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Abstract: - The paper introduces an algorithmic improvement to IFRAIS, an existing Artificial Immune System 
method for fuzzy rule mining. The improvement presented consists of using rule buffering during the computation of 
fitness of rules. This is achieved using a hash table. The improved method has been tested against two different fitness 
functions and various data sets. Experimental results show improvements in computing times in the order of 3 to 10 
times maintaining same levels of accuracy. 
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1   Introduction 
Data mining tasks are often categorized into types of tasks 
they are applied to. One of them is a classification task, 
whose aim is to find general features of objects in order to 
predict classes they are associated with. Quite novel 
approaches, among others, integrate Artificial Immune 
System (AIS) [3] and Fuzzy Systems (FS) [6] to find not only 
accurate, but also comprehensible fuzzy rules that predict the 
class of an example. This kind of algorithms discovers a set 
of rules of the form “IF (fuzzy conditions) THEN (class)”, 
whose interpretation is as follows: IF an example’s attribute 
values satisfy the fuzzy conditions THEN the example 
belongs to the class predicted by the rule. One of the AIS-
based algorithms for mining IF-THEN rules is based on 
extending the negative selection algorithm with a genetic 
algorithm [4]. Another one is mainly focused on the clonal 
selection and so-called a boosting mechanism to adapt the 
distribution of training instances in iterations [1]. A fuzzy 
AIS was proposed also in [5], however that work addresses 
not the task of classification, but the task of clustering.  

The paper introduces a speed boosting extension to 
IFRAIS, the first AIS-based method for fuzzy rules mining 
[2]. 
 
2   IFRAIS 
Data preparation for learning in IFRAIS consists of the 
following steps: (1) create for each attribute in data set fuzzy 
variable; (2) create class list for actual data set; (3) and 
compute information gain for each attribute in data set. 
 
Input: full training set 
Output: fuzzy rules set 
 
rules set=0 
FOR EACH class c value in class values list DO 
 values count = number of c in full training set 
 training set = full training set 

 WHILE values count > number of maximal uncovered 
 examples AND values count >percent of maximal 
 uncovered examples 
  rule = CLONAL SELECTION ALGORITHM(training  
  set, c) 
  covered = COVER SET(training set, rule) 
  training set=training set / covered with rule 
  set 
  values count = values count - size of covered 
  set 
  ADD(rules set, rule) 
 END WHILE 
END FOR EACH 
FOR EACH rule R in rules set DO 
 COMPUTE FITNESS(R, full training set) 
END FOR EACH 
RETURN rules set 
 
Fig. 1. Sequential covering algorithm in IFRAIS (based on [2]) 
 

IFRAIS uses a sequential covering as a main learning 
algorithm (see Fig. 1). In the first step a set of rules is 
initialized as an empty set. Next, for each class to be 
predicted the algorithm initializes the training set with all 
training examples and iteratively calls clonal selection 
procedure with the parameters: the current training set and 
the class to be predicted. The clonal selection procedure 
returns a discovered rule and next the learning algorithm adds 
the rule to the rule set and removes from the current training 
set the examples that have been correctly covered by the 
evolved rule.  

Clonal selection algorithm is used to induct rule with best 
fitness from training set (see Fig. 2). Basic elements of this 
method are antigens and antibodies which refers directly to 
biological immune systems. Antigen is an example from data 
set and antibody is a fuzzy rule. Similarly to fuzzy rule 
structure, which consists of fuzzy conditions and class value, 
antibody comprises genes and informational gene. Number of 
genes in antibody is equal to number of attributes in data set. 
Each gene consists of a fuzzy rule and an activation flag that 
indicates whether fuzzy condition is active or inactive 
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Input: training set, class value c 
Output: fuzzy rule 
 
Create randomly antibodies population with size s 
and class value c 
FOR EACH antibody A in antibodies population 

PRUNE(A) 
COMPUTE FITNESS(A, training set) 

END FOR EACH 
FOR i=1 do generation size n 

WHILE clones population size < s-1 
antibody to clone = TOURNAMENT 
SELECTION(antibodies population) 
clones = CREATE x CLONES(antibody to clone) 
clones population =  clones population + 
clones 

END WHILE 
FOR EACH clone K in clones population 

muteRatio = MUTATION PROBABILITY(K) 
   MUTATE(K, muteRatio) 
   PRUNE(K) 
   COMPUTE FITNESS(K, training set) 

END FOR EACH 
antibodies population = SUCCESSION(antibodies 
population, clones population) 

END FOR 
result = BEST ANTIBODY(antibodies population) 
RETURN result 
 
Fig. 2. Clonal selection algorithm in IFRAIS [2] 
 

In the first step the algorithm generates randomly 
antibodies population with informational gene equal to class 
value c passed in algorithm parameter. Next each antibody 
from generated population is pruned. Rule pruning has a 
twofold motivation: reducing the overfitting of the rules to 
the data and improving the simplicity (comprehensibility) of 
the rules [7]. Fitness of the rule is computed according to the 
formula (called Alves fitness function) 

 

ݏݏ݁݊ݐ݂݅ ൌ  
ܶܲ

ܶܲ ൅ ܰܨ ·
ܶܰ

ܶܰ ൅ (1)  ܲܨ

 
where TP is number of examples satisfying the rule and 
having the same class as predicted by the rule; FN is the 
number of examples that do not satisfy the rule but have the 
class predicted by the rule; TN is the number of examples that 
do not satisfy the rule and do not have the class predicted by 
the rule; and FP is the number of examples that satisfy the 
rule but do not have the class predicted by the rule.  

Hence, the rules are fuzzy, the computation of the TP, FN, 
TN and FP involves measuring the degree of affinity between 
the example and the rule. This is computed by applying the 
standard aggregation fuzzy operator min. An example 
satisfies a rule if AFFINITY(rule, example) > L, where L is an 
activation threshold.  

For each antibody to be cloned the algorithm produces x 
clones. The value of x is proportional to the fitness of the 
antibody. Next, each of the clones undergoes a process of 
hypermutation, where the mutation rate is inversely 
proportional to the clone’s fitness. Once a clone has undergone 
hypermutation, its corresponding rule antecedent is pruned by 
using the previously explained rule pruning procedure.  
Finally, the fitness of the clone is recomputed, using the 
current training set. In the last step the T-worst fitness 
antibodies in the current population are replaced by the T best-

fitness clones out of all clones produced by the clonal 
selection procedure. Finally, the clonal selection procedure 
returns the best evolved rule, which will then be added to the 
set of discovered rules by the sequential covering. More 
details of the IFRAIS is to be found in [2]. 

In order to extend analysis of proposed improvement, 
IFRAIS with another fitness function was tested. A new, more 
complex function is based on fitness computation formula 
proposed in [1], and it is given with following equation (called 
Alatas fitness function) 

ݏݏ݁݊ݐ݂݅ ൌ ଵݓ · ܳଵ ൅ ଶݓ · ܳଶ, (2)

where ܳଵis given with equation 

ܳଵ ൌ
ݕݐ݅ݒ݅ݐ݅ݏ݊݁ݏ ൈ ݕݐ݂݅ܿ݅݅ܿ݁݌ݏ ൅ ݓܽ ൈ ′ݕܿܽݎݑܿܿܽ

1 ൅ ݓܽ
, 

(3)

where  

ݕݐ݅ݒ݅ݐ݅ݏ݊݁ݏ ൌ  
ܶܲ

ܶܲ ൅ (4) , ܰܨ

ݕݐ݂݅ܿ݅݅ܿ݁݌ݏ ൌ  
ܶܰ

ܶܰ ൅ ܲܨ , (5)

ݕܿܽݎݑܿܿܽ ൌ
ܶܲ ൅ ܶܰ

ܶܲ ൅ ܶܰ ൅ ܲܨ ൅ ܰܨ , (6)

Ԣݕܿܽݎݑܿܿܽ ൌ ൜ܽܿܿݕܿܽݎݑ ݕܿܽݎݑܿܿܽ ݄݊݁ݓ ൐ 0,7
0 ൑ ݕܿܽݎݑܿܿܽ ݄݊݁ݓ 0,7 , (7)

 
and ܳଶis given with formula 

ܳଶ ൌ 1 െ
ݐ݊ݑ݋ܥݏ݊݋݅ݐ݅݀݊݋ܥ݁ݒ݅ݐܿܣ

20  
(8)

where aw is the weight of the accuracy and is set to 0.01. 
Coefficients  ݓଵ and ݓଶ are weights in turn for ܳଵand ܳଶ ,and 
were set to 1 and 0,0005 respectively. ActiveConditionsCount 
is a number of active conditions in a computed rule.  
 
3   Improved IFRAIS 
Applying the IFRAIS to real data mining problems is time-
consuming process. To decrease training time and at the same 
time not to influence the quality of learning rules some 
improvements were introduced to the algorithm. The main 
idea is simply and relies on the rules buffering while their 
fitness is computed in clonal selection algorithm (Fig. 3). In a 
hash table the pairs: rule and its fitness to actual training set 
are saved. If the hash table contains given rule, then fitness 
associated with this rule is returned as a result and an 
exhaustive computation of fitness is omitted. In other case 
rule fitness computation is executed and next rule with its 
fitness is saved in the hash table and computed value is 
returned as a function output. 

 
Input: training set, class value c 
Output: fuzzy rule 
 
Empty hash table BUFFER initiation 
Randomly create antibodies population of size s and 
class value c 
FOR EACH antibody A in antibodies population 
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  PRUNE(A) 
IF CONTAINS(BUFFER, A) 

   RETURN ASSOCIATED ELEMENT(BUFFER, A) 
ELSE 

   fitness = COMPUTE FITNESS(A, training set)
   ADD(BUFFER, A, fitness) 
END FOR EACH 
FOR i=1 do generation count n 

WHILE clones populations size < s-1 
antibody to clone = TOURNAMENT 
SELECTION(antibody population) 

   clones = CREATE x CLONES(antibody to clone) 
clones population =  clones population + 
clones 

END WHILE 
  FOR EACH clone K in clones population 
   muteRatio = MUTATION PROBABILITY(K) 
   MUTATE(K, muteRatio) 
   PRUNE(K) 

IF CONTAINS(BUFFER, K) 
    RETURN ASSOCIATED ELEMENT(BUFFER, K) 

ELSE 
fitness = COMPUTE FITNESS(K, training 
set) 

    ADD(BUFFER, A, fitness) 
  END FOR EACH 

Antibody population = SUCCESSION(antibody 
population, clones population) 

END FOR 
result = BEST ANTIBODY(antibodies population) 
RETURN result 

Fig. 3. Clonal selection algorithm in an improved IFRAIS 

4 Experimental results 
In order to evaluate the performance of the speed boosting 
extensions, IFRAIS with Alves function, improved IFRAIS 
with Alves function, IFRAIS with Alatas function, and 
improved IFRAIS with Alatas function were applied to 6 
public domain data sets available from the UCI repository 
(http://archive.ics.uci.edu/ml/datasets.html). UCI data sets are 
widely used in other works, which aimed at classification 
problems (i.e. [11]) .The experiments were conducted using a 
Distribution-Balanced Stratified Cross-Validation [8], which 
is a one of the version of well-known k-fold cross-validation, 
and improves the estimation quality by providing balanced 
intraclass distributions when partitioning a data set into 
multiple folds.  

Table 1. Data sets and number of rows, attributes, continuous 
attributes, classes and full UCI repository data set name. 

Data set # 
Rows 

# 
Attrib. 

# 
Cont. 

# 
Class. Full UCI name 

Bupa 345 6 6 2 Liver Disorders 

Crx 653 15 6 2 Credit Approval 

Hepatitis 80 19 6 2 Hepatitis 

Ljubljana 277 9 9 2 Breast Cancer 

Wisconsin 683 9 9 2 Congressional 
Voting Records 

Votes 232 16 0 2 
Breast Cancer 

Wisconsin 
(Original) 

 
Table 1 shows the number of rows, attributes, continuous 

attributes, and classes for each data set. Note that only 
continuous attributes are fuzzified. The Votes data set does 

not have any continuous attribute to be fuzzified, whereas the 
other data sets have 6 or 9 continuous attributes that are 
fuzzified by IFRAIS.  

All experiments were repeated 50-times using 5-fold 
cross-validation. Table 2 and Table 3 show for each data set 
the average time of working and the average accuracy rate, 
both with standard deviations, for IFRAIS and improved 
IFRAIS. Table 2 shows results for Alves fitness function, 
whereas table 3 results for Alatas fitness function. As shown 
in both Table 2 and Table 3 the improved IFRAIS obtained 
comparable results as the standard version, but in 
considerably better time. For example, the time to achieve the 
same accuracy rate for Bupa set (ca 58.3 %) is almost tenfold 
(!) less for the improved IFRAIS (0.71±0.02 s) than the 
standard one (6.83±0.17 s). For the other data sets the time 
needed for learning for speed boosting IFRAIS is several 
times less. 

Table 2. Time and accuracy rate on the test set for Alves fitness 
function. 

 IFRAIS Improved IFRAIS 

Data set Accuracy Time [s] Accuracy Time [s] 

Bupa 58,23±0,81 6,83±0,17 58,38±0,61 0,71±0,02 
Crx 86,09±0,15 10,46±0,31 86,13±0,17 1,82±0,07 

Hepatitis 77,35±1,69 1,04±0,03 77,55±1,58 0,43±0,02 
Ljubljana 69,47±1,26 5,47±0,05 69,80±1,14 0,73±0,02 

Votes 96,98±0,00 1,45±0,01 96,98±0,00 0,34±0,01 
Wisconsin 95,06±0,33 10,13±0,28 94,87±0,37 1,71±0,06 

Table 3. Time and accuracy rate on the test set for Alatas fitness 
function. 

 IFRAIS Improved IFRAIS 

Data set Accuracy Time [s] Accuracy Time [s] 

Bupa 58,56±0,79 6,89±0,12 58,43±0,68 0,72±0,02 
Crx 86,06±0,17 10,37±0,25 86,11±0,14 1,81±0,05 

Hepatitis 78,20±1,84 1,02±0,03 77,95±2,07 0,42±0,02 
Ljubljana 69,54±1,12 5,29±0,06 69,27±1,12 0,72±0,01 

Votes 96,98±0,00 1,47±0,01 96,98±0,00 0,34±0,00 
Wisconsin 94,89±0,35 9,81±0,25 94,90±0,33 1,67±0,06 

 
For each experimental data set eight charts are provided, 

four pairs for each version of IFRAIS (Fig. 4-51). First chart 
from pair presents mean accuracy, maximal accuracy and 
minimal accuracy of 5-fold cross-validation in each of 50 
iterations of experiment. Second chart in pair shows mean 
time, maximal time and minimal time spent on inducting full 
rules sets in 5-fold cross-validation. 

As shown on accuracy charts, classification effectiveness 
is very unstable. 5-fold Distribution-Balanced Stratified 
Cross-Validation gives each time the same folds, so this 
diversity is not a result of different training sets in each test 
iterations. Probably accuracy instability is an effect of too 
short rule induction process, weak resistance to local 
extremes or both. This issue is a subject for further research.  

Presented charts also shows that accuracy mean is on the 
same level for each of tested IFRAIS modifications, what is a 
proof that, both buffering and new fitness function do not 
affect an accuracy. It is a strong proof for a correctness of 
presented improvement.   
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Fig. 4. Accuracy chart based on IFRAIS with Alves fitness 
function and Bupa data set. 
 

 
Fig. 5. Time chart based on IFRAIS with Alves fitness 
function and Bupa data set. 
 

 
Fig. 6. Accuracy chart based on improved IFRAIS with Alves 
fitness function and Bupa data set. 
 

 
Fig. 7. Time chart based on improved IFRAIS with Alves 
fitness function and Bupa data set. 

 
Fig. 8. Accuracy chart based on IFRAIS with Alatas fitness 
function and Bupa data set. 
 

 
Fig. 9. Time chart based on IFRAIS with Alatas fitness 
function and Bupa data set. 
 

 
Fig. 10. Accuracy chart based on improved IFRAIS with 
Alatas fitness function and Bupa data set. 
 

 
Fig. 11. Time chart based on improved IFRAIS with Alatas 
fitness function and Bupa data set. 
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Fig. 12. Accuracy chart based on IFRAIS with Alves fitness 
function and CRX data set. 
 

 
Fig. 13. Time chart based on IFRAIS with Alves fitness 
function and CRX data set. 
 

 
Fig. 14. Accuracy chart based on improved IFRAIS with 
Alves fitness function and CRX data set. 
 

 
Fig. 15. Time chart based on improved IFRAIS with Alves 
fitness function and CRX data set. 

 
Fig. 16. Accuracy chart based on IFRAIS with Alatas fitness 
function and CRX data set. 
 

 
Fig. 17. Time chart based on IFRAIS with Alatas fitness 
function and CRX data set. 
 

 
Fig. 18. Accuracy chart based on improved IFRAIS with 
Alatas fitness function and CRX data set. 
 

 
Fig. 19. Time chart based on improved IFRAIS with Alatas 
fitness function and CRX data set. 
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Fig. 20. Accuracy chart based on IFRAIS with Alves fitness 
function and Hepatitis data set. 
 

 
Fig. 21. Time chart based on IFRAIS with Alves fitness 
function and Hepatitis data set. 
 

 
Fig. 22. Accuracy chart based on improved IFRAIS with 
Alves fitness function and Hepatitis data set. 
 

 
Fig. 23. Time chart based on improved IFRAIS with Alves 
fitness function and Hepatitis data set. 

 
Fig. 24. Accuracy chart based on IFRAIS with Alatas fitness 
function and Hepatitis data set. 
 

 
Fig. 25. Time chart based on IFRAIS with Alatas fitness 
function and Hepatitis data set. 
 

 
Fig. 26. Accuracy chart based on improved IFRAIS with 
Alatas fitness function and Hepatitis data set. 
 

 
Fig. 27. Time chart based on improved IFRAIS with Alatas 
fitness function and Hepatitis data set. 
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Fig. 28. Accuracy chart based on IFRAIS with Alves fitness 
function and Ljubljana data set. 
 

 
Fig. 29. Time chart based on IFRAIS with Alves fitness 
function and Ljubljana data set. 
 

 
Fig. 30. Accuracy chart based on improved IFRAIS with 
Alves fitness function and Ljubljana data set. 
 

 
Fig. 31. Time chart based on improved IFRAIS with Alves 
fitness function and Ljubljana data set. 

 
Fig. 32. Accuracy chart based on IFRAIS with Alatas fitness 
function and Ljubljana data set. 
 

 
Fig. 33. Time chart based on IFRAIS with Alatas fitness 
function and Ljubljana data set. 
 

 
Fig. 34. Accuracy chart based on improved IFRAIS with 
Alatas fitness function and Ljubljana data set. 

 
Fig. 35. Time chart based on improved IFRAIS with Alatas 
fitness function and Ljubljana data set. 
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Fig. 36. Accuracy chart based on IFRAIS with Alves fitness 
function and Votes data set. 
 

 
Fig. 37. Time chart based on IFRAIS with Alves fitness 
function and Votes data set. 
 

 
Fig. 38. Accuracy chart based on improved IFRAIS with 
Alves fitness function and Votes data set. 
 

 
Fig. 39. Time chart based on improved IFRAIS with Alves 
fitness function and Votes data set. 

 
Fig. 40. Accuracy chart based on IFRAIS with Alatas fitness 
function and Votes data set. 
 

 
Fig. 41. Time chart based on IFRAIS with Alatas fitness 
function and Votes data set. 
 

 
Fig. 42. Accuracy chart based on improved IFRAIS with 
Alatas fitness function and Votes data set. 
 

 
Fig. 43. Time chart based on improved IFRAIS with Alatas 
fitness function and Votes data set. 
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Fig. 44. Accuracy chart based on IFRAIS with Alves fitness 
function and Wisconsin data set. 
 

 
Fig. 45. Time chart based on IFRAIS with Alves fitness 
function and Wisconsin data set. 
 

 
Fig. 46. Accuracy chart based on improved IFRAIS with 
Alves fitness function and Wisconsin data set. 

 
Fig. 47. Time chart based on improved IFRAIS with Alves 
fitness function and Wisconsin data set. 

 
Fig. 48. Accuracy chart based on IFRAIS with Alatas fitness 
function and Wisconsin data set. 
 

 
Fig. 49. Time chart based on IFRAIS with Alatas fitness 
function and Wisconsin data set. 
 

 
Fig. 50. Accuracy chart based on improved IFRAIS with 
Alatas fitness function and Wisconsin data set. 

 
Fig. 51. Time chart based on improved IFRAIS with Alatas 
fitness function and Wisconsin data set. 
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5 Conclusions and future research 
The accelerating extension was introduced to the IFRAIS 

algorithm - an AIS-based method for fuzzy rules mining. The 
acceleration uses the hash table, which contains the saved 
pairs: a rule and fitness of a rule. The hash table speeds up 
rapidly the computation of rule fitness in clonal selection 
algorithm. The improved IFRAIS was compared with 
standard IFRAIS algorithm in six real-world data sets. The 
modified algorithm works several times faster. 

Performed experiments proved that introducing more 
complex fitness function to clonal selection doesn’t affect a 
whole system. Both accuracy and time parameters haven’t 
changed, stability of results remains on the same level, as 
well. 

It seems to be still possible to improve the Induction of 
Fuzzy Rules with Artificial Immune Systems, and not only 
considering the time of working, but also the effectiveness of 
the induced fuzzy rules and results stability. That could be 
achieved mostly by introducing the learning of fuzzy 
partitions [10], introducing genetic operators [12] into clonal 
selection and also tuning clonal selection algorithm 
parameters. At present three and only three linguistic terms 
(low, medium, high) are associated with each continuous 
attribute. Each linguistic term is represented by the triangular 
membership functions. We have performed experiments, in 
which speed boosting IFRAIS [9] learns fuzzy partition for 
each attribute separately. The results are very promising. We 
also consider modifying the pruning function to reinforce the 
fitness of high-accuracy rules, as in [1]. Introduced accuracy 
stability is a next parameter which might be very influential 
on the whole system and we are in progress to investigate this 
indicator.  
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