = {C;;,Cj;}) or nonsingular slid-
ing points & = {S7,S!,57,S.1). The other
POINtS: (Xp2, Xpa; ---; Xp(2ng)) @re singular points(f =
{T.V.IL,¥,Q,8}).

The existence of singular sliding points on DB
determines the existence of the events on DB. The
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changeof the event type when the parameter vector a singular point typé” or type .
p is varied determines the existence of nonsmooth bi-
furcations. The bifurcation points can be detected of

several ways. Changes in the number of the singular A1 (Xp,P1) = <CszTW Sis Qﬁf,Sl>

points on DB or the events on DB whenis varied BN2 = As (Xp, Pg) = ( RN Si)
imply the existence of bifurcation points. Also, the A _ e ul gl
intersection of two or more singular point curves im- 3 (%, p3) = (Ciy, T, 57

plies a bifurcation point in the intersection point.

(42)
Examples of BF, BN and BS bifurcations are pre-

sented in the equations (41), (42) and!(43), respec-

Bif F; Fj H(X) t|Ve|y
—31‘1 — T2 0
BN1 (7%73‘%2) (71) o
1 sl
BF5 | ( s )| (5) Jmre A = (5 T )
! 2 0 BS3 = A (xb,pz) (S C]Z)
DT1 ( a+11 ) ( —1 ) T2 A (xbapfi) (Sl nz’S;“’Tsr C )
V2 ( ) ( 1-2 ) s , o (43)
ot ! Figure 6 shows the bifurcation diagrams and char-
Vil ( 1=z ) ( 1;””1 ) T2 acteristic sequences of BN1 and BF5 bifurcations.
Ziil - The topological normal forms are given'in 1.
PSN ( . ) ( 1 ) T2 The collisions of two tangent points when a pa-

Table 1: Configurations{F;,F;, H} of topological normal

forms of local bifurcations.

rameter is varied are local codim 1 bifurcations. In
[18] these bifurcations are classified depending the
characteristics of the tangent points in the following

classes:Double tangencyDT), Visible-Visibletan-
gencies (VV),Visible-Invisibletangencies (VI) and
Invisible-Invisibletangencies (II).

In [18] the codimension-one nonsmooth bifur-
cations were classified. Next, we present the gen-

eral consideration to detect the local nonsmooth bi- A1 (X, Pp) = (ST T Cﬂ,T]“T,S{;)
furcations using the SPT method. wormal chain VV1 = A (Xp, Py) = (ST, 1L, ST)

AN (X, P) = {A1(Xp;P1), A2 (Xp, Pa) , As (X, P3)} Ay ’ 5.1, C ’TZT o
can be defined in each case when the parameter vec- (Xp, P3) = ( ijs L s u)

tor p is varied. The central element, (x;, p,) repro- (44)
duces the behavior in the critic value mfwhile side To detect DT, VV, VI and Il bifurcations we can
elements have the behavior before an after the bifur- track the tangent curves and determine the bifurca-
cation, respectively. tion point when a point typél or ¥ is detected. The
The equilibrium points of the vector fields, or normal chaindor VV1 and VI2 bifurcations are pre-

F, can collide with the discontinuity boundary. When sented in the equations (44) and|(45), respectively.
a hyperbolic equilibrium collides with the DB, the

system has 8oundary-Equilibrium bifurcation De- | sl wr or T ol

pending of the equilibrium type the bifurcation is de- A1 O, P1) = (S T7 Cjin T ’Slu’ il ’S“>

noted as Boundary-Focus (BF), Boundary-Node (BN) V12 = Az (Xp, P2) = (S, Ty, S1,)

or Boundary-Saddle (BS). Az (Xp, P3) = (Sl Sy, Ty Cij,ﬂ‘l,S{L)
(45)

Figure 6 shows the bifurcation diagrams and char-

A1 (Xp,pq) = (Cﬂ,le,Sé) acteristic sequences of DT1, VV2 and VI1 bifurca-
BF1 — As (Xp, Py) = (C ni Sz) tions. The topological normal forms are given in 1.
- 1) - JZ: x ' Ms
A3 (%0, P3) = (Cyis T3, 57, Qs 51 )

6 SPT Method in Global Bifurcation
Analysis

(41)
The BF, BN and BS bifurcations are character-
ized by the intersection between a tangent cufve
and a pseudo-equilibrium curv@ when the param- To analyze global bifurcations which involve sliding
eter is varied. In the bifurcation point the system has on the discontinuity boundary the integration is un-
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avoidable, however using the SPT method explained
previously, we can determine the initial condition of
the integration to reduce the compute time.

Grazing crossingandswitchingbifurcations can
be detected easily using SPT method. In the critic val-
ues the cycles are denoted By, L., and L, re-
spectively.

A normal sequences @y (Xp,p,t) =
{(I)l (X, plat) ,<I)2 (Xa p2vt> 7<I>3 (X, pSat)} can be
defined in each case when the parameter vegtor
is varied. The central elemerd#? (x, p,,t) repro-
duces the behavior in the critic value pf while
side elements have the behavior before an after the
bifurcation, respectively.

The Filippov system has a grazing bifurcation
point when a standard cycle collides with the DB in
a tangent poin’. The tangent point should be con-
tained in the subs@t® = {T;"; T, T7"; T5'}.

q)l (X7 pla t) LS
(1)2 (Xa p2) t) LQ

3 (X, p3,t) = Ly

Gy (46)

The normal sequencef grazing bifurcationis
presented in the equation (46). The initial condition
®(ty) of the orbit is the tangent poirf. If the tan-
gent vector field inl" is F; (points: T°" or Tfl) then
we integrate the equation= F; (x,p). Otherwise, if
the tangent vector field iff’ is F; (points: 75" ; T5')
then we integrate the equatien= F; (x,p). In the
equation [(47), the conditions of the flow in grazing
bifurcation are summarized.

L (tg) =T;®! (t1) = Ss; @ (xp,8) & C
D2 (tg) = T; @ (to + kto) = T; 9 (x5, 1) ¢ {S,C}
B3 (tg) = T; 0% (x,1) ¢ 3
(47)

The crossing bifurcation point happens when a
crossing cycle returns to tangent point without slid-
ing points on DB. Both field vectorB; and F; should
be integrated to verify the crossing bifurcation. The
normal sequencef crossing bifurcation is presented
in the equation (48).

(I)l (Xa pla t) = LS
CI)2 (X, P2, t) = Lcr
®3 (X, p3,t) = Le

Gcr

(48)

The initial condition®(¢() of the orbit is the tan-
gent pointT. If the tangent vector field i is F;
(points: T7°" or Tfl) then we integrate the equation
X = F; (x,p). In atimet, the crossing cycld..r re-
turns to the tangent poifit without sliding points on
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DB. In the equation (49), the conditions of the flow in
grazing bifurcation are summarized.

B! (to) = T; ' (1) = S5; ' (x4, 1) & C
O? (to) = T3 9% (1) = C;@% (t2) = T
@2 (Xb, t) §‘é S
D3 (to) = T;9° (t1) = C; 9% (t2) = Ss
(49)

In the switching bifurcation point the solution
travels an entire stable sliding segment and returns to
a tangent point defined as initial conditi@ih. Two
tangent pointd; and7» are necessary in the switch-
ing bifurcation. The initial conditiof} is defined de-
pending of the sliding segment direction.

(I)l (Xv p1>t) = LS
Gsw = (1)2 (X7 P2, t) = Lgw (50)
(1)3 (Xv p3> t) = LS

The normal sequencef switching bifurcation is
presented in the equation (50). The switching cycle
L, arrives ofT; to Ty in a timetq, after the solution
slides and returns t@; in a timet, without crossing
points on DB. In the equation (51), the conditions of
the flow in switching bifurcation are summarized.

ol (to) =1T; P! (tl) =S5 P! (Xb,t) ¢ C
@2 (to) = Tl; ‘1>2 (tl) = TQ; (1)2 (tg) = T1
@2 (Xb, t) ¢ C
D3 (to) = T1; @ (t1) = C; ° (t2) = S,
(51)
Figure 7 shows the bifurcation diagrams and char-
acteristic sequences of grazing, crossing and switch-
ing bifurcations.

7 lllustrative Example

In this section, we study a mechanical system using
the SPT method. The system selected is a friction
oscillator composed by a cam-follower system and a
mass slider.

The chosen cam is a cylindrical or drum cam.
This cam can have symmetrical cam profile or asym-
metrical cam profile. The mass slideris mounted on
a follower element which runs forward with a speed

A schematic drawing of the mechanical system
is shown in figure 8(a). According to the model de-
scribed in figure 8(awe can plot the free body dia-
gram as shown in figure 8 where F; = ma repre-
sents the inertial force of the mass slider dndrep-
resents the friction force. Therefore,

mjé:Ff
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Let v, bethe relative velocity defined as the dif-

slider velocity:v,. = v — @. Depending on the direc-

dynamic friction coefficient i9.2.
tion of static friction force, the mass slider can present

friction force is1.5N, shape factod is 0.79, stribeck
ference between the follower velocity and the mass velocity is1.5m/s, maximum high cam i8.05m and
sliding or not.

(a)

Figure8: cam-follower wit mass slider(a). Schematic draw-

ing of the mechanical systenib). Free body diagram(c). Fric-
tion force curve.

R —

The friction force is expressed as equation/(52)
where the friction force depends on the follower ac-

celeration. When the follower velocity no changes,
the friction force is zero.

cnn VRV
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Fys = (m)(sign(v))(sign(v)) (52)
During sliding, the friction model is given by
equation [(53) wherer, is the viscous friction coef-
ficient, Fo is the Coulomb frictiony,, is the stribeck

velocity andd is a shape factor. The friction force
curve is shown in figure 8{.
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(b) Vector fields

Fre=ko+ [FO + Ky (exp(— ykv\‘s)} [sign(v,)]
(53)
with,

ky = (U’"/vr - Ustr)

ko = o9v,

klz(Ffs_FC)

Assuming thatr; is associated to mass slider po-
sition andzx, is associated to mass slider velocity, the
dynamic equation can be expressed as:

T x2
. = 54
B[] e
The simulation parameters are: Time period (T)
is 1 second, Coulomb friction force iV, maximum

(c) Analysis with SPT method

Figure 9: Nonsmooth local dynamics of cam-follower with
mass slider. = m, w = 600rpm)

Using the symmetrical cam profile, the system
ISSN: 1109-2777
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is simulated and the phase portrait is created. With
w = 600rpm the mass presents multi-sliding behav-
iors. The mass slider behavior is presented in figure 9.
The multi-sliding response can be characterized with
the type of points on DB.

The multi-sliding orbit is divided
into periodic sequences of points:
{ 7QT75879T7079T75579T'”}- For ex-

ample, the SPT method detects the sequence:
(---,9,3,7,2,7,3,7,---) in the piece of flow
presented in figure 9(c).

Figure 10: Nonsmooth global dynamics of cam-follower with
mass slider.

Global dynamics on cam-follower with slider
mass can be studied with SPT method too. &or
60rpm the system has standard cycles. Figuré&:]0
shows a cycld.; with the sequenceB(J.

Forw =~ 120rpm the system has multi-sliding
cycles. Figure 10(cghows a cycld.,,s with the se-
quencel(Qr, B, Ss,Qr, B, Ss, 1, B) |.

Forw > 4000rpm the system has sliding cycles.
Figure 10(b)and (d) shows a cyclel; with the se-
quences(Qr, B, SSU and(Qr, A, SSU.

8 Conclusion

We have presented the fundamental set of rules behind
of theLabViewtoolbox for bifurcation analysis of Fil-
ippov systems denominat&PTCont 1.0. We have
shown the characteristic point sequences BRT-
Cont 1.0 detects to guarantee the existence of local
and global nonsmooth bifurcations in planar Filippov
systemsq = 2). Dynamics on DB and cycles have
been defined in function of the set of points. The full
catalog of codim 1 local and global bifurcations have

been used to define the characteristic point sequence[12] P.T. Piiroinen Yu.

when the bifurcation parameter is varied.
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