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Abstract: A strategy is proposed to model the complex industrial systems using linear time-varying system
(LTV S). The proposed methodology is independent of model structure and the model may take any classic
linear structure such as finite impulse response, input-output relation structures etc. To take into account the error
between system and model due to model order reduction, variation of system behavior in time and perturbations,
model’s parameters are considered varying but bounded variables characterized by intervals. The output of this
model is characterized by a function of the piecewise linear parameters which contains all possible system’s re-
sponses taking into account modeling error as well as the perturbations.
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1 Introduction

Description of complex industrial processes generally
leads to mathematical models of very large orders.
Examples of these processes are mobile arc welding
robot (MAWR) or wood cutting system [7, 24, 25,
26]. These models are very time-consuming from pro-
cessing point of view. Moreover, from an engineer-
ing point of view, one is more interested in treating
a simpler and consequently less accurate mathemat-
ical model rather than a complex and accurate one.
In this objective, mathematical model simplification
is usually performed using model reduction methods
[6, 12, 16, 22]. Having been simplified, model de-
scribes system’s behavior in a less accurate manner
and hence, there is generally a difference between ob-
served and estimated values which is calledmodel-
ing error. This error can also be due to improper
model structure, inadequate parameter identification,
the variation of system’s behavior in time, etc.

Handling modeling error is among the most chal-
lenging problems in almost all identification proce-
dures. This matter is more important when the model
is developed for critical applications in which mod-
eling error should be reduced as much as possible.
Classical method to handle modeling error is the prob-
abilistic approach in which model’s parameters are
constant scalars and modeling error is characterized
by means of a certainProbability Density Function
(PDF ). However, it is not always possible to charac-
terize modeling error by a certainPDF . Moreover,

the properties ofPDF may change in different calcu-
lation steps specially if one uses iterative algorithms.

Another alternative is set-membership approach
in which model’s parameters are supposed to
be unwell-known (uncertain) or time-variant but
bounded. Uncertain bounded parameters are then
characterized by intervals [14, 18, 18, 5]. If the pa-
rameters are correctly characterized, it is then guar-
anteed that the model is able to determine all possi-
ble system’s responses. This fundamental property of
the set-membership approach is the main motivation
to explore it to describe dynamic systems in critical
industrial applications in which one needs guaranteed
results.

A methodological approach independent of
model structure is proposed in this paper to charac-
terize the parameters of linear time-varying model
(LTV M ) which is then implemented toMAWR sys-
tem. After explaining the system under study, pro-
posed methodology is explained in sections 3, 4 and
5. In section 6, numerical results of parameter charac-
terization of theMAWR system are given.

2 Mobile Arc Welding Robot System
This system is a relatively new application of robotics,
even though robots were first introduced during the
1960s. Growth is primarily limited by high equipment
costs, and the resulting restriction to high-production
applications. Arc welding robot has begun growing
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quickly just recently, and already it commands about
20% of industrial robot applications. The major com-
ponents of arc welding robots are the manipulator
or the mechanical unit and the controller which are
shown in Figs 1, 2 and 3.

Figure 1: Mobile welding robot arm

Figure 2: Mobile platform equipments

Figure 3: Data acquisition equipments

Representing this system mathematically leads to
a high order model [24, 26]. Reducing the model to
a second or to a first order increases modeling error.
This error which is shown in Fig. 4, can also be due to
wide variation of mechanical and physical properties
of the system such as changing the static friction be-
tween the wheels and the rail, the unbalance platform

gravity affected by changing the robot configuration
and the variable platform mass due to the electrode
systems.

Figure 4: Measured system response without (Left
and curve 2) and with perturbations (curves 1,3,4)

To collect data for parameter identification,
a microcomputer-based data acquisition equipment
shown in Fig. 3 is used which provides to us set
DSo = {uo,k, yo,k} in which uo,k andyo,k represent
respectively system’s input and response.

3 Interval Analysis
As much as we know, Archimedes was of the early
pioneers who used bounded numbers in his work to
calculateπ [8]. In new age and in the beginning of the
20th century, the concept of the bounded value func-
tions was discussed in [30] and a formal algebra of
multi-value numbers and interval analysis were devel-
oped in [29, 28, 23] and [14] respectively. Interval
analysis has also found its place in engineering [10]
and especially in control engineering [9, 13, 27].

Definition 1 Interval [x] = [x, x] is a closed set of
convex and continuous real numbers defined by lower
boundx ∈ < and upper boundx ∈ <.

Any uncertain variablex ∈ < whose true value
is not known can be characterized by interval[x, x]
such thatx ≤ x ≤ x.1 Operations on intervals are
also defined in such way that the resulting interval al-
ways contains the true result that would be obtained
by using exact inputs and exact calculations.

Theorem 1 (Interval arithmetic operations) [15]
In interval arithmetic

1. For all intervals,

−[x] = [−x,−x]

1During this work,x (respect. X) is a real-valued variable
(respect. a real-valued vector) and[x] (respect.[X]) is an interval
(respect. interval vector).
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2. For � ∈ {+,−,×,÷}, if (x � y) is defined for all
x ∈ [x] andy ∈ [y], we have:

[x] � [y] = [min(x � y, x � y, x � y, x � y),

max((x � y, x � y, x � y, x � y))]

3. For monotone functionξ,

ξ([x]) = [min(ξ(x), ξ(x)),max(ξ(x), ξ(x))]

where

ξ([x]) = {ξ(x)|∀x ∈ [x]}

In arithmetic expressions and real functions, one
can replace the variables with intervals and evaluate
the resulting expressions using interval arithmetics.

Definition 2 [f ]([x]) is defined as interval extension
of real functionf(x) by replacing real argumentx
by interval[x] and real arithmetic operations by their
interval counterparts.

Theorem 2 (Inclusion property) [15] Suppose that
the arithmetic expressionf(z1, ..., zn) can be evalu-
ated atz1, ..., zn ∈ <, and let

[x1] ⊆ [z1], ..., [xn] ⊆ [zn]

Then:

1. f can be evaluated at[x1], ..., [xn] and

[f ]([x1], ..., [xn]) ⊆ [f ]([z1], ..., [zn])

2. f([z1], ..., [zn]) ⊆ [f ]([z1], ..., [zn])

The former is called theinclusion isotonicityproperty
and the latter, therange inclusionproperty.

Any interval can also be described in the normal-
ized form. Mathematically stated:

[x] = [x, x] = xc + λx × [−1, 1]

mid([x]) = xc = x+x
2 , rad([x]) = λx = x−x

2 ≥ 0

wherexc is called themidpoint andλx is called the
radius of interval [x]. Normalized interval form sub-
stitutes original one to simplify interval operations by
eliminatingmin(.) andmax(.) functions from calcu-
lations [19].

Definition 3 Interval vector[X] is the counterpart of
vectorX whose entries are intervals; that is to say:

[X]T = [[x1], [x2], ..., [xn]]

An interval vector can also be described in the normal-
ized form. In this case,Xc is the vector of midpoints
andλX is the vector of radiuses of the entries of inter-
val vector[X]:

[X] = Xc + λX . ∗ [υ]

where

Xc =







xc,1
...

xc,n






, λX =







λx1

...
λxn






, [υ] =







[−1, 1]
...

[−1, 1]







Symbol .∗ represents entry-by-entry product of two
vectors.

Remark 1 A vector with scalar entries determines a
point in space<n whereas a vector of intervals repre-
sents a hypercube in this space.

As mentioned before, normalized form facilitates
arithmetic operations. In which follows, one will need
to calculate the resulting interval of multiplying two
interval vectors. Using this form, we obtain [19]:

[z] = [X]T × [Y ]

= (Xc + λX . ∗ [υ])T × (Yc + λY . ∗ [υ])

where

z = XT
c Yc + |XT

c |λY + λT
X |Yc| + λT

XλY

z = XT
c Yc − |XT

c |λY − λT
X |Yc| − λT

XλY (1)

4 Linear Time-Varying Model
Parameter characterization using intervals has already
been studied for input-output and state-space models
in [13, 3, 17] and [2]. Methods which have already
been proposed treat the case in which only system’s
response in DatasetDS is interval. Moreover,
depending on model structure and identification
semantic, parameter characterization procedure
differs [4, 3, 1]. In this section, a generic approach is
proposed for parameter characterization of any linear
structure while both observed input and output are
characterized by intervals.

During the data acquisition experience and be-
cause of diverse reason like measurement error, true
system’s inputuk and responseyk may not be equal
to observed valuesuo,k andyo,k. If maximum values
of eu andey are known:
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eu = max
k

(|uk − uo,k|) , ey = max
k

(|yk − yo,k|)

then the true values can be characterized by intervals:

[u]k = [uo,k − eu, uo,k + eu]

[y]k = [yo,k − ey, yo,k + ey]

which guarantee that:

∀k, uk ∈ [u]k ∧ yk ∈ [y]k

DatasetDS = {[u]k, [y]k} is then used in parameter
characterization procedure.

4.1 Semantic of identification
In the case that system’s responses are characterized
by intervals, the identification semantic defines the
properties of model’s parameters and consequently,
the specifications of the model’s output [4]. It is de-
scribed in the form of a mathematical (logical) expres-
sion made up of quantifiers∀, ∃ and¬, parameters and
system’s inputs and responses. For instance, if param-
eters are identified using the following semantic:

∀k, ∃yk ∈ [y]k,∃θk ∈ [θ] | yk = θT
k × ϕk (2)

at every instant, system’s response[y]k and model’s
output[env]k have at least one common point; that is:

∀k, [y]k
⋂

[env]k 6= φ

whereas if the semantic is defined as follows:

∀k, ∀yk ∈ [y]k,∃θk ∈ [θ] | yk = θT
k × ϕk (3)

the model’s output includes the system’s response at
any instance; that is:

∀k, [y]k ⊆ [env]k

or in other words:

∀k,

{

yk ≤ envk

envk ≤ y
k

(4)

The system’s response and the model’s output for
identification semantics 2 and 3 are shown in the left
and in the right hand-side of Fig. 5 respectively.
The second one is chosen in this work to character-
ize model’s parameters.

system's output

model's output


k
y
]
[


k
env
]
[


k


y


k


y


system's output

model's output


k
y
]
[


k
env
]
[


Figure 5: Different identification semantics.

4.2 Optimization criterion
The set of model’s outputs at different instances deter-
mines the wrapping envelope of system’s response:

{[env]} = {[env]1, [env]2, ...}

Smaller the radius of the wrapping envelope, more
precisely the possible system’s responses are charac-
terized. Therefore, the radius of wrapping envelope
is defined as the optimization criterion of model’s pa-
rameters.

Definition 4 The radius of wrapping envelope in time
interval fromk = i until k = j is the mean-value of
its radius at different instants. Mathematically stated:

OCi,j =
1

j − i + 1

j
∑

k=i

envk − envk

2
(5)

Definition 5 The precision of the wrapping envelope
in time interval fromk = i until k = j is the exponen-
tial function-value of(−OCi,j); that is:

Pi,j = exp(−OCi,j)

For more detalis and demonstrations see [21, 19].

4.3 Model Structure
Probably, the simplest mathematical relationship be-
tween inputs and outputs of a linear time-invariant
system in discrete time is represented by its transfer
function:

G(z) =
yk

uk

=
b1z

−1 + b2z
−2 + ... + bnb

z−nb

1 + a1z−1 + a2z−2 + ... + anaz−na

By developing and reformulating it in vectoriel form,
one obtains [11]:

yk = θT × ϕk + ek (6)
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where

θ = [a1, ..., ana , b1, ..., bnb
, ]T

ϕk = [−yk−1, ..., −yk−na
, uk−1, ..., uk−nb

]T

θ is theparametersandϕk the regression vector of
the model. Additive termek is usually added to com-
pensate modeling error. If one fixesna = nb = N ,
the model is aninput-outputmodel whereas if he/she
fixesna = 0 andnb = N , it is thefinite impulse re-
sponseof the system. In both cases,N is called the
moving horizonof the model.

We have already argued that modeling error is due
to many facts among which model order reduction
and variation of physical and mechanical properties
of system can be cited. If model’s parameters are con-
sidered time-varying, one can project modeling error
on its parameters and eliminateek from 6; that is to
say:

yk = θT
k × ϕk

where

θk = [a1,k, ..., ana,k, b1,k, ..., bnb,k]
T

Parameter vectorθk carries indexk to demonstrate
that its entries are not constant scalars anymore and
vary in time.

System analysis using a model with time-varying
parameters is complicated and time-consuming. To
obtain a time-invariant model which is true at any in-
stant, one can characterized time-variant parameters
vectorθT

k by interval vector[θ] such that:

∀k, θk ∈ [θ]

In this case, model’s output is obtain from:

[env]k = [θ]T × ϕk

If vector ϕk contains also uncertain entries, it is re-
placed by interval vector[ϕ]k for which it is guaran-
teed thatϕk ∈ [ϕ]k. One consequently obtains a more
general vectoriel form of the model:

[env]k = [θ]T × [ϕ]k

Considering 1, the upper and the lower bounds of out-
put interval[env]k are:

envk = θT
c ϕk,c + |θT

c |λϕk
+ λT

θ |ϕk,c| + λT
θ λϕk

envk = θT
c ϕk,c − |θT

c |λϕk
− λT

θ |ϕk,c| − λT
θ λϕk

(7)

where

θc = mid([θ]) ∈ <N+1ϕk,c = mid([ϕ]k) ∈ <N+1

λθ = rad([θ]) ∈ <N+1 λϕk
= rad([ϕ]k) ∈ <N+1

In 7, θc andλθ are model’s parameters which should
be identified.

There exist different numerical methods to char-
acterize parameters ofLTV M [3, 2]. Parameters
characterization using the semantic of 3 can easily be
reformulated in the form of an optimization problem
subject to a set of constraints. Considering optimiza-
tion criterion in 5 and the pair of inequalities in 4 we
obtain:

min
θc,λθ

(OCi,j) = min
θc,λθ

(
1

j − i + 1

j
∑

k=i

envk − envk

2
) (8)

subject to

∀k,

{

yk ≤ envk

envk ≤ y
k

in which envk andenvk are substituted from 7. By
finding the minimizer2 of objective functionOCi,j,
one can obtain model’s parameter vector[θ]. Because
of non-linear term|θT

c | in the objective function and
in the constraints, this optimization problem is a
non-linear optimization problem subject to non-linear
constraints with respect to the parameters.

In any dynamic model, parameters can not be
characterized before instantk < N as the entries
of regressor vector are not available. This problem
also appears in simulation where the model’s output
can not be calculated before instantk ≤ N . In
other words, the model is not valid in its moving
horizon. A parameter identification procedure based
on model order reduction/increase respectively dur-
ing/after model’s moving horizon has been proposed
in [20]. Using this procedure, a set of parameters is
assigned to the model and consequently, model’s out-
put can be calculated at any instant.

5 Piecewise Parameters of LTVM
In the previous sections, a method has been proposed
to identify the parameters of complex systems. To ob-
tain a time-invariant model, variant parameters have

2A local (respect. global) minimizer is a set of parameters that
minimizes locally (respect. globally) the value of the objective
function.
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been characterized by intervals. However, if the varia-
tions of parameters are considerable, interval parame-
ters will be large and consequently,LTV M produces
a wide wrapping envelope which may not be of use
from academical or technical point of view.

To improve the precision, we suggest a novel
strategy to split system’s operating regime (SOR)
into several segments and to represent every segment
by a set of parameters. In which follows, every
segment ofSOR is called anoperating mode(OM )
and its corresponding parameters set is calledlocal
parameters set(LPS). At any instant, model uses
the parameters set which matches the best to current
SOP . For a non-linear system, this approach is
very likely to linearizing the system around different
operating points and for a hybrid system, it means to
represent every system’s operating mode by a set of
LPS.

It is supposed that everySOR can be determined
by system’s state variables in observable state space.
For piecewise linear modeling of such a system,
following steps are performed.

1) Determining characteristic variables: They are
the variables by which everySOR can be determined
in observable state space [25, 21]. Since they are not
known a priori, the entries of the regressor vector are
supposed to be. Hence, the space of the characteristic
variables is regressor spaceχϕ. At any instantk,
ϕk (respect. [ϕk]) represents a point (respect. a
hypercube) in this space.

2) Splitting system’s operating regime:In this step,
the objective is to splitSOR into several segments
SORi and to characterizeLPSi of LTV M using
subsetDSi ⊆ DS which corresponds toSORi.
LTV M with LPSi will then representSORi. To do
that, a strategy based on the precision of wrapping en-
velope is proposed in which follows.

Suppose that the desired precision is user-defined
valueprcn and suppose that the lastOM has already
been finished at instantbgn. Before instantbgn, i− 1
modes have been detected and therefore, at instant
bgn, we enter in theith one. At the beginning, the
initial data set for current mode is supposed to include
only the minimum number of points to characterize
LPSi local parameters that isDSi = DSbgn,b+N =
{([u]k, [y]k)|bgn ≤ k ≤ bgn + N}. Since this is
a minimum number of necessary points, the wrap-
ping envelope is the most possible precise one3. If
Pbgn,bgn+N < prcn, thenprcn should be modified

3if the true value of system inputs and outputs are known, then
Pbgn,bgn+N = 1.

since even for the least number of points, it can not be
achieved.

In the next step, pointbgn + N + 1 is added to
DSi and local parameters are re-characterized using
DSi = DSbgn,bgn+N+1. If Pbgn,bgn+N+1 is still su-
perior thanprcn, it demonstrates that this point can
be included inOMi. Following points are added
one after the others until instants at which if point
([u]s, [y]s) is added toDSi, Pbgn,s becomes less than
prcn. This indicates thatOMi can not handle any
other point. DSi = DSbgn,s−1

o , LPSi are char-
acterized usingDSi and newOMi+1 starts at in-
stantbgn + s. This procedure is followed for all the
points inDS. At the end of this procedure which is
shown in Fig. 6 (see also appendix A for splitting
algorithm), DS is divided intoM disjoints subsets
DSi, i = 1, ...,M .

 N
 points


DS
 of
 operating mode
 i


 N
 points


Detecting new operating mode


bgn
 bgn
+N-1
 bgn
+s-1


k


bgn
+s+N-1


Figure 6: Splitting system’s operating regime.

The value ofprcn plays an important role in
producing properSOR divisions. One may proceed
a preliminary analysis to observe the evolution of
precisionPi,j with respect toi andj and to chose an
adequate value forprcn. An alternative strategy for
splitting SOR based on the consistency of system’s
response with estimated one has already been sug-
gested in [21] [19].

3) Precision Improvement: As can be realized, the
smaller the amount of precision is, the more accurate
the model would be. Its cost is the complexity of the
model that would appear in the number ofLPS sets.
So, a trade off should be done between the modeling
precision and the number of itsLPS sets. However,
it happens that an slight increase inprcn has no
effect on the number of sets. Then, the most amount
of precision is sought in interval[prcn, 1] in such a
way that the same number of modes is required to
describe the system. It is accomplished by bisecting
interval [prcn, 1] and by observing the solutions, i.e.
the number of modes, in the bisected sections. If it is
found in the upper section[1+prcn

2 , 1], we continue bi-
secting the upper one otherwise[prcn, 1+prcn

2 ] would
be the interval which would be bisected in the next
step. The procedure is continued until the radius of
obtained interval onprcn becomes less than allowed
tolerancetlrn which is also a user defined value. The
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lower bound of the final interval would be the opti-
mal value forprcn (see appendix B for the algorithm).

4) Determining the validity domain of local param-
eters sets:To determine validity domain (V D) of any
LPS, theorem 3 is presented (see [19] and appendix
C for the proof):

Theorem 3 (The validity domain ofLPS) For
a system of ordern, suppose that the validity
domain of any system’s operating regime is a
convex hull in observable state space. Then,
it is also a convex hull in input-output space
Sχ1 = {uk−1, ..., uk−n, yk−1, ..., yk−n}
or reduced input-output space Sχ2 =
{uk−1, ..., uk−n−1, yk, ..., yk−n−1}.

If the V D of any SORi is a convex hull in input-
output space, then theV D of OMi and conse-
quently, theV D of LPSi is also a convex hull
in input-output space. Entries of anyDSi deter-
mines a set of points (or hypercubes) by vectors
χ1

k = [uk−1, ..., uk−n, yk−1, ..., yk−n] or χ2
k =

[uk−1, ..., uk−n−1, yk, ..., yk−n−1] which occupies
a region inSχ2

or Sχ2
respectively. This region is an

approximation ofLPSi validity domain (see Fig. 7).

input-output space
 system's output space


1
CH


3
CH


2
CH


1
LP


2
LP


3
LP


1
SOR


2
SOR


3
SOR


Figure 7: Validity of local parameters sets inSχ.

Definition 6 The validity domain ofLPSi is convex
hull CH i

χ of points/hypercubes determined byDSi in
spaceχ.

Definition 7 Consequently,LPSi is valid at instant
k iff vector χk is in convex hullCH i

χ or has at least
one common point with it. Mathematically stated:

χk ∈ CH i
χ or [χ]k

⋂

CH i
χ 6= φ

As mentioned before, convex hullCH i
χ is an ap-

proximation ofLPSi validity domain. MoreDSi is
informative, moreCH i

χ approaches the true domain.

If calculating convex hullCH i
χ is time-consuming

(because its dimensions or the number of entries of
DSi) or its form is complex (because of the high num-
ber of vertexes and sides), for simplicity reasons, this
convex hull can be approximated by its smallest outer
hypercube noted as♦CH i

χ. Therefore:

CH i
χ ⊆ ♦CH i

χ

In some cases, convex hulls i.e. validity domains
of LPS intersect. The most important reason for this
phenomenon is uncertainty on system’s observations.
For more details and discussions, see [19].

5) Aggregating similar local parameters sets:Dur-
ing data acquisition procedure, system may enter sev-
eral times in an identical operating regime. In this
case, the data corresponds to oneOM may be found
in disjoint time intervals inDS. As proposed splitting
method dose not verify whether the followingOM is
a new or a mode which has already been identified,
severalLPS may be assigned to oneSOR. Princi-
pally, this makes no problem. However, to diminish
the number ofLPS we try to aggregatePLs which
represent an identicalSOR. The following proposed
solution is based on the validity domains ofLPS. For
two different convex hullsCH i andCHj, three dif-
ferent cases may happen.

The first case is that the former is the subset of the
latter. Mathematically stated:

CH i ⊆ CHj

In this case regarding to definition 7,LPSj is valid as
soon asLPSi. Therefore, the former is considered as
subset of the latter.LPSi is eliminated andTDSi is
added toDSj. LPSj are then re-characterized using
DSi ∪ DSj and the validity domain of newLPSj is
convex hullCHj.

The second case happens when they intersect, but
neither does include the other one. i.e:

(CH i
⋂

CHj 6= φ)∧
(

CH i
⋂

CHj 6= CH i ∧ CH i
⋂

CHj 6= CHj
)

In this case, only at some instances bothLPSi and
LPSj are valid simultaneously and non of them in-
cludes completely the other one. Therefore, no ag-
gregation is performed since it may reduce modeling
precision considerably.

In the third case, they are two disjoint convex
hulls. In other words:

CH i
⋂

CHj = φ

WSEAS TRANSACTIONS on SYSTEMS Kyarash Shahriari, Stanislaw Tarasiewicz, Olivier Adrot

ISSN: 1109-2777
451

Issue 5, Volume 7, May 2008



which means that modelLPSi and modelLPSj de-
scribe two differentSOR. Therefore, no aggregation
is made.

The above rules should be applied to every pair
of validity domains (CH i, CHj) to eliminate as
many repeatedLPS as possible and to simplify
the structure ofLTV M . To make the aggregation
procedure easier, one may also use outer hypercube
approximations(♦CH i,♦CHj) rather than convex
hulls (CH i, CH i).

6 Numerical Example
The reduced order model of the system without any
perturbation is described by:

G(S) =
Y(S)

E(S)
=

s + 2.3

s2 + 6.6s + 1.67
(9)

If model’s parameters are considered time-variant, the
model follows system’s response more precisely. This
is shown in Fig. 8. Parameters variations ofLTV M
are shown in Fig. 9.

Figure 8: curve 1: System’s response without pertur-
bation. Curve 2: Tuning model response. Curve 3:
System’s response with perturbation.

This result illustrates that the piecewise parameters of
LTV M have a substantial effect on the system’s re-
sponses. The precision of this model has been worked
out using identification algorithms presented in ap-
pendixes A, B.

7 Conclusion
In this paper, we demonstrated that in systems identifi-
cation, how modeling error can be taken into account

Figure 9: Time-Varying coefficients ofLTV M of Eq.
9.

using LTV M . Since manipulating such a model is
time-consuming from processing point of view and
complex to analysis, parameters have been charac-
terized by intervals. The model then can predict all
possible system’s responses encapsulated in a tube
called wrapping envelope. This model can be used
in system analysis and control in applications such as
process safety in which ignorance of modeling error
may cause catastrophic consequences. Moreover, the
LTV M model’s moving horizon given in this paper is
useful in determining the optimal parameters of con-
troller or regulator.
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Appendix A: SOR Splitting Algorithm

prcn: user defined modeling precision
DS: System measurements
N: Moving horizon ofLTV M
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1. Start

2. begin = 1, end = N, i = 1,DSi = DSbegin,end

3. While end< (the number ofDS’s entries)

(a) Characterize LPSi usingDSi

(b) If Pbegin,end < prcn

i. Get DSi = DSbegin,end−1

ii. Characterize LPSi usingDSi

iii. i = i + 1

iv. begin = end

v. end = begin + N

vi. Go to 3

(c) Else

i. end = end + 1

ii. DSi = DSbegin,end

iii. Go to 3

4. End

Appendix B: Precision Improvement Algo-
rithm

tlrn: Allowed tolerance onprcn

1. Start

2. upper=1, lower=prcn

3. While (upper-lower)> tlrn

(a) c = (upper + lower)/2

(b) Repeatalgorithm 1 by takingprcn = c

(c) If (number of operating modes)> M

i. upper=c

(d) Else

i. lower=c

(e) End

4. End

Appendix C: Proof of Theorem 3

The theorem is proven for a1st and a 2nd order
dynamic system. However, it can easily be proven in
the same way for a system of any order.

Proof:
The dynamic of a1st orderSISO system in observ-
able state space is described as follows:

xk+1 = a × xk + b × uk

yk = xk (10)

wherea, b ∈ < are known,xk ∈ < is the state variable
anduk, yk ∈ < are the system’s input and output re-
spectively. According the hypothesis of the theorem,
the validity domain ofSORi is convex hullCH i

{x} in
state spaceS{x} which can be determined by a set of
linear inequality constraints as followings:

CH i
{x} = {x | ∀j, αi,j × x + γi,j ≤ 0} (11)

where j is the index of inequality constraint and
αi,j, γi,j ∈ < are known. From 10 one has:

xk = yk

Therefore, one obtains from 11:

CH i
{y} = {y | ∀j, αi,j × y + γi,j ≤ 0} (12)

Equations 11 and 12 show that if the validity domain
of SORi is a convex hull in observable state space, it
is also a convex hull in input-output spaceS{y}.

Identical to the1st order system, the dynamic of a2nd

orderSISO system can be described as follows:

Xk+1 =

[

0 a2

1 a1

]

× Xk + B × uk

yk =
[

0 1
]

× Xk (13)

whereXk = [x1,k, x2,k]
T . According to the hypothe-

sis of the theorem, the validity domain ofSORi in the
observable space space is convex hullCH i

{x1,x2}
:

CH i
{x1,x2}

=
{

X |
[

αi,j βi,j

]

× X + γi,j ≤ 0
}

(14)

whereαi,j, βi,j , δi,j ∈ < are known. Calculating
x1,k andx2,k form 13 with respect toa1, a2, b1, b2

andyk and inserting them into 14, then:

CH i
χ1 = {χ1

k |
[

αi,jβi,j

]

×
[

a2 0 b1 0
a1 a2 b2 b1

]

χ1
k + γi,j ≤ 0} (15)

and

CH i
χ2 = {χ2

k |
[

αi,jβi,j

]

×
[

0 a2 b1

1 0 0

]

χ2
k + γi,j ≤ 0} (16)

which show that if the hypothesis of the theorem is
true, the validity domains of anySORi of a2nd order
SISO system is also a convex hull in input-output or
reduced input-output spacesSχ1 andSχ2.
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