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Abstract: A strategy is proposed to model the complex industrial systems using linear time-varying system
(LTVS). The proposed methodology is independent of model structure and the model may take any classic
linear structure such as finite impulse response, input-output relation structures etc. To take into account the error
between system and model due to model order reduction, variation of system behavior in time and perturbations,
model's parameters are considered varying but bounded variables characterized by intervals. The output of this
model is characterized by a function of the piecewise linear parameters which contains all possible system'’s re-
sponses taking into account modeling error as well as the perturbations.

Key—Words:Time-Varying System, Identification of Model Parameters, Interval Analysis.

1 Introduction the properties o’ D F' may change in different calcu-
. . i lation steps specially if one uses iterative algorithms.
Description of complex industrial processes generally Another alternative is set-membership approach

leads to mathematical models of very large orders. ;. \vhich model’s parameters are supposed to
Examples of these processes are mobile arc welding e ynwell-known (uncertain) or time-variant but
robot (M AW k) or wood cutting system _[7' 24,25, pounded. Uncertain bounded parameters are then
26]. These models are very time-consuming from pro- - cparacterized by intervals [14, 18, 18, 5]. If the pa-
cessing point of view. Moreover, from an engineer- .y meters are correctly characterized, it is then guar-
ing point of view, one is more interested in treating  ynieeq that the model is able to determine all possi-
a sllmplﬁr Iandhconshequently Ie?s acczrate mathemat- o system's responses. This fundamental property of
ical model rather than a complex and accurate one. o gat membership approach is the main motivation
In this objective, mathematical model simplification explore it to describe dynamic systems in critical

is usually performed using model reduction methods ;4 strial applications in which one needs guaranteed
[6, 12, 16, 22]. Having been simplified, model de- oqits.

scribes system’s behavior in a less accurate manner A methodological approach independent of

and hgncec,lther_e IS ggnerfllly ad;}f_ferr]e_nce ?g(\j/\('jeeln ob- model structure is proposed in this paper to charac-
served and estimated values which Is ca el- terize the parameters of linear time-varying model

ing error. This error can also be due to im_prop_er (LTV M) which is then implemented tof ATV R sys-

thdel _str_ucturfe, made,qubatﬁ parameter identification, tem. After explaining the system under study, pro-

the variation of system's behavior in time, etc. posed methodology is explained in sections 3, 4 and
Handling modeling error is among the most chal- g ' section 6, numerical results of parameter charac-

lenging problems in almost all identification proce- (qri-ation of thel AW R system are given
dures. This matter is more important when the model '

is developed for critical applications in which mod-

eling error should be reduced as much as possible. 2 Maobile Arc Welding Robot System
Classical method to handle modeling error is the prob-

abilistic approach in which model's parameters are This system is arelatively new application of robaotics,
constant scalars and modeling error is characterized even though robots were first introduced during the
by means of a certaiRrobability Density Function 1960s. Growth is primarily limited by high equipment
(PDF). However, it is not always possible to charac- costs, and the resulting restriction to high-production
terize modeling error by a certaiRDE'. Moreover, applications. Arc welding robot has begun growing
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qwckFy just recently, ananeﬁreagly It commands about

20% of industrial robot applications. The major com-
ponents of arc welding robots are the manipulator
or the mechanical unit and the controller which are
shown in Figs 1, 2 and 3.

Figure 3: Data acquisition equipments

Representing this system mathematically leads to
a high order model [24, 26]. Reducing the model to
a second or to a first order increases modeling error.
This error which is shown in Fig. 4, can also be due to
wide variation of mechanical and physical properties
of the system such as changing the static friction be-
tween the wheels and the rail, the unbalance platform
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gravity ‘afecied by changing the Topot contiguration
and the variable platform mass due to the electrode
systems.
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Figure 4: Measured system response without (Left
and curve 2) and with perturbations (curves 1,3,4)

To collect data for parameter identification,
a microcomputer-based data acquisition equipment
shown in Fig. 3 is used which provides to us set
DS, = {uok, Yo} in Which v, ; andy,  represent
respectively system’s input and response.

3

As much as we know, Archimedes was of the early
pioneers who used bounded numbers in his work to
calculater [8]. In new age and in the beginning of the
20" century, the concept of the bounded value func-
tions was discussed in [30] and a formal algebra of
multi-value numbers and interval analysis were devel-
oped in [29, 28, 23] and [14] respectively. Interval
analysis has also found its place in engineering [10]
and especially in control engineering [9, 13, 27].

Interval Analysis

Definition 1 Interval [x] = [z, Z] is a closed set of
convex and continuous real numbers defined by lower
boundz € R and upper bound € R.

Any uncertain variable: € R whose true value
is not known can be characterized by interialz]
such thatz < = < z.! Operations on intervals are
also defined in such way that the resulting interval al-
ways contains the true result that would be obtained
by using exact inputs and exact calculations.

Theorem 1 (Interval arithmetic operations) [15]
In interval arithmetic

1. For all intervals,

'During this work,z (respect. X) is a real-valued variable
(respect. areal-valued vector) and (respect[X]) is an interval
(respect. interval vector).

Issue 5, Volume 7, May 2008



WSEAS TRA SACTIONS on ?YSTE
) |

2. Foro € {+, (xoy) is defined for all
x €[z andy e [ ] We have:
[z] oyl = min(z oy, ToT,z07,Toy),

max((zoy,ToY, 207, To

v))]
3. For monotone functiog,

§([x]) = [min(§(z), §(T)), max(£(z), £(7))]

§([x]) = {&(x) Ve € [2]}

In arithmetic expressions and real functions, one
can replace the variables with intervals and evaluate
the resulting expressions using interval arithmetics.

Definition 2 [f]([x]) is defined as interval extension
of real function f(x) by replacing real argument:
by interval[z] and real arithmetic operations by their
interval counterparts.

Theorem 2 (Inclusion property) [15] Suppose that
the arithmetic expressioffi(zy, ..., z,) can be evalu-

ated atzy, ..., z, € i, and let
[z1] € [21], s [n] C [2n]
Then:
1. f can be evaluated dt4], ..., [z,,] and
(w1l s [2n]) € [£1([21); - [2n])
2. f([za], s [2n]) € [f1([22], s [2n])

The former is called thaclusion isotonicityproperty
and the latter, theange inclusiorproperty.

Any interval can also be described in the normal-
ized form. Mathematically stated:

(7] = [T,2] = zc + Ay x [-1,1]

=g, = EQﬁ, rad([z]) = Ay = E—Tz

mad([z])

wherezx.. is called themidpointand )\, is called the
radius of interval [x]. Normalized interval form sub-
stitutes original one to simplify interval operations by
eliminatingmin(.) andmax(.) functions from calcu-
lations [19].

Definition 3 Interval vector[X] is the counterpart of
vector X whose entries are intervals; that is to say:
[X]7 = [l21], [22], ..., [an]
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Anintelval Vector can also be described in the normal-

ized form. In this caseX. is the vector of midpoints
and\ x is the vector of radiuses of the entries of inter-
val vector[ X |:

[(X] = X:+ Ax. * [v]
where
5L'c,1 /\x1 [—1, 1]
Xe= : yAX = ) [U] =
Ten Az, [—1,1]

Symbol .x represents entry-by-entry product of two
vectors.

Remark 1 A vector with scalar entries determines a
point in spacer™ whereas a vector of intervals repre-
sents a hypercube in this space.

As mentioned before, normalized form facilitates
arithmetic operations. In which follows, one will need
to calculate the resulting interval of multiplying two
interval vectors. Using this form, we obtain [19]:

(X" > [Y]

(Xc + Ax. * [’U])T X (Yc + Ay. * [U])

= XIV, + |XT Dy + 25 Ve + 2%y

= X2Y. — |XX Py - 2% =25y @)

4 Linear Time-Varying Model

Parameter characterization using intervals has already
been studied for input-output and state-space models
in [13, 3, 17] and [2]. Methods which have already
been proposed treat the case in which only system’s
response in DataseDS is interval. Moreover,
depending on model structure and identification
semantic, parameter characterization procedure
differs [4, 3, 1]. In this section, a generic approach is
proposed for parameter characterization of any linear
structure while both observed input and output are
characterized by intervals.

During the data acquisition experience and be-
cause of diverse reason like measurement error, true
system’s inputu, and responsg, may not be equal
to observed values,, ;, andy, ;.. If maximum values
of e, ande, are known:
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€y = IH]?X(|U]€ - uo,k|) )y €y = ml?x(|yk - yo,k|)

IL ——systerfsoutput [yl L ——gygtemsoutput  [y],
— — model'soutput ~ [env], | — — model'soutput ~ [env],

then the true values can be characterized by intervals:

k ' k

[u]k - [uo,k — €y, Uo K + eu]

Wl = ok = €yr Yok + 4] Figure 5: Different identification semantics.

which guarantee that:
4.2 Optimization criterion

Yk, uk € [ulp A yr € [Ylk The set of model’s outputs at different instances deter-
mines the wrapping envelope of system’s response:
DatasetDS = {[u]i, [y]x} is then used in parameter
characterization procedure. {lenv]} = {[env]1, [env]a, ...}

. . L Smaller the radius of the wrapping envelope, more
4.1 Semantic of identification precisely the possible system'’s responses are charac-
In the case that system’s responses are characterizedterized. Therefore, the radius of wrapping envelope
by intervals, the identification semantic defines the is defined as the optimization criterion of model’s pa-
properties of model’s parameters and consequently, rameters.

the specifications of the model's output [4]. It is de-

scribed in the form of a mathematical (logical) expres- Definition 4 The radius of wrapping envelope in time
sion made up of quantifiek§ 3 and—, parameters and  interval fromk = i until £ = j is the mean-value of
system’s inputs and responses. For instance, if param- its radius at different instants. Mathematically stated:
eters are identified using the following semantic:

1 I ENvy, — envy,
Wk, gk € [k, 0k € 0] [ we = 0 x o5 (2) 0Cij= 12 3 5)
k=i

at every instant, system’s respong®, and model’s

output[env];, have at least one common point; thatis: Definition 5 The precision of the wrapping envelope
in time interval fromk = 7 until £ = j is the exponen-

VE, [ylk ﬂ[env]k £ tial function-value of —OC; ;); that is:
whereas if the semantic is defined as follows: Fij = exp(=0Ciy)
Yk, Yyi € [ylk, 30k € 0] | yr = 0F % on (3) For more detalis and demonstrations see [21, 19].

the model’s output includes the system’s response at

any instance; that is: 4.3 Model Structure

Probably, the simplest mathematical relationship be-

Yk, [ylx C [env]k tween inputs and outputs of a linear time-invariant
system in discrete time is represented by its transfer
or in other words: function:
T < ey biz b boz 2 4 A by, 2
vk, { Tk = (@) Gy =L T 4 mZ
ENVE S Y, up, l+az7t+az 2+ ... +ap,z "

The system’s response and the model’'s output for By developing and reformulating it in vectoriel form,
identification semantics 2 and 3 are shown in the left one obtains [11]:

and in the right hand-side of Fig. 5 respectively.

The second one is chosen in this work to character-

ize model’s parameters. yr = 07 x ¢, + ey, (6)
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where

0= [CLl,
Ok = [“Yk=1,-» —Yh—na> Uk—1,---

T
I an(u bl?"'a bnb7]

) uk—nb]T

0 is the parametersand ¢, the regression vector of
the model. Additive terney, is usually added to com-
pensate modeling error. If one fixag = n, = N,
the model is anmnput-outputmodel whereas if he/she
fixesn, = 0 andn;, = N, it is thefinite impulse re-
sponseof the system. In both case®) is called the
moving horizorof the model.

We have already argued that modeling error is due
to many facts among which model order reduction
and variation of physical and mechanical properties
of system can be cited. If model’'s parameters are con-
sidered time-varying, one can project modeling error
on its parameters and eliminaég from 6; that is to
say:

yr = 0f x oy,
where

T

Or = [a1 ks Qno k> D1 ks ooy by k)

Parameter vectof;, carries indexk to demonstrate

Kyarash Shabhriari, Stanislaw Tarasiewicz, Olivier Adrot
where

0. = mid([0]) € RV op . = mid([¢]x) € RVH!
N = rad([f]) € RV A, = rad([glx) € RV

In 7, 6. and \y are model's parameters which should
be identified.

There exist different numerical methods to char-
acterize parameters dfTV M [3, 2]. Parameters
characterization using the semantic of 3 can easily be
reformulated in the form of an optimization problem
subject to a set of constraints. Considering optimiza-
tion criterion in 5 and the pair of inequalities in 4 we
obtain:

1 J envy — envy,
in(OC; ;) = mi — 8
min(0C;;) ﬁﬁ%—i+1§% ) ©
subject to
Vk,{ 7 < ey,
env, <Y,

in which env;, andenv,, are substituted from 7. By
finding the minimizet of objective functionOC; ;,
one can obtain model’s parameter vedtr Because

that its entries are not constant scalars anymore and o non-linear term67 | in the objective function and

vary in time.

System analysis using a model with time-varying
parameters is complicated and time-consuming. To
obtain a time-invariant model which is true at any in-

in the constraints, this optimization problem is a
non-linear optimization problem subject to non-linear
constraints with respect to the parameters.

In any dynamic model, parameters can not be

stant, one can characterized time-variant parameters characterized before instakt < N as the entries

vectord} by interval vector{] such that:
Vk, 0i € [0]

In this case, model’s output is obtain from:

T

[env] = [0]" X ok

If vector ¢, contains also uncertain entries, it is re-
placed by interval vectofy], for which it is guaran-
teed thatp;, € [¢]x. One consequently obtains a more
general vectoriel form of the model:

[envly, =[] % [l
Considering 1, the upper and the lower bounds of out-
put intervallenv]; are:
envy, = Hg@k,c - |021|>\S0k - /\g|90k,c| - /\g/\apk (7)
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of regressor vector are not available. This problem
also appears in simulation where the model's output
can not be calculated before instant< N. In
other words, the model is not valid in its moving
horizon. A parameter identification procedure based
on model order reduction/increase respectively dur-
ing/after model’s moving horizon has been proposed
in [20]. Using this procedure, a set of parameters is
assigned to the model and consequently, model’'s out-
put can be calculated at any instant.

5 Piecewise Parameters of LTVM

In the previous sections, a method has been proposed
to identify the parameters of complex systems. To ob-
tain a time-invariant model, variant parameters have

2A local (respect. global) minimizer is a set of parameteas th
minimizes locally (respect. globally) the value of the alijee
function.
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been characterized by intervals. However, if the varia- since even for the least number of points, it can not be

tions of parameters are considerable, interval parame- achieved.

ters will be large and consequentl/]'V M produces In the next step, poinkgn + N + 1 is added to
a wide wrapping envelope which may not be of use DS; and local parameters are re-characterized using
from academical or technical point of view. DS; = DS antN+L f Py pons N1 1S Still su-

To improve the precision, we suggest a novel perior thanpren, it demonstrates that this point can
strategy to split system’s operating regimg({R) be included inOM;. Following points are added

into several segments and to represent every segmentone after the others until instamtat which if point
by a set of parameters. In which follows, every ([u]s,[y]s) is added taDS;, Py, , becomes less than
segment ofSOR is called anoperating mod€O M) pren.  This indicates that) M; can not handle any
and its corresponding parameters set is calteadl other point. DS; = DSY™s=1 LPS; are char-
parameters sefLPS). At any instant, model uses  acterized usingDS; and newOM,;,; starts at in-
the parameters set which matches the best to current stantbgn + s. This procedure is followed for all the
SOP. For a non-linear system, this approach is points inDS. At the end of this procedure which is
very likely to linearizing the system around different shown in Fig. 6 (see also appendix A for splitting
operating points and for a hybrid system, it means to algorithm), DS is divided into M disjoints subsets
represent every system’s operating mode by a set of DS;, i =1,..., M.

LPS.

Detecting new operating mode
bgn bgn +N-1 bgn +s-1 i bgn +s+N-1
T

It is supposed that evetyO R can be determined T ‘ R
by system’s state variables in observable state space. ———N points —— N points ———
For piecewise linear modeling of such a system, ‘
following steps are performed.

k

—_— DS of operatingmode i——

1) Determining characteristic variables: They are Figure 6: Splitting system’s operating regime.

the variables by which everl§OR can be determined
in observable state space [25, 21]. Since they are not . .
known a priori, the entries of the regressor vector are The value ofpren plays an important role in

supposed to be. Hence, the space of the characteristic Producing propeSOR divisions. One may proceed
variables is regressor spage. At any instantk, a preliminary analysis to observe the evolution of

or (respect. [¢r]) represents a point (respect. a precisionF; ; with respect ta’ andj and to chose an
hypercube) in this space. adequate value fapren. An alternative strategy for

splitting SOR based on the consistency of system’s
response with estimated one has already been sug-

2) Splitting system'’s operating regime:ln this step, gested in [21] [19].

the objective is to splitSOR into several segments
SOR; and to characterizd.P.S; of LTV M using . .
subsetDS; C DS which corresponds tOR,;. 3) Precision Improvement: As can be realized, the

LTV M with ZPSZ- will then represenSOR;. To do smaller the amount of precision is, the more accurate

that, a strategy based on the precision of wrapping en- the model would be. Its cost is the complexity of the
velope is proposed in which follows. model that would appear in the numberioP S sets.

Suppose that the desired precision is user-defined S+ & trade off should be done between the modeling

valuepren and suppose that the [aStV/ has already pr(—;-]msmn anc:]the nurr}_bir qf BPS Sets. Hr?wever,
been finished at instahtn. Before instanbgn, i — 1 'tﬁ a{:)pent?] that ‘1” S'? ttlnc_rrehase ?{":m ats no t
modes have been detected and therefore, at instant®"€Cc! ON th€ NUMDEr of Sets. Then, € most amoun
bgn, we enter in thei™ one. At the beginning, the of precision is sought in intervdpren, 1]_|n such a
initial data set for current mode is supposed to include way t_hat the same num_ber of mo_des IS reqt_ured_ to
only the minimum number of points to characterize _descnbe the system. Itis accqmpllshed by blse(_:tlng
LPS; local parameters that 95, — D§bmb+N — interval [prcn, 1] and by observing the solutions, i.e.
{([u]; wle)lbgn < k < bgn +ZN} Since this is the number of modes, in the bisected sections. If it is
) - — . . . + rcn . .
a minimum number of necessary points, the wrap- ound inthe upper sectiof-4 ) ,1],V\ﬁ;:rc;2tmue bi-
ping envelope is the most possible precise dnéf secting the upper one otherwigecn, =5==] would
Pygnbgnin < pren, thenpren should be modified be the interval which would be bisected in the next
’ step. The procedure is continued until the radius of
3if the true value of system inputs and outputs are known, then Obtained interval omprcn becomes less than allowed
Pogn,pgn+n = 1. tolerancetlrn which is also a user defined value. The
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lower Eoung ofg%e ?lnamnterva would be the opti-

mal value forprcn (see appendix B for the algorithm).

4) Determining the validity domain of local param-
eters sets:To determine validity domaini{ D) of any
LPS, theorem 3 is presented (see [19] and appendix
C for the proof):

Theorem 3 (The validity domain of LPS) For

a system of ordern, suppose that the validity

domain of any system’s operating regime is a
convex hull in observable state space. Then,
it is also a convex hull in input-output space

le = {uk’—l_y ey Uk—ny  Yk—1, - yk—n}
or reduced input-output space S, =
{uk—la ceny U—n—15 Yky - yk’—n—l}'

If the VD of any SOR; is a convex hull in input-
output space, then th& D of OM; and conse-
quently, theV D of LPS; is also a convex hull
in input-output space. Entries of anS; deter-
mines a set of points (or hypercubes) by vectors
X]i [uk’—b vy Uk—ny Yk—15 - yk’—n] or X%
[Uk—1, ey Uk—n—1s Yk, ---» Yk—n—1] WhiCh OCCUpies
aregion inS,, or S,, respectively. This region is an
approximation of. PS; validity domain (see Fig. 7).

input-output space systerts output space

Figure 7: Validity of local parameters setsSR.

Definition 6 The validity domain of.PS; is convex
hull C'H, of points/hypercubes determined bys; in

spacey.

Definition 7 ConsequentlyL PS; is valid at instant
k iff vector xy, is in convex hullC'H}, or has at least
one common point with it. Mathematically stated:

Xk € CH}, or [X]x[CHL # ¢

As mentioned before, convex huIIIHj( is an ap-
proximation of L PS; validity domain. MoreDS; is
informative, moreC'H;, approaches the true domain.

ISSN: 1109-2777
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If calculating convex qhu‘%H; IS time-consuming

(because its dimensions or the number of entries of
DS;) orits form is complex (because of the high num-
ber of vertexes and sides), for simplicity reasons, this
convex hull can be approximated by its smallest outer
hypercube noted aC H.. Therefore:

CHi C OCH.

In some cases, convex hulls i.e. validity domains
of LPS intersect. The most important reason for this
phenomenon is uncertainty on system’s observations.
For more details and discussions, see [19].

5) Aggregating similar local parameters setsDur-
ing data acquisition procedure, system may enter sev-
eral times in an identical operating regime. In this
case, the data corresponds to éh&/ may be found
in disjoint time intervals inDS. As proposed splitting
method dose not verify whether the followigg\/ is
a new or a mode which has already been identified,
severalLPS may be assigned to on®OR. Princi-
pally, this makes no problem. However, to diminish
the number ofLPS we try to aggregaté”Ls which
represent an identicdO R. The following proposed
solution is based on the validity domainsioPS. For
two different convex hulls” H* and C H7, three dif-
ferent cases may happen.

The first case is that the former is the subset of the
latter. Mathematically stated:

CH!C CH’

In this case regarding to definition ZPS; is valid as
soon asL PS;. Therefore, the former is considered as
subset of the latterL P.S; is eliminated and’DS; is
added toDS;. LPS; are then re-characterized using
DS; U DS; and the validity domain of newl. PS; is
convex hullCH/.

The second case happens when they intersect, but
neither does include the other one. i.e:

(CH'NCH # ¢)A
(CHINCHI # CH A CHI(\CHI # CHY)

In this case, only at some instances baétRS; and
LPS; are valid simultaneously and non of them in-
cludes completely the other one. Therefore, no ag-
gregation is performed since it may reduce modeling
precision considerably.

In the third case, they are two disjoint convex
hulls. In other words:

CH'(\CH’ = ¢

Issue 5, Volume 7, May 2008
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which means that modseﬁnPSi and modelLPS; de-

scribe two differentSOR. Therefore, no aggregation
is made.

The above rules should be applied to every pair
of validity domains (CH!,CH7) to eliminate as
many repeated.PS as possible and to simplify
the structure of LTV M. To make the aggregation

procedure easier, one may also use outer hypercube

approximations(¢C H', $C H’) rather than convex
hulls (CH*, CH").

6 Numerical Example

Kyarash Shabhriari, Stanislaw Tarasiewicz, Olivier Adrot
am 2R e ABRE Bsm S50 &EE 2
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Figure 9: Time-Varying coefficients dfT'V M of Eq.

The reduced order model of the system without any 9

perturbation is described by:

Yis)
Es)

_ s+ 2.3
 $246.6s+ 1.67

Gs) = 9)

If model’s parameters are considered time-variant, the
model follows system’s response more precisely. This
is shown in Fig. 8. Parameters variationsIafV M

are shown in Fig. 9.

outputs

Figure 8: curve 1: System’s response without pertur-
bation. Curve 2: Tuning model response. Curve 3:
System’s response with perturbation.

This result illustrates that the piecewise parameters of
LTV M have a substantial effect on the system’s re-
sponses. The precision of this model has been worked
out using identification algorithms presented in ap-
pendixes A, B.

7 Conclusion

In this paper, we demonstrated that in systems identifi-
cation, how modeling error can be taken into account
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using LTV M. Since manipulating such a model is
time-consuming from processing point of view and
complex to analysis, parameters have been charac-
terized by intervals. The model then can predict all
possible system’s responses encapsulated in a tube
called wrapping envelope. This model can be used
in system analysis and control in applications such as
process safety in which ignorance of modeling error
may cause catastrophic consequences. Moreover, the
LTV M model's moving horizon given in this paper is
useful in determining the optimal parameters of con-
troller or regulator.
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Appendix A: SOR Splitting Algorithm

prcn: user defined modeling precision
DS': System measurements
N: Moving horizon of LTV M
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1. Start

2. begin =1,end = N,i=1,DS; = D Sbegin.end
3. While end< (the number ofDS’s entries)

(a) Characterize LPS; usingD.S;
(0) If Pyegin,ena < pren
i. GetDS; = DSbeginend—1
ii. Characterize LPS; usingDS5;
ii. i=i+1
V. begin = end
V. end = begin + N

vi. Goto3
(c) Else
i. end=end+1
ii. DS; = DSbeginend
iii. Goto3

4. End

Appendix B: Precision Improvement Algo-
rithm

tirn: Allowed tolerance omrcn

1. Start
2. upper=1, lower=prcn
3. While (upper-lower)> tirn

(@) ¢ = (upper + lower) /2
(b) Repeatalgorithm 1 by takingpren = ¢
(c) If (number of operating modes) M
i. upper=c
(d) Else
i. lower=c
(e) End

4. End
Appendix C: Proof of Theorem 3

The theorem is proven for & and a2"® order
dynamic system. However, it can easily be proven in
the same way for a system of any order.

Proof:
The dynamic of a*! order SISO system in observ-
able state space is described as follows:

Thrl1 = a X T + b X uyg,
Yk = Tk (10)
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wherea, b € &t are knowny;, € R Is the state variable

anduyg, yr € R are the system’s input and output re-
spectively. According the hypothesis of the theorem,
the validity domain ofSO R; is convex huIICfo} in

state spacé’,, which can be determined by a set of

linear inequality constraints as followings:
C’H};x} ={z|V), a;j xx+; <0} (11)

where j is the index of inequality constraint and
a; j,7,; € N are known. From 10 one has:

T = Yk
Therefore, one obtains from 11:
CHi, ={y|Vj aijxy+7; <0}  (12)

Equations 11 and 12 show that if the validity domain
of SOR; is a convex hull in observable state space, it
is also a convex hull in input-output spaseg,, .

Identical to thel ** order system, the dynamic oP&?
order SIS0 system can be described as follows:

0
X,m:ll “ﬂxXHBxuk

yk:[o 1]><Xk (13)

whereX; = [x17k,x27k]T. According to the hypothe-
sis of the theorem, the validity domain 80 R; in the
observable space space is convex Uty 4

CHipy oy = {X | [ @iy Bij | x X 47, <0}19)

whereo; j, 55, 0;; € R are known. Calculating
x1, andxy ;, form 13 with respect ta, ao, by, bo
andy;, and inserting them into 14, then:

CHiy = {xk| [ @iy | %

as 0 bl 0 1
<
[ a a9 b2 bl Xk + /}/Z,j = O} (15)
and
CH, = {xj | [ i Bi.j } X
0 as bl ) o

which show that if the hypothesis of the theorem is
true, the validity domains of an§OR; of a2"¢ order
SIS0 system is also a convex hull in input-output or
reduced input-output spacés: ands, .
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