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Abstract: - Systems having structural uncertainties or a known complicated structure are difficult to control. 
Modeling of the uncertainties or handling the deterministic complexity are typical problems frequently 
encountered in the field of systems and control engineering. The dynamic characteristics of such systems are 
usually very complex and highly nonlinear.  A new design approach of an optimal sliding-mode variable 
structure controller with integral compensation is presented for the position tracking servo control system in this 
paper. The method for obtaining switching function, integral gain and control function is also given. It can 
achieve accurate servo tracking in the presence of the disturbance and the plant parameter variation. Simulation 
results show that the new control algorithm exhibits the better control performance than the classical control 
method, and the rapidness and robustness of the system are improved. Moreover, its realization is simple and 
convenient. 
 
 
Key-Words: - Nonlinear system, variable structure control, sliding mode, switching function, control function, 
integral gain.  
 
1   Introduction 
Systems having structural uncertainties or a known 
complicated structure are difficult to control. 
Modeling of the uncertainties or handling the 
deterministic complexity are typical problems 
frequently encountered in the field of systems and 
control engineering. The dynamic characteristics of 
such systems are usually very complex and highly 
nonlinear. For a practical control system, it is usually 
desired to have a fast accurate response with small 
overshoot. 

In recent years, sliding-mode variable structure 
control attracts control domain’s attentions, and has 
been widely developed. It has complete 
self-adaptation and strong robustness for the plant 
parameter uncertainties. Variable structure control 
(VSC) with sliding mode was first proposed and 
elaborated in the early 1950’s in the Soviet Union by 
Emelyanov and several researchers [1, 2, 3]. In their 
pioneer works, the plant considered was a linear 

second-order system modeled in phase variable form. 
Since then, VSC has developed into a general design 
method being examined for a wide spectrum of 
system types including nonlinear systems, 
multi-input/multi-output systems, discrete-time 
models, large-scale and infinite-dimensional systems, 
and stochastic systems. In addition, the objectives of 
VSC have been greatly extended from stabilization to 
other control functions. The most distinguished 
feature of VSC is its ability to result in very robust 
control systems, in many cases invariant control 
systems result. Loosely speaking, the term 
“invariant” means that the system is completely 
insensitive to parametric uncertainty and external 
disturbances. Today, research and development 
continue to apply VSC to a wide variety of 
engineering systems.  

The main drawback of sliding-mode control (SMC) 
is chattering which can excite undesirable 
high-frequency dynamics. Several methods of 
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chattering reduction have been reported. But many 
approaches provide no guarantee of convergence to 
the sliding mode and involve a tradeoff between 
chattering and robustness. Continuous SMC can 
exponentially drive the system state to a 
chattering-free sliding mode but tends to produce 
conservative designs. This method has the factions of 
lowering the order and uncoupling. The control law is 
simple. In the linear and nonlinear system, it still can 
solve the problem of stability, properties, etc [4, 5,6]. 

However pure sliding control as limited usage in 
practice since it requires very fast switching on the 
input (which cannot be provided by real actuators), is 
extremely vulnerable to measurement noise (the input 
depends on the sign of a measured variable which is 
very close to zero) and employs unnecessarily large 
control signals. To alleviate these difficulties, several      
modifications to the original sliding control law have 
been proposed, the most recent approach being the 
use of intelligent paradigms, such as fuzzy logic and 
neural networks in solving the engineering problems 
of sliding mode controllers [7-15]. 
 
 
2  Variable Structure Control  
 
2.1  The Basic Theory of VSC 
The basic idea of VSC was originally illustrated by a 
second-order system, similar to the following  

2
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and 

( , ) , 0.5s x y x x yσ σ= = +          (3) 

A block diagram of the system is shown in Fig.1 . 
The variable  in (3) is the product of two 
functions 

),( yxs

( , ) , 0.5s x y x x yσ σ= = +                (4) 

The functions describe lines dividing the phase 
plane ( yx plane) into regions where  has 
different sign as shown in Fig. 2. As such, the lines (4) 
are often called switching lines and  is called 
a switching function. The lines also define the set of 
points in the phase plane where  = 0. This set 

of points is known as the switching surface, despite 
the fact that the set composed of two lines is not a 
surface in the strict sense. All of these terms are more 
carefully defined and used later. 

),( yxs

), y(xs

), y(xs

The feedback gain ψ  is switched according to (2), 
i.e., the sign of . Therefore, the system (1, 2) 
is analytically defined in two regions of the phase 
plane by two different mathematical models: 

)y,(xs

In region Ⅰ where  = ),( yxs ux  > 0, model is 

2 4 2
x y

5y y x x y x
=
= − − = −

&

&
              (5) 

In region Ⅱ where   = ),( yxs ux < 0, model is 

2 4 2
x y

3y y x x y x
=
= − + = +

&

&
               (6) 

The phase plane trajectories for (5) and (6) are 
shown as portrait in Fig.3 and Fig.4. The equilibrium 
point of (5) is an unstable focus at the origin. The 
equilibrium point of (6) is a saddle at the origin; the 
saddle point is also unstable. 

The phase portrait for the system (1, 2) is formed 
by drawing the portrait for (4) in region I of the phase 
plane and drawing the portrait for (5) in region Ⅱ. 
The resultant portrait is shown in Fig.5. To obtain the 
complete phase portrait, the trajectory of the system 
on the set  = 0 must be described. On the line ),( yxs
x  = 0, the phase trajectories of regionsⅠ and Ⅱ are 
just joined together without any ambiguity. On the 
line 

0.5 0x yσ = + =                          (7) 

which itself is a dynamical equation, the phase 
portrait is a trajectory along the switching line σ  = 0 
as shown in Fig.5. 

The complete phase portrait of the system shows 
that there are no unusual motion characteristics on the 
line x = 0 other than possible discontinuities on 
motion direction. However, the line σ  = 0 contains 
only endpoints of those trajectories coming from both 
sides of the line. These points constitute a special 
trajectory along the σ  = 0 line, representing motion 
called a sliding mode. Thus, a phase trajectory of this 
system generally consists of two parts, representing 
two modes of the system. The first part is the reaching 
mode, also called nonsliding mode, in which the 
trajectory starting from anywhere on the phase plane 
moves toward a switching line and reaches the line in 

WSEAS TRANSACTIONS on SYSTEMS Jiang Jing, Ye Yingying and Fang Yanxian 

ISSN: 1109-2777
436

Issue 5, Volume 7, May 2008



finite time. The second part is the sliding mode in 
which the trajectory asymptotically tends to the origin 
of the phase plane, as defined by the differential 
equation (7). Four basic notions of this example VSC 
system should be observed: 

1) Since the origin of the phase plane represents the 
equilibrium state of the system, the sliding mode 
represents the behavior of the system during the 
transient period. In other words, the line that 
describes σ  = 0 defines the transient response of 
the system during the sliding mode. 

2)  During the sliding mode, trajectory dynamics (7) 
are of a lower order than the original model (1).  

3)  During the sliding mode, system dynamics are 
solely governed by the parameters that describe 
the line σ  = 0. 

4)  The sliding mode is a trajectory that is not inherent 
in either of the two structures defined by (4) or 
(5). 

During the control process, the structure of the 
control system (1), ( 2) varies from one structure (4) 
to another (5), thus earning the name variable 
structure control. To em- phasize the important role 
of the sliding mode, the con- trol is also often called 
sliding mode control. It should be noted that a 
variable structure control system can be devised 
without a sliding mode, but such a system does not 
possess the associated merits.  

 

 
Fig. 1  System model 

 

 
Fig. 2  Regions defined by the switching logic 

 

 
 

Fig.3  Phase portraits for system (5). 
 
 

 
 

Fig.4  Phase portraits for system (6) 
 
 

 
 

Fig.5  Phase portraits for system (1,2) 
 

 
 
2.2  The Strategy of Sliding-mode VSC 
For a given control system represented by the state 
equation 

.
( , , )
, ,n m

x f x u t
x R u R t R
=

∈ ∈ ∈
                    (8) 

We find 
1)  m  switching functions, represented in vector 

form as , )(xs
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2) a variable structure control 
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such that the reaching modes satisfy the reaching 
condition, namely, reach the set = 0 (switching 
surface) in finite time[16]. 

)(xs

The physical meaning of above statement is as 
follows: 
1) Design a switching surface )(xs = 0 to represent 

a desired system dynamics, which is of lower 
order than the given plant. 

2) Design a variable structure control ),( txu such 
that any state x outside the switching surface is 
driven to reach the surface in finite time. On the 
switching surface, the sliding mode takes place, 
following the desired system dynamics. In this 
way, the overall VSC system is globally 
asymptotically stable. 

 
 
2.3  Brief Theoretical Background 
Before the emergence of the early stages of VSC 
development, its foundation had already been laid. 
Elements of the foundation consist of the theory of 
oscillation and the qualitative theory of differential 
equations. Brief discussions of these elements are 
given below. 
 
 
2.3.1 Phase Plane Method 
As a powerful graphical tool for studying 
second-order dynamic systems, the phase plane 
method was well established in the realm encom- 
passing the qualitative (geometric) theory of 
differential equations and oscillation theory. The 
classical literature of Andronov et al. [17] and 
Flugge-Lotz [18] cited many early works in these 
areas. In their outstanding works, two contributions 
provided the foundation for the emergence of VSC: 
1) Regionwise linearization of nonlinear dynamic 

systems in which linearization of nonlinear 
systems was applied in partitioned regions of the 
phase plane. This gave the initial prototype VSC 
systems. 

2)  The sliding mode motion, a term first used by 
Nikol- ski [19]. This was the first concept of 
sliding mode control. 

 
 
2.3.2 Theory of Differential Equations 
Theory of Differential Equations with a Nonanalytic 
Right-Hand Side: Two kinds of nonanalyticity are of 

importance with respect to VSC: 
1)   Finite discontinuous right-hand side, which is the 

relay type discontinuity,  
2)  Double-valued right-hand side, which is the relay 

type discontinuity with hysteresis. 
The problem is that a differential equation is not 

defined at the point where the right-hand side of the 
equation is not analytic because the existence and 
uniqueness of the solutions at these points are not 
guaranteed. Hence, the phase plane method cannot 
give a complete solution without defining an 
auxiliary equation at these points. The auxiliary 
equation is the model of switching that occurs in VSC 
systems with discontinuous control. Five methods 
have been suggested to define the differential 
equation for the system at points of discontinuous 
dynamics [20].  
 
 
3  Optimal Sliding-Mode VSC 
The system using VSC with integral compensation is 
desired as 

10

1

1 1,,2,1

xxx

fbuxax

nixx

d

n

i
iin

ii

−=

−+−=

−==

∑
=

+

&

&

L&

           (9) 

where  is the output,    is the expectated input, 
 and  are the plant parameters,  f  is the 

disturbance, and  u  is a piecewise linear control 
function of the form 

1x
b

dx

ia

                   (10) 
⎩
⎨
⎧

<
>

=
−

+

0),,(
0),,(

σ
σ

iftxu
iftxu

u

where σ  is the switching function given by 

                  (11)  ∑
=

+−=
n

i
iiI xcxkxc

2
011 )(σ

1=nc                                                  
In which  is the integral control gain and  are 
constants. 

1k ic

Design of such a system involves (9) the 
determination of the control function u to guarantee 
the existence of a sliding mode, (10) the 
determination of the switching function and σ the 
integral control gain  such that the system has an 
optimal motion with respect to a quadratic 
performance index, and (11) the elimination of 
chattering of the control input. 

Ik
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3.1 Determination of Control Function 
From (9) and (11), one obtains 

)(

)]([
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         (12) 

 
Let  

iii aaa Δ+= ˆ ,   i=1      nL

bbb Δ+= ˆ  

where  and b  are nominal values of  and b, and 
and are the deviations, respectively. 

iâ
Δ

ˆ
ia

iaΔ b

Let the control function u be decomposed into 

uuu eq Δ+=                         (13) 

where  ,called the equivalent control, is defined as 
the solution of the equation 

equ
0=σ& under  f =0, 

 and  , that is  iˆi aa = bb ˆ=

bxaxcxxkcu
n

i
ii

n

i
iidIeq

ˆ/]ˆ)([
12

111 ∑∑
==

+ +−−=   (14) 

The function  is used to eliminate the 
influence due to the presence of ,  and   f  so 
as to guarantee the existence of a sliding mode. This 
function is constructed as  

uΔ
iaΔ bΔ

Φ+Ψ+−Ψ=Δ ∑
=
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2
011 )(       (15) 
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It is known that the condition for the existence and 
accessibility of a sliding motion is [21] 

0<σσ &                                 (16) 

Substitution of (13) into (14) yields 

σ
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Thus, the conditions of satisfying the inequality 
(15) are 

⎪⎩

⎪
⎨
⎧

Δ+Δ−Δ>
Δ+Δ−Δ<

=Ψ
−

−

bbbcbbaa
bbbcbbaa

iiii

iiii
i /)ˆ/ˆ/ˆ(

/)ˆ/ˆ/ˆ(

1

1

β
α

 

00 =c            ni ,,2,1 L=  

and 

⎩
⎨
⎧

>
−<

=Φ
btN
btN

/)(
/)(

δ
γ

 

 
 
3.2  Determination of Switching Function and 
Integral Control Gain 
Under sliding motion, the system described by (9) can 
be reduced to 
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or, in the matrix form[19] 

ErBVAXX ++=&  

GXV =  

where 
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In order to find the optimal gain matrix G by 
means of the optimal linear regulator technique, the 
quadratic index  I  as shown in the following equation 
must be minimized: 

∫
∞

+=
st

TTT RVVXQXI )(
2
1

             (18) 

where  and  are weighting 
matrices and  is the time from which the sliding 
mode begins. The weighting matrix Q can be chosen 
as , where  D  is a  vector and the 
pair (A,D) is observable [22].  

0>= TQQ

st

DDT=

0>= TRR

n×1Q

Then the optimal gain matrix G is given by 

PBRG T1−−=  

where  P  is the solution of the matrix Riccati equation 

01 =+−+ − QPBPBRPAPA TT          (19) 

 
 
3.3  Chattering Considerations 

For the control law given by (13), if Φ   and iΨ  are 
chosen as 

δγ −==Φ ,   

 iii βα −==Ψ ,   

               ni ,,1L=

then the control function  u  can be represented as 
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Since the control  u  contains the sign function 
)sgn(σ , direct application of such a control signal to 

the plant may give rise to chattering[23], [24]. To 
obtain a continuous control signal, the discontinuous 
function )sgn(σ  in (20) can be replaced by a proper 
continuous function as  

δσ
σσδ +

=)(S  

where δ is positive. If it is too small, the chattering 
phenomenon may not be effectively suppressed, and 
if it is too large, the sliding action may be slow so that 
the advantage of robustness of VSC is lost[25]. 

For improving the result, the value of δ is therefore 
chosen as a function of dxx −1  as 

dxx −+= 110 δδδ  

where 0δ  and 1δ  are positive constants, and the 
proper continuous function is modified as 

dxx
M

−++
=

110

)(
δδσ
σσδ  

 
 
4    Application  
 
4.1  Model of the System 
Considering a position tracking servo system, in this 
case, the system includes a casement, a reducer and 
an electromotor. The moment of inertia that 
converted into the motor’s axis is =0.00657 . 
The torque coefficient of the electromotor is , and 
its counter electromotive force voltage coefficient 
is . The resistance of the armature loop is

J 2Kgm

MC

eC Ω= 3R

Nm

. 
The decelerating ratio is . The maximum of 
the Coulomb friction torque has been given. The 
maximum value of the load disturbance  is 9.8 . 
The gain is 

1670=i

df
K = 304. is the backlash 

characteristic, and the transmission clearance is 
)A(N
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2.5 . In addition, the fluctuation of the system’s 
parameters is 10%. Fig. 6 shows the structure of the 
system. 

mil
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x
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⎡
&

&

u

x

The system’s performances have been given. The 
transition time of the step response is =1.6s. The 
overshoot is less than 17 percent. The steady-state 
error of unit step input is zero.  

st

    According to the system’s requirement, we can 
neglect the backlash characteristic here. As shown in 
Fig. 6, suppose that the casement rotational angle is 1x , 
the angular velocity is , , then the state 
equation of the control system is 

2x 1xy =

x
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   (21) 

where is the control input, and is the total 
disturbance. 

d

 

4.2  Controller Design 
According to optimal sliding-mode variable structure 
control strategy, in order to obtain zero steady-state 
error with step input, sliding mode must include the 
integral of , as following 1xxd −

10 xxx d −=&                                  (22) 

where   is the instruction signal. d

 

 

 

 

Fig. 6  Structure of the tracking servo system  
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Following the design procedure above, we can 
obtain the control function 

)()(

ˆ/]ˆ)([

2211

222111

σδMxxkx
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I

dI

Φ+Ψ+−−Ψ+
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with 

bbbaa iii /ˆ/ˆ Δ−Δ−<Ψ  

         2,1=i    00 =c  
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where 

}ˆ/)]([
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The σ function is obtained from (3) as 

2011 )( xxkxc I +−−=σ  

and, by suitably choosing,  we can obtain Q=diag(100, 
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3)  and  R=0.01. Then, from (20), the optimal gain 
matrix can be obtained as   

G = [ -0.02436  -0.00087] 

so that  28 ,  0.00087. =Ik =1c

Gains ,  and  must be chosen to satisfy 
the above forms, and based on simulations, we choose 

1Ψ 2Ψ Φ

1Ψ = -1, = -0.0002, 2Ψ Φ =-0.005.     

This VSC with integral compensation approach 
gives a control function  

)()005.0
0002.0(00082.0

00000023.0)(00000645.0

2012

21

σδM
xxkxx

xxxu

I

d

−

−−−+−

−−−=

 

Where  

σ = -0.00087( - ) + ,  1x 0xK I 2x

δ =  0.000364 dxx −1 + 0.00605. 
 
 
4.3  Simulation  
According to the real time control requirement, under 
Matlab 6.0 environment, we adopt the fixed step-size 
arithmetic and simulate on the computer. 

Fig. 7 shows the tracking of a step input with 
optimal SMC. Its transition time is 1.07s, and the 
overshoot is zero. Fig. 8 shows the response under the 
same condition using SMC. It is obviously that the 
performance of fast tracking and a significant 
reduction of chattering are obtained by introducing 
the integral compensation. 

 

 
Fig. 7   Step response of SMC 

 
 

 

   
Fig. 8   Step response of the classical control 

 

Fig. 9 shows the ramp input response of the SMC 
system. It shows that output can follow the input 
smoothly when the slope is half of the requirement 
(0.04rad/s). Fig. 10 shows the classical control system 
cannot follow smoothly with the same input signal. 

  
 Fig. 9   Ramp response of SMC 

 

 
Fig. 10   Ramp response of the classical control 
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5   Conclusion 
Systems having structural uncertainties or a known 
complicated structure are difficult to control. 
Modeling of the uncertainties or handling the 
deterministic complexity are typical problems 
frequently encountered in the field of systems and 
control engineering. The dynamic characteristics of 
such systems are usually very complex and highly 
nonlinear. For a practical control system, it is usually 
desired to have a fast accurate response with small 
overshoot. 

In this paper, a new technique of optimal 
sliding-mode variable structure control with integral 
compensation for the position tracking servo control 
system has been discussed. The method for obtaining 
switching function, integral gain and control function 
is also given. It can achieve accurate servo tracking in 
the presence of the disturbance and the plant 
parameter variation. Inorder to reducing chattering, 
the related continuous function is considered in the 
control algorithm. Simulation results show that the 
new control algorithm exhibits the better control 
performance than the classical control method, and 
the rapidness and robustness of the system are 
improved. Moreover, its realization is simple and 
convenient. 
 
 
References: 
[1] S. V. Emelyanov, Variable Structure Control 

Systems. Moscow: Nauka (in Russian), 1967. 
[2]  Y. Itkis, Control Systems of Variable Structure. 

New York: Wiley, 1976. 
[3]  G. Ambrosino, G. Celentano, and E. Garofalo, 

Variable structure model reference adaptive 
control systems, Int. J. Contr., Vol. 39, No. 6, pp. 
1339-1349. 

[4]  F. Boudjema, and J. L.-Abatut, 1990, Sliding 
mode - A new way to control series resonant 
converters,  Proc. I990 IEEE Ind.Electron. Conf., 
1990, pp. 938-943. 

[5] Jiang Jing, Sliding-mode Variable Structure 
Control for the Position Tracking servo System. 
WSEAS Transactions on Systems, Vol.6, No.2, 
2007, pp. 294-297. 

[6] Hu Yueming, Theory and Application for 
Variable Structure Control. Science Press, 
Beijing, 2003. 

[7] Zhang Changfan, Wang Yaonan, Intelligent 
Control and its Application Based on Sliding 
Mode Variable Structure Control. Chinese 
Journal of Electrical Machine Engineering , Vol. 
21, No. 3, 2001, pp. 27-29. 

[8]  Naji Al-Musabi, Zakariya Al-Hamouz, Hussain 
Al-Duwaish, Design of Variable Structure 

Stabilizer for a Nonlinear Model of SMIB 
System: Particle Swarm Approach. WSEAS 
Transactions on Power Systems, Vol.1, No.2, 
2006, pp. 311-316. 

[9]  Wang Zhujiong, Zhang Zhihui, Sliding Mode  
Control Design Method Based on Fuzzy Logic. 
Control Engineering, Vol.10, No.6, 2003, pp. 
536-538. 

[10] Lu Yusheng, Chen jianshiang, A Self-organizing 
Fuzzy Sliding-mode Controller Design for a 
Class of Nonlinear Servo Systems. IEEE Trans 
Ind Electron, Vol. 41, No. 5, 1994, pp. 492-502. 

[11] Wang Shunyuan, Liu Chunchang, Yang Weitzen, 
Design of a Static Reactive Power Compensator 
using Fuzzy Mode Control. Int J Contrl, Vol. 63, 
No.2, 1996, pp. 393-412.  

[12] Liu Hongling, Jiang Chuanwen, Zhang Yan, 
Hussain Al-Duwaish, Design of PID Parameters 
Self-Tuning Fuzzy Control System and its 
Application in Hydroelectric System. WSEAS 
Transactions on Circuits and Systems, Vol.5, 
No.5, 2006, pp. 646-651. 

[13]  Ha Q P, Rye D C, Durrant-Whyte H F. Fuzzy 
Moving Sliding Mode Control with Application 
to Robotic Manipulators. Automatica, Vol.35, 
No. 4, 1999, pp. 607-614. 

[14]  G. C. Hwang, S.C.Lin. A Stability Approach to 
Fuzzy Control Design for Nonlinear Systems. 
Fuzzy Sets Syst. Vol. 48,  2001, pp. 279-287. 

[15]  W. B. Gao, Fundamentals of Variable Structure 
Control Theory. Press of Science and 
Technology in China (in Chinese), Beijing, 
1990. 

[16]  A. A. Adronov, A. A. Vitt, S. E. Khaikin, 
Theory of  Oscillation. Moscow: Fizmatgiz. (in 
Russian), 1959. 

[17] I. Flugge-Lotz, Discontinuous Automatic 
Control. Princeton, NJ: Princeton University 
Press, 1989. 

[18]  G. N. Nikolski, On automatic stability of ship on 
given course, Proc. Central Communication 
Lab.. 1934, No. I, pp. 34-75. (in Russian). 

[19] John Y. Hung, Weibing Gao, James C. Hung. 
Variable Structure Control: A Survey. IEEE 
Transactions on Industrial Electronics, Vol.40, 
No.1, 1993, pp. 2-22. 

[20] Gu Lijun. Optimal control system.  Water Power 
Press, Beijing,1993. 

[21] W. B. Gao and M. Cheng, On the quality control 
of variable structure systems, Contr. Decision, 
Vol. 4, No. 4, 1989, pp.1-6. 

[22]  Gao Weibing, Theory and Design Method for 
Variable Structure Control. Science Press, 
Beijing, 1996. 

WSEAS TRANSACTIONS on SYSTEMS Jiang Jing, Ye Yingying and Fang Yanxian 

ISSN: 1109-2777
443

Issue 5, Volume 7, May 2008



[23] Yi Jikai, Jiangxiangxian, Hou Yuanbin, 
Electrical Driving Automatic control Theory and 
Design, Beijing Technical University Press, 
Beijing, 1993. 

[24] W. B. Gao and J. C. Hung, Variable Structure    
Control of nonlinear systems: A new approach. 
IEEE Trans. Ind. Electron., Vol. 40, 1993, pp. 
45-55. 

[25] Zhou F, Fisher D G. Continuous Sliding Mode 
Control. Int. J.Control, Vol. 55, 1992, pp. 
313-327. 

WSEAS TRANSACTIONS on SYSTEMS Jiang Jing, Ye Yingying and Fang Yanxian 

ISSN: 1109-2777
444

Issue 5, Volume 7, May 2008


	1   Introduction
	2  Variable Structure Control 
	3  Optimal Sliding-Mode VSC

