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Abstract: We consider the rectangular three dimensional bin packing problem with knapsack, where the bin is
packed with a set of rectangular boxes, without gaps or overlapping. Starting from a solution of the three dimen-
sional bin packing model, our objective is to determine an order of the loading the boxes in the bin so that a box
will be packed in the bin only if there are no empty spaces down to this box and the origin of the box is in a fixed
position, determinated by the boxes situated in the West and North neighbourhood. By extension of the previous
work regarding the two dimensional covering problem [12] and the three dimensional bin packing problem [15],
we define three kind of adjacency relations between two boxes from a packing model, similarly with [13, 14].
Combining these relations we define an acyclic graph representation of the bin packing model. A plan for lauding
of the boxes in the bin is obtained using a topological sorting algorithm of the vertices of this acyclic graph.
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1 Introduction

In computational complexity theory, the bin-packing
optimization problem is a known NP-hard problem,
concerns efficiently placing box-shaped objects of ar-
bitrary size and number into a box-shaped. Such prob-
lems are also referred to as Cutting and Packing prob-
lems in [3] or Cutting and Covering in [5]. Since the
advent of computer science, bin-packing remains one
of the classic difficult problems today.

At this time, no optimal polynomial time algo-
rithm is known for the bin-packing problem. In other
words, finding a perfect solution to one non-trivial in-
stance of the bin-packing problem with even the most
powerful computer may take months or years.

Many kinds of bin-packing problems were con-
sidered, one dimensional, two dimensional and three
dimensional with many kinds of constrains depending
on technological restrictions [9].

The three-dimensional bin-packing problem re-
tains the difficulty of lesser dimensional bin-packing
problems, but holds unique and important applica-
tions. As one would expect, each object and bin exists
in three dimensions: width, length, and height. The
goal is to minimize the number of bins required to
pack all the boxes. Like two dimensional bin-packing,

each box must stay orthogonal, or maintains its orien-
tation in the container. If two dimensional bin-packing
is equivalent to rectangle-to-floor plan packing [5, 17],
three dimensional bin-packing is equivalent to box-to-
room packing.

The three dimensional bin-packing may involve a
single bin or multiple bins. The singular bin-packing
problem involves only one bin with either definite or
infinite volume.

Bins with infinite volume are defined with finite
length and width, but with height extending to infin-
ity. This allows packing solutions to pack until the
set of boxes are exhausted. Solutions dealing with in-
finitely sized bins aim to include a maximum number
of objects.

Another way to approach this problem is by con-
sidering multiple boxes. Each bin has definite volume.
In this way, if the volume of the objects exceeds the
volume of the room, an algorithm must make choices
of which boxes to include in the packing and which to
throw away. This approach is good for deterministic
approaches to the bin-packing problem.

These problems ask: ”Do the bins hold enough
volume to fit these objects?”, and if it does: ”Can we
arrange all objects in bins?”.

Like all bin-packing problems, extra constraints
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may be added to the problem to match a certain real-
world problem. In warehouses, gravity is a constraint
meaning that all boxes must rest on the floor, box, or
other platform (such as a pallet) below it.

Another constraint may be weight distribution.
Real objects have mass and weight, so a packing may
aim to obtain an equal weight distribution in the stor-
age space. Placing all the weight in one location could
cause a boat to tip or a truck to become unstable. Also,
we may not want a large, heavy object on top of a
smaller, lighter object-such as a 1 kg shoe box.

Time can be another constraint; for example, one
might want a schedule that allows packing a room in
a time-efficient manner.

Each of these bin-packing problems with con-
straints may be simplified.

Many models and algorithms exist for bin pack-
ing problem: formulation as a mixed integer pro-
gram, which can solve the small sized instance to op-
timum [8], genetic algorithms [10], approximation al-
gorithms [5, 7, 6, 20] or active learning method [11].
While an approximation algorithm is a method that
attempts to place objects in the least amount of space
and time, a mixed integer program gives solution as
the position of the boxes in the bin. For this kind of
situation we need a plan for packing the boxes in the
bin. This is our objective, to determine the order of
packing the boxes in the bin if we know the packing
solution of the bin.

2 Problem formulation
Let P be a rectangular bin, characterized by length l,
width w, height h. The bin P is filled with k rect-
angular boxes C1, C2, . . . Ck without gaps or overlap-
ping. A boxCi is characterized by length li , widthwi,
height hi. We consider a coordinate system xOyz so
that the cornerO is the origin of the coordinate system
like in Figure 1.

We will use the following notations:
- ABCO is the bottom face of the bin

- GDEF is the top face of the bin

- OADG is the West face of the bin

- OCFG is the North face of the bin

- EBCF is the East face of the bin

- ABDE is the South face of the bin

- O−Ci is the O-corner of the box Ci of coordinates
(xi, yi, zi)

Figure 1: The position of box Ci in the bin

By extending the results from [13, 14] for two
dimensional covering model to the three dimensional
bin packing model, we define three kinds of adjacency
relations between the boxes Ci and Cj from the bin,
adjacency in the direction of Ox, Oy and Oz.

Definition 1 The box Ci is adjacent in Ox direction
with the box Cj in the bin P (Figure 2) if the South
face of Ci and the North face of Cj have at lest three
non-collinear common points, one of which isO−Cj .

Remark 2 From Definition 1 it follows that if Ci is
adjacent with Cj in the direction of Ox we will have:

xi < xj

yi ≤ yj

zi ≤ zj
In Figure 3 is one situation when the two boxes

are not adjacent in the direction ofOx becauseO−Cj

is not a common point of the boxes Ci and Cj .

Definition 3 The box Ci is adjacent in Oy direction
with box Cj in the bin P (Figure 4) if the East face
of Ci and the West face of Cj have at lest three non-
collinear common points, one of which is O − Cj .

WSEAS TRANSACTIONS on SYSTEMS
Marinescudaniela,Iacobpaul 
and B˘Aicoianualexandra

ISSN: 1109-2777 831 Issue 10, Volume 7, October 2008



Figure 2: Adjacency in Ox direction

Figure 3: Non adjacency in Ox direction

Figure 4: Adjacency in Oy direction

Remark 4 From Definition 3 it follows that if Ci is
adjacent with Cj in Oy direction we will have:

yi < yj

xi ≤ xj

zi ≤ zj
In Figure 5 is one situation when the two boxes

are not adjacent in the direction ofOy becauseO−Cj

is not a common point of the boxes Ci and Cj .

Figure 5: Non adjacency in Oy direction

Definition 5 The box Ci is adjacent in Oz direction
with box Cj in the bin P (Figure 6) if the North face
of Ci and the South face of Cj have at lest three non-
collinear common points.

Remark 6 In Definition 5 it is not necessary for Ci

and Cj to have O − Cj as a common point because
our purpose is to give an order of packing and from
this point of view we will pack the box Cj only if all
the boxes situated downward Cj were already packed.
For this reason if Ci is adjacent in Oz direction with
Cj conclude that zi < zj and there are no more con-
ditions.
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Figure 6: Adjacency in Oz direction

Figure 7: Non adjacency in Oz and Oy directions

Similarly, in Figure 7 is one situation when the
two boxes are not adjacent in the direction of Oz and
Oy. That means we can pack Cj in the bin before or
after packing Ci.

Figure 8: Non adjacency in Ox and Oy directions

We consider that Ci and Cj from Figure 8 are not
adjacency in Ox nor Oy direction because they have
only collinear common points.

Starting from these three kinds of adjacency we
define three kind of graphs :

- GOx- the graph of adjacency in direction Ox

- GOy- the graph of adjacency in direction Oy

- GOz- the graph of adjacency in direction Oz

Definition 7 The graph of adjacency in Ox direction
is GOx = (C ∪ x,ΓOx). where the vertices are the
boxes from C = (C1, C2, ...Ck) and x represents the
face GOCF situated on the yOz plane, and

ΓOx(Ci) 3 Cj if Ci is adjacent in
direction Ox with Cj

ΓOx(X) 3 Ci if the North face of Ci

touches the yOz plan

Definition 8 The graph of adjacency in Oy direction
is GOy = (C ∪ y,ΓOy). where the vertices are the
boxes from C = (C1, C2, ...Ck) and y represents the
face DAOG situated on the xOz plane, and

ΓOy(Ci) 3 Cj if Ci is adjacent in
direction Oy with Cj

ΓOy(Y ) 3 Ci if the West face of Ci

touches the xOz plan
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Definition 9 The graph of adjacency in Oz direction
is GOz = (C ∪ z,ΓOz). where the vertices are the
boxes from C = (C1, C2, ...Ck) and z represents the
face ABCO situated on the xOy plane, and

ΓOz(Ci) 3 Cj if Ci is adjacent in
direction Oz with Cj

ΓOz(Z) 3 Ci if the bottom face
of Ci touches the xOy plan

Example 1.
Let us have the packing model from Figures 9, 10.

Figure 9: The view of the Packing model from the
Southeastern-top point

Then the GOx, GOy and GOz are the graphs from
Figures 11, 12, 13.

The graphs GOx, GOy and GOz have important
properties:

Theorem 10 The graphs GOx, GOy and GOz for a
packing model are acyclic.

Proof: We will prove the theorem for GOx graph
because for GOy or GOz the result is similar.
Let the graph GOx for a packing model of a bin P
with the boxes C1, C2, ...Ck.

Assume that the graph GOx is cyclic. That means
there is a simple path in GOx which leaves from an
element Ci1 and returns to Ci1 .
Let this path be µ = [Ci1 , Ci2 , . . . , Ci1 ].

Figure 10: The view of the Packing model from the
Northweastern-bottom point

From Remark 2 it follows that:

xi1 < xi2 < . . . < xiµ < xi1 ⇒ xi1 < xi1

This is impossible, so the presumption GOx is
cyclic, is false. ut

Theorem 11 Assume we have the graphs GOx, GOy

and GOz for a packing model of the bin P with boxes
C1, C2, . . . Ck. We have the following properties:

- if Cj ∈ ΓOx(Ci) then Cj /∈ ΓOy(Ci) ∪ ΓOz(Ci)

- if Cj ∈ ΓOy(Ci) then Cj /∈ ΓOx(Ci) ∪ ΓOz(Ci)

- if Cj ∈ ΓOz(Ci) then Cj /∈ ΓOx(Ci) ∪ ΓOy(Ci)

Proof: Assume that Cj ∈ ΓOx(Ci). It follows
that Ci is adjacent with Cj in the Ox direction. From
Definition 1 it follows that the South face of Ci and
the North face of Cj have at least three non-collinear
points. Now we can use Remark 7 and it follows is
impossible that the East face of Ci and the West face
of Cj to have also three non-collinear points. It is
impossible also that the top face ofCi and bottom face
of Cj to have three non-collinear points.

The proof for the graphs GOy and GOz are simi-
lar. ut
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Figure 11: Graph GOx

3 The Compound Graph for the
Packing problem

Similarly with [14] due the Theorem 11 it is possible
to represent simultaneously the graphs of adjacency
in the directions ofOx, Oy orOz by single adjacency
matrix T , a matrix with elements from the set 0,1,2,3.
So we will use 1 for GOx, 2 for GOy, 3 for GOz and 0
if there is no adjacency.

The matrix T is defined like:

Tij =


1, if ΓOx(Ci) 3 Cj

2, if ΓOy(Ci) 3 Cj

3, if ΓOz(Ci) 3 Cj

0, the other cases

From the Theorem 11 it follows that the matrix
T is correctly defined because the box Cj has at most
one relation with the boxCj in the bin packing model.

Definition 12 For any packing model we define a net-
work, a graph of compound adjacency Gc = (C,Γc)
where Γc(Ci) 3 Cj if Tij 6= 0. Additionally, the value
of the arch (Ci, Cj) is Tij , if Tij 6= 0.

Exemple 2.
For the packing model from the Example 1, illus-

trated in the Figures 9 and 10, the matrix T is:

Figure 12: Graph GOy

T =



A B C D E F G H

A 0 1 0 1 1 3 0 3
B 0 0 1 3 0 0 0 0
C 0 0 0 0 0 0 3 0
D 0 0 0 0 0 0 0 0
E 0 2 2 2 2 3 0 0
F 0 0 0 0 0 0 2 2
G 0 0 0 0 0 0 0 0
H 0 0 0 0 0 0 1 0


and the graph of compound adjacency is repre-
sented like in Figure 14.

In [12] it is shown that the adjacency relation in
one plan which is parallel with xOy define an acyclic
compound graph.

Let’s see the situation when these relations are
3D-dimensional.

Theorem 13 The graph Gc for a packing model of
the boxes C1, C2, . . . Ck in the bin P is acyclic.

Proof: Assume that the graph Gc for a pack-
ing model of the boxes C1, C2, . . . Ck in the bin P
is cyclic and let examine two situations:

(i) Assume that we have a cycle Ci1 , Ci2 , . . . , Cin

in the compound graph Gc and this cycle is composed
only from arches with value 1 and 2. It means that we
consider only the arches from GOx and GOy.

From the Remark 2 and the Remark 4 it follows
that:

xi1 ≤ xi2 ≤ . . . ≤ xin
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Figure 13: Graph GOz

and
yi1 ≤ yi2 ≤ . . . ≤ yin

and there is at least one index ik so that xik < xik+1

or yik < yik+1
.

It follows that xi1 < xin or yi1 < yin that means
Ci1 6= Cin and is impossible to have such a kind of
cycle in the graph Gc.

(ii) Suppose that we have a cycle
Ci1 , Ci2 , . . . , Cin with arches from GOx and
from GOy and there is at least one arch (Cik , Cik+1

)
from GOz . From the Remarks 2, 4 and 6 we have
that:

zi1 ≤ zi2 ≤ . . . ≤ zik < zik+1
≤ . . . ≤ zin

It folows that:

zi1 < zin

and so Ci1 6= Cin and the path Ci1 , Ci2 , . . . , Cin is
not a cycle.

From (i) and (ii) it follows that the graph Gc for a
packing model of the boxes C1, C2, . . . Ck in the bin
P is acyclic. ut

Figure 14: The compound graph Gc

Definition 14 [1] A topological sorting of a directed
acyclic graph G = (C, Γ) is a linear ordering of all its
vertices so that, if G contains an arch (Ci, Cj) then Ci

appears in the order before Cj .

Theorem 15 There is a topological order of the ver-
tices from the set C in the compound Gc.

Proof: The proof results directly from Theorem
13 and from [1] because the compound graph Gc is
acyclic. ut

From the definition of the compound graph Gc, a
topological order of the vertices from the set C means
that if there is an arch from Ci to Cj inGc (i.e. if Ci is
adjacent with Cj in direction of Ox, Oy or Oz) then
Ci must appear before Cj in the topological order.

Overview the significance of the compound graph
Gc for the packing model, it follows that a box Cj is
packed only if the corner O−Cj is in a fixed position
(with one neighbor box on the West and one neighbor
box on the North side) and all the boxes situated bel-
low Cj , which are adjacent with Cj in Oz direction,
were already packed. This is a reasonable condition
from a practical point of view.

Theorem 16 The compound graph for a rectangu-
lar covering model Gc is a particular network, where
there is a single vertex without ascendants.

Proof: Let S1, S2, . . . , Sk the topological order
of the vertex from the set C. Let Ci so that O − Ci

is O, that means Ci is situated in the corner O of box
P . From the definition of graphs GOx, GOy and GOz

it follows that

Ci ∈ ΓOx(X) ∩ ΓOy(Y ) ∩ ΓOz(Z)
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.
If we eliminate the vertices X,Y, Z from Gc it

follows that Ci is a vertex without ascendants in the
graph Gc. It is evident that S1 = Ci, the first in the
topological order.

More, for every Si ∈ C there is a path from S1 to
Si. ut

4 Topological Sorting Algorithm

To determine a topological order of the boxes
C1, C2, . . . , Ck we can use a topological sorting al-
gorithm from [2] or a new algorithm, OVERDIAG-
3D which is an extension of previous algorithm from
[12]. This algorithm is based on the particularity of
the compound graph Gc, respectively on the form of
the matrix T , attached to the graph Gc.

4.1 OVERDIAG-3D Algorithm

From Theorem 15 it follows that there is a topolog-
ical order in Gc. Then the matrix T, attached to the
compound graph Gc, is an over diagonal matrix with
the main diagonal equal to 0, when the vertices are in
topological order. We will base our algorithm on two
observations:

1. By changing lines and columns in the adjacency
matrix, the number of elements equal to zero re-
mains unchanged ;

2. We can always find a column with the necessary
number of zeroes.

For finding the topological order of the set C we
extend our matrix T (k×k) to the matrixA(k×(k+1))
by attaching a new column, k + 1, to the columns of
T , which preserve the original number of rows. We
will transform the matrix A in an overdiagonal matrix,
by changing the lines and the columns.
Finally the new column, k + 1, of the matrix A repre-
sents the topological order of the set C.

4.1.1 Correctness and Complexity

Applying the OVERDIAG-3D algorithm we change
the order of the vertices Ci so that the matrix T for the
compound graph Gc became an over diagonal matrix.
It follows that Tij = 0 for all i ≥ j and it is possible to
have Tij 6= 0 only if i < j.

For the compound graphGc that means there is an
arch from Ci to Cj only if i < j so Ci appears before

Cj in the ordered set C. It follows that C is topologi-
cally sorted.

Remark that the OVERDIAG-3D algorithm is of
linear complexity in k2, the maximal number of ver-
tices in the compound graph Gc.

for i=1 to n-1 do
jc = 0; jc3 = 0; jl = 0; jl3 = 0; j = 1;
repeat

if A (i, j) = 0 then j = j + 1;
until A (i, j) 6= 0 or j = n+ 1 ;
k = i+ 1;
repeat

if A (k, j) = 0 then k = k + 1
/* test if the column is 0

*/ ;
until k = n+ 1 or A (k, j) 6= 0 ;
if k = n+ 1 then

if A (i, j) = 3 then jc3 = j
else if A (i, j) 6= 0 then jc = j

end
repeat

if A (j, i) = 0 then j = j + 1
/* looking for nonzero
elements */

until A (j, i) 6= 0 or j = n ;
k = i+ 1
repeat

if A (j, k) = 0 then k = k + 1
/* test if the row is 0 */

until k = n+ 1 or A (j, k) 6= 0 ;
if k = n+ 1 then

if A (j, i) = 3 then jl3 = j
else if A (j, i) 6= 0 then jl = j

end
if jc 6= 0 then Changecol (i, jc);
/* interchange the columns i
and jc */
else if jl 6= 0 then Changelin (i, jc);
/* interchanage the rows i and
jc */
if jc3 6= 0 then Changecol (i, jc3)
else Changelin (i, jc3) /* from
Theoreme 11 it follows that
there is at least one nonzero
element */

end
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5 Conclusions
The two dimensional and the three dimensional bin-
packing problems hold importance to many fields.
The two dimensional bin packing problem is used in
the paper industry or glas industry or in the field of
pattern recognition [4]. Set coverig problem is applied
in instance of the set reduction for machine learning in
[18] or to approximate cover an area by antennas.

Shipping and moving industries, architecture, en-
gineering, and design are all areas where three dimen-
sional bin-packing could apply.

Industry uses bin-packing for everything from
scheduling television programming to stacking cargo
in a semi-truck to designing automobiles and air-
planes.

Another application of the three dimensional bin
packing problem is for cutting in the wood industry
[16].

Recently, the Institute for Algorithms and Scien-
tific Computing in Germany used three dimensional
packing for research in molecular biology and chem-
istry and also with automobile design for manufac-
turer Mercedes-Benz [21].

In New Zeeland a manufacturer of electrical cable
requested a way to efficiently pack drums and pallets
of cable into standard shipping containers for trans-
port overseas.

A problem here, after the determination of a pack-
ing model, is to determine the order in which the
boxes will be packed in the bin, the plan of packing.

This kind of order can be the topological order
given by us, where the placement begins with the
northwestern-bottom corner of the bin and it ends with
a box situated on the top of the bin.

We intend to apply these results and previous re-
sults [12] in the field of the Renewable Energy for
determine the optimal placement of the set of photo-
voltaic cells in a field of cells.
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