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Abstract: - Partial discharges in a power transformer are often a predecessor of serious fault, as Power 
transformers are fundamental apparatuses in electrical power system network. Thus, partial discharge 
measurement are a significant diagnostic tool to supervise the insulation state of a power transformer, as 
elementry Partial Discharges (PD) detection is not adequate to make a decision about intervening, so the 
localization is required to evaluate the risk and to plan rectification actions. Acoustic signals collected by 
piezoelectric sensors established outside of the transformer, supply the accurate position of PD as parameters. 
Conclusion demonstrates the efficacious of suggested solution for PD source localization in oil insulating 
power transformers using Adaptive Tabu Search (ATS). 
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1 Introduction 

Generally, power transformers are one of the 
most important components in electrical power 
system networks. In addition, power transformers 
are very expensive and form a high percentage of 
investment of a power system. It is well-known that 
all service life of power transformer the dielectric 
strength of its insulation system is decreased due to 
the cumulative effect of the thermal, electrical and 
mechanical stresses. Insulation failure of a power 
transformer can cause disruptions and result in very 
expensive losses in power system. Most insulation 
failures of a power transformer are caused by partial 
discharges (PD), that are localized electrical 
discharges within a void of an insulation system. 
Although only a small amount of energy is 
involved, the PD can cause the progressive 
deterioration of the insulation that may lead to a 
disruptive breakdown. 

 
 Extending transformer life as long as possible is 

not only economically valuable, but also prevents 
lost revenues when power outages occur. Statistical 
studies have shown that failures of bushings, 
winding insulation, and online tap changers are the 
main causes for long duration outages of 
transformers [1]. As result, the instrument for 
supervising the conditions of power transformer unit 
has to be in special interest and development. An 

on-line continuous insulation monitoring diagnostic 
system helps prevent power interruptions and costly 
damage caused by insulation failure. 

 
   In general, PDs inside the power transformer 

can be detected by three approaches of detection 
including (i) electrical, (ii) chemical and (ii) 
acoustic methods [2]. (i) The electrical method can 
provide accurate recordings of PDs under laboratory 
conditions, but it is difficult to be applied in the 
field on in-service power transformers because of 
the high environmental noise level and lack of 
accurate calibrations. (ii) The current chemical 
approach detects PDs in power transformers by 
taking gas or oil samples from the transformer. Each 
type of dissolved gas which measured from 
insulating oil indicates PDs inside in-service power 
transformer. Problems associated with chemical 
methods are the fact that there can be a long time 
delay between the initiation of a PD source and the 
evolution of enough gas to be detectable. For the 
electrical and chemical methods, a further limitation 
of them is that it is generally not possible to allocate 
the exact location of a detected PD source. (iii) 
Generally speaking, a PD results in a localized, 
nearly instantaneous release of energy. It produces 
acoustic waves propagating through the insulate 
medium. By placing a suitable sensor, the acoustic 
wave can be detected to generate information 
relevant to the PDs. One obvious advantage of the 
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acoustic methods is that the site of a PD can be 
located by studying the phase delay or the amplitude 
attenuation of the acoustic waves. 

 
   Furthermore, acoustic methods have the 

potential advantage of better noise immunity for on-
line PD detection applications. Acoustic PD 
detection can be realized by mounting acoustic 
sensors externally on the walls of the power 
transformer, and very often a suitable coupling is 
used to ensure good transmission of the acoustic 
waves. The externally mounted acoustic sensor 
method offers the advantage of easy installation and 
replacement. However, the acoustic sensor suffers 
from corruption of the signal from environmental 
noises such as electro-magnetic interference [3]. 

 
   The acoustic method is based in the fact that 

when a PD occurs, an acoustic wave is emitted. 
Therefore, it can be detected by one or more sensors 
spread on the walls outside the isolated oil 
transformer. Acoustic partial discharge detection 
apparatus is very simple, consisting of a sensor, 
filter, preamplifier, and some type of data 
acquisition instrument (e.g., storage oscilloscope), 
as shown in Fig. 1[4]. 

The detected sign shall be processed to extract 
useful parameters for the flaw diagnosis. Among 
these parameters, there is the instant in which the 
front of the wave reaches the sensor when going 

through a straight line between it and the origin of 
the emission, needed to perform the localization, 
which is essential for the estimation of the flaw risk, 
as well as to plan the repairs. 

 

 
Fig. 1 Acoustic partial discharge detection circuit 

 
The possibility of PD location is one of the major 
features of acoustic discharge detection. Location 
can be based on either measurement of the time of 
signal arrival at a sensor or on measurement of 
signal level, as shown in Fig. 2. In practical 
situations, a location based on a time-of-flight 
measurement requires two or more simultaneous 
measurements in order to facilitate triangulation to 
determine the source location. The simplest 
approach is to measure the electrical signal 
simultaneously with the acoustic signal. If the 
acoustic propagation velocity is known, then 
calculation of the source location becomes simple. 
However, the fact that different wave components 
travel along different paths in a structure is a 
complicating factor. 
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Fig. 2 Triangulation of source location based on time of flight measurements. (a) Based on measurement of 

both electric and acoustic signals; (b) based on only acoustic measurements 
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       Up to now, artificial intelligent techniques have 
been adopted to many applications in electrical 
engineering field [5–11]. The objective of this work 
is to apply an artificial intelligent technique, 
Adaptive Tabu Search algorithm (ATS), to solve 
non-linear equation system for PD source 
localization in oil insulating power transformer. 
According to this purpose, the equations of the 
system are reformulated as an optimization problem 
and an optimal solution with the ATS is sought. 
Beyond that, a wide range of sensors can be used 
without any need to change the algorithm. This 
work does not approach the processing of the 
acoustic emission (AE) signal needed to obtain the 
parameters used by the ATS. The problem of the 
localization is initially turned into an equation and 
some strategies are presented to solve it. Therefore, 
this work does not approach the acoustic technique 
for the detection of partial discharges as a whole, 
but only the part referring to their localization. 

 

2 Formation of Mathematical Model  

PDs source localization by the use of acoustic 
signals can be modeled through a system of non-
linear equations. As already known, to numerically 
solve a non-linear system is not simple, and 
normally it depends on a deep knowledge of the 
problem to get to an algorithm able to rapidly 
converge into a solution [12 – 16].  

 
 A procedure for turning the problem into an 

equation of PD source localization is illustrated in 
the Fig. 3. Four acoustic sensors are spread on the 
walls of the tank, which adopts any point as the 
origin of a rectangular coordinates system in three 
dimensions. 
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Fig. 3 Scheme for turning the problem into an 

equation 
    
 

Fig. 3 shows that the acoustic signal emitted from 
PD source at any given point P(x, y, z) in the oil 
propagates to all acoustic signal sensors. Assuming 
the propagation time of acoustic signal to the 
acoustic sensor S1 is T and the distance ( L) from the 
PD source to the four acoustic sensors is then given 
by the following formulas: 

 

1 1s sL v T v T= =  (1) 

( )2 2 12s sL v T v T τ= = +  (2) 

( )3 3 13s sL v T v T τ= = +  (3) 

( )4 4 14s sL v T v T τ= = +  (4) 

 
   where Tn  is the propagation time from the PD 

source to the sensor Sn, τ1n is the time delay between 
the acoustic sensor S1 and Sn and vs is the 
propagation velocity in the oil. 

    
Non-linear equations system for PD source 

localization can be obtained considering each sensor 
as the center of a sphere whose radius is the distance 
between the acoustic sensors to the PD source, as 
shown in Fig. 4. 

 
As shown in Fig. 4, radius of the sphere not only 

given in term of propagation speed vs of the acoustic 
signal in the oil and in terms of the time Tn in which 
it took to reach the point where the sensor is, as 
shown in equation (1) – (4). But the equation of the 
sphere radius can be given in the following way: 

 

  2 2 2 2 2( ) ( ) ( ) ( )− + − + − = ⋅ =n n n s n nx x y y z z v T L (5) 

  where (xn, yn, zn) are the coordinates of the 
sensor Sn.  

(xn,yn,zn)
P (x,y,z)

LnSn

 
Fig. 4 Sphere with the center in the sensor to turn 
into an equation the problem of the localization of 
the AE source. 
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   However, the time intervals in which the 
acoustic signal takes to reach the acoustic sensors 
can not be directly obtained without the 
simultaneous electric detection. Therefore, a scheme 
with many acoustic sensors shall be used to monitor 
the transformer when an acoustic emission occurs 
due to a PD, in case the only method used is the 
acoustic one. Differences of time in relation to the 
first sensor that detected the acoustic signal were 
recorded. Stated that, the unknown factors of the 
problem shall be the time interval T between the 
occurrence of the PD and the detection of the 
acoustic signal by the nearest acoustic sensor and 
the rectangular coordinates(x, y, z) of the position of 
the acoustic emission source, that is, the position of 
the PD. Therefore, a nonlinear system with four 
equations is obtained: 

 
2 2 2 2

1 1 1 1( ) ( ) ( ) ( )sx x y y z z v T− + − + − = ⋅  (6) 

( )22 2 2
2 2 2 2( ) ( ) ( ) sx x y y z z v T− + − + − = ⋅  (7) 

( )22 2 2
3 3 3 3( ) ( ) ( ) sx x y y z z v T− + − + − = ⋅  (8) 

( )22 2 2
4 4 4 4( ) ( ) ( ) sx x y y z z v T− + − + − = ⋅  (9) 

 

3 Adaptive Tabu Search Algorithm  

     The tabu search (TS) algorithm is an iterative 
search that starts from some initial feasible solution 
and attempts to determine a better solution in the 
manner of a hill-climbing algorithm. TS is 
commonly developed for solving local optimization 
problem. The algorithm keeps historical local 
optima for leading to the near-global optimum fast 
and efficiently. The local optima are kept in Tabu 
List (TL) for making sure that there will be no same 
local optimum happening again in the process. 
Another powerful tool in TS is called backtracking. 
Backtracking process starts from stepping back to 
some local optimum in TL and then searching a new 
optimum in different directions. Backtracking is 
performed when the backtracking criterion (BC) is 
encountered.  

 
The TS algorithm has a flexible memory in which 

to maintain the information about the past step of 
the search and uses it to create and exploit the better 
solutions. The main two components of the TS 
algorithm are the tabu list (TL) restrictions and the 

aspiration criterion (AC). Before TS procedure 
explanation, the following Tabu components must 
be defined. 

Solution, Search Space, Move and 
Neighborhood : A solution is an output from a 
process in the algorithm. Search space is a domain 
containing all possible solutions. A move is a 
process creating a new solution from the current 
solution within search space. Neighborhood is a set 
of all possible moves from the current solution. 
     Cost and Objective Function: Cost is a value 
for judging what solution is better than the others. 
Objective function returns the solution cost. 

Tabu Criterion (TC): To prevent cycling search, 
some moves should be forbidden under a condition 
known as TC. Normally, TC will ban local optimal 
solutions, which are recorded in TL. 

BC: In opposition to TC, this condition allows a 
solution in TC to be a new solution. This usually 
happens when moving under TC gets stuck in a 
local optimum. 

 
In applying the TS algorithm, to solve a 

combinatorial optimization problem, the basic idea 
is to choose a feasible solution at random and then 
obtain a neighbor to this solution. A move to this 
neighbor is performed if either it does not belong to 
the TL or, in case of being in the TL it passes the 
AC test. During these search procedures the best 
solution is always updated and stored aside until the 
stopping criterion is satisfied [6,10]. 

 
Well description and detail of adaptive tabu 

search (ATS) can be found in [17-19]. The 
following notations are used through the description 
of the ATS algorithm for a general combinatorial 
optimization problem: 

 
X   : the set of feasible solutions. 

x     : the current solution, x ∈  X 

xb    : the best solution reached. 
xnb   : the best solution among trial solutions. 
E(x)  : the objective function of solution x 

N(x)  : the set of neighborhood of x ∈  X 

TL  : tabu list  
AL  : aspiration level  
     J   : the objective function 
 
   The procedure of the ATS algorithm is as 

follow: 
Step  0: Set TL as empty and AC as zero. 

WSEAS TRANSACTIONS on SYSTEMS Anant Oonsivilai and Boonruang Marungsri

ISSN: 1109-2777 923 Issue 10, Volume 7, October 2008



Step 1: Set iteration counter k = 0. Select an 

initial solution x ∈  X, and set xb = x . 

Step 2: Generate a set of trial solutions in the 
neighborhood of x. Let xnb be the best trial solution. 

Step 3: If E(xnb) > E(xb ) , go to Step 4, otherwise 
set the best solution xb = xnb and go to Step 4. 

Step 4: Perform the tabu test. If xnb is NOT in the 
TL, then accept it as a current solution, set x = xnb , 
and update the TL and AC and go to Step 6, 
otherwise go to Step 5. 

Step 5: Perform the AC test. If satisfied, then 
override the tabu state, set x = xnb , and update the 
AC. 

Step 6: Perform the termination test. If the 
stopping criterion is satisfied then stop, otherwise 
set k = k +1 and go to Step 2. 

 
Based on ATS algorithm, solution of non-linear 

problems can be identified using the flow chart 
show in Fig. 5. 
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Fig. 5   Flow chart for the ATS process 
 
 

4 Solution Through ATS Algorithm 

Rectangular coordination (x, y, z) of PD source 
and propagation time of acoustic signal to the 
nearest acoustic sensor are the system variables. 
Taking the expressions from (6) to (9), the 
following functions are obtained: 

2 2 2 2 2
1 1 1 1( ) ( ) ( ) sx x y y z z / v T − + − + − =

   (10) 

2 2 2 2 2
2 2 2 2( ) ( ) ( ) sx x y y z z / v T − + − + − =

   (11) 

2 2 2 2 2
3 3 3 3( ) ( ) ( ) sx x y y z z / v T − + − + − =

   (12) 

2 2 2 2 2
4 4 4 4( ) ( ) ( ) sx x y y z z / v T − + − + − =

   (13) 

   Let, Tmn is measuring time delay of acoustic signal 
propagation from PD source (PDSm) to acoustic 
sensor Sn and Tmn,et is estimating time delay of 
acoustic signal propagation from PD source (PDSm) 
to acoustic sensor Sn. Then, non-linear equations 
from (14) to (16), the fitness function is obtained.  
 

2 2 2 2 2( ) ( ) ( )m n m n m n s mnx x y y z z / v T − + − + − =
   (14) 

2 2 2 2 2( ) ( ) ( )m,et n m,et n m,et n s mn,etx x y y z z / v T − + − + − =
   (15) 

2 2
mn mn,et mnJ T T= −  (16) 

     The solution of a non-linear equation system to 
localize PD source can be obtained with ATS 
Algorithm. The variable Jmn is the fitness function 
and the square root of the sum of Jmn  is the objective 
function. Applying the ATS to (15) , (16) and taking 
the square root of the sum of Jmn, optimal solution 
arrival when the minimum value obtained from the 
objective function (the ideal is that it is reduced to 
zero).  
 

5 Simulation Results and Discussions  

  In order to test the effectiveness of ATS 
algorithm for the PD localization in oil insulating 
type power transformers, computer-simulated data 
based on [16], initially, were used. The dimension 
of fictitious tank is 800×1200×500mm3. Five 
locations of PD source are illustrated in Table 1.  
However, in the next stage, situations of partial 
discharges simulated in an oil filled tank shall be 
performed, followed of field experiences, in real 
cases.   

 
Four acoustic sensors were used to measure 

acoustic signal from PD source. Each senor placed 
outside the fictitious tank. Two set of acoustic 
sensor having different position were used to 
elucidate the purpose technique. 
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Table 1.  Testing point of PD sources 

PD Source Position (mm) 

PDS1 
x =  585 
y =  610 
z =  240 

PDS2 
x =  595 
y =  570 
z =  230 

PDS3 
x =  635 
y =  580 
z =  170 

PDS4 
x =  630 
y =  580 
z =  60 

PDS5 
x =  570 
y =  700 
z =  465 

 
Four different positions of the first set of acoustic 

sensor are given for the simulation, which appear in 
the Table 2.  Fig. 6 illustrated the first set of 
acoustic sensors for PD localization. The origin of 
the coordinates system was placed in one of the 
corners of the tank. 

Speed of acoustic signal in the oil is 1400m/s.  
The example of acoustic signal from PD source 
(PD5) received by each acoustic sensor, are 
illustrated in Fig. 7, Fig. 8, Fig. 9 and Fig. 10, 
respectively. 

 
 
 
 

z
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y 0

800 mm

500 mm

1200 mm

S1

S2
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S4

Fig. 6 The fictitious tank of 800×1200×500mm3, 
and sensor positions 

 
Table 2. Positions of the first set of acoustic 

sensors for the simulation 
 

Sensor Position (mm)  

S1 
x =  800 
y =  820 
z =  365  

S2 
x =  245 
y =  0 

z =  347  

S3 
x =  0 

y =  600 
z =  385  

S4 
x =  320 
y =  1200 
z =  230  

 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 

Fig. 7   Acoustic signal received by sensor S1 
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Fig. 8  Acoustic signal received by sensor S2 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9   Acoustic signal received by sensor S3 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10   Acoustic signal received by sensor S4 
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      Form PD occurrence source in Table 1, the 
arrival time of acoustic signals from PD source to 
acoustic sensor are given in Table 3 and used to 
localization PD source.  

 
Table 3.  Arrival delay time of PD signal measured 
at each sensor of the first set sensor 
 

PD Sources 
Time delay measured 

at Each Sensor 

PDS1 : 
x =  585 
y =  610 
z =  240 

S1 :  11 0 230delay ,t . ms=   

     S2 :  12 0 499delay ,t . ms=  

S3 : 13 0 426delay ,t . ms=  

S4 : 14 0 457delay ,t . ms=  

PDS2 : 
x =  595 
y =  570 
z =  230 

S1 : 21 0 248delay ,t . ms=  

S2 : 22 0 480delay ,t . ms=  

S3 : 23 0 435delay ,t . ms=  

S4 : 24 0 486delay ,t . ms=  

PDS3 : 
x =  635 
y =  580 
z =  170 

     S1 : mstdelay 248.031, =  

     S2 : mstdelay 510.032, =  

     S3 : mstdelay 474.033, =  

S4 : mstdelay 493.034, =  

PDS4 : 
x =  630 
y =  580 
z =  60 

     S1 : mstdelay 299.041, =  

     S2 : mstdelay 532.042, =  

     S3 : mstdelay 501.043, =  

S4 : mstdelay 504.044, =  

PDS5 : 
x =  570 
y =  700 

        z =  465  

     S1 : mstdelay 196.051, =  

     S2 : mstdelay 552.052, =  

     S3 : mstdelay 413.053, =  

S4 : mstdelay 426.054, =  

 
After apply ATS technique for PD source 

localization, the simulation results are obtained. As 
illustrated in Table 4, near the same position of PD 
sources were obtained when comparing the 
simulation results with the given data. Error from 
the simulation results less than 1%. 

 
In order to clarify the effect of sensor position, 

the second set of acoustic sensor having different 
position comparing with the first set of acoustic 
sensor is given.  Four different positions of the 
second set of acoustic sensor are given for the 
simulation, which appear in the Table 5.  Fig. 6 
illustrated the second set of acoustic sensors for PD 
localization. 

 

Table 4.    PD source localization results using  
Adaptive Tabu Search 
 

PD 
Source 

Position 
(mm) 

Simulation  
Results (mm) 

Error 
(%) 
 

PDS1 

x =  585 
y =  610 
z =  240 

x =  584.92 
y =  609.85 
z =  240.12 

0.01 
0.02 
0.05 

PDS2 

x =  595 
y =  570 
z =  230 

x =  594.90 
y =  569.61 
z =  229.34 

0.02 
0.07 
0.28 

PDS3 

x =  635 
y =  580 
z =  170 

x =  635.56 
y =  579.79 
z =  170.49 

0.09 
0.04 
0.30 

PDS4 

x =  630 
y =  580 
z =  60 

x =  630.56 
y =  580.04 
z =  59.47 

0.09 
0.01 
0.88 

PDS5 

x =  570 
y =  700 
z =  465 

x =  570.09 
y =  699.98 
z =  465.71 

0.02 
0.002 
0.15 

 

Table 5. Positions of the second set acoustic sensors 
for the simulation 

 

Sensor Position (mm)  

S1 
x =  400 
y =  0 

z =  250  

S2 
x =  800 
y =  600 
z =  400  

S3 
x =  400 
y =  1200 
z =  500  

S4 
x =  0 

y =  700 
z =  250  

 

z

x

y 0

800 mm

500 mm

1200 mm
S2

S1

S4
S3

Fig. 11 The fictitious tank of 800×1200×500mm3, 
and positions of the second set sensor 
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Form PD occurrence source in Table 1, the 
arrival time of acoustic signals from PD source to 
each acoustic sensor of the second set are given in 
Table 6 and used to localization PD source. 

 
 
Table 6.  Arrival delay time of PD signal measured 
at each acoustic sensor of the second set 
 

PD Sources 
Time delay measured 

at Each Sensor 

PDS1 : 
x =  585 
y =  610 
z =  240 

      S1 : mstdelay 451.031, =  

      S2 : mstdelay 190.032, =  

      S3 : mstdelay 474.033, =  

S4 : mstdelay 418.034, =  

PDS2 : 
x =  595 
y =  570 
z =  230 

      S1 : mstdelay 430.021, =  

      S2 : mstdelay 189.022, =  

      S3 : mstdelay 504.023, =  

S4 : mstdelay 431.024, =  

PDS3 : 
x =  635 
y =  580 
z =  170 

     S1 : mstdelay 446.031, =  

     S2 : mstdelay 201.032, =  

     S3 : mstdelay 523.033, =  

S4 : mstdelay 460.034, =  

PDS4 : 
x =  630 
y =  580 
z =  60 

     S1 : mstdelay 461.041, =  

     S2 : mstdelay 269.042, =  

     S3 : mstdelay 561.043, =  

S4 : mstdelay 473.044, =  

PDS5 : 
x =  570 
y =  700 

        z =  465  

     S1 : mstdelay 531.051, =  

     S2 : mstdelay 183.052, =  

     S3 : mstdelay 374.053, =  

S4 : mstdelay 431.054, =  

 
After apply ATS technique for PD source 

localization, the simulation results are obtained. As 
illustrated in Table 7, near the same position of PD 
sources were obtained when comparing the 
simulation results with the given data. Error from 
the simulation results less than 1%. The position of 
a sensor have no effect on PD localization when 
using the purpose technique. 

 
 
 
 
 

Table 7.    PD source localization results using  
Adaptive Tabu Search 
 

PD 
Source 

Position 
(mm) 

Simulation  
Results (mm) 

Error 
(%) 
 

PDS1 

x =  585 
y =  610 
z =  240 

x =  585.20 
y =  609.88 
z =  239.34 

0.03 
0.02 
0.22 

PDS2 

x =  595 
y =  570 
z =  230 

x =  595.43 
y =  570.34 
z =  230.35 

0.07 
0.06 
0.15 

PDS3 

x =  635 
y =  580 
z =  170 

x =  634.65 
y =  579.60 
z =  170.13 

0.06 
0.07 
0.08 

PDS4 

x =  630 
y =  580 
z =  60 

x =  629.78 
y =  580.03 
z =  59.84 

0.03 
0.01 
0.27 

PDS5 

x =  570 
y =  700 
z =  465 

x =  569.59 
y =  700.19 
z =  464.14 

0.07 
0.03 
0.18 

 
4 Conclusion 

The effectiveness of purpose technique for PD 
source localization is confirmed. Near the same PD 
source locations was obtained from the simulation 
results using ATS technique comparing with the 
given data. Artificial intelligent technique, ATS, 
show enough potential for application in PD source 
localization.   
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