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Abstract: - This paper addresses the problem of simultaneous static output-feedback stabilization of a collection of 
interval time-delay systems. It is shown that this problem can be converted into a matrix measure assignment 
problem. Sufficient conditions for guaranteeing the robust stability for considered systems are derived in term of 
the matrix measures of the system matrices. By using matrix inequalities, we provide two cases of obtaining a static 
output-feedback controller that can stabilize the system, i.e., both P I=  and P I≠  cases are considered where 
I is a identity matrix and P is a common positive definite matrix to guarantee the stability of the overall system. The 
sufficient condition with P I=  is formulated in the format of linear matrix inequalities (LMIs). When P I≠  is 
considered, the sufficient condition becomes a nonlinear matrix inequality problem and a heuristic iterative 
algorithm based on the LMI technique is presented to solve the coupled matrix inequalities. Finally, an example is 
provided to illustrate the effectiveness of our approach.  
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1. Introduction 
The simultaneous stabilization problem was first 
introduced in Saeks and Murray [1] and Vidyasagar 
and Viswanadham [2]. This problem consists in 
answering the following questions: given m plants 

1, , mG GK , does there exist a single feedback 
controller C so that the controller can stabilize all 
plants and all corresponding closed-loop systems have 
satisfactory performance? One scenario for this 
problem is the reliable stabilization problem, where 

2 , , mG GK  represent 1G  operating in various modes 
of failures (e.g., failure of sensor, severance of loops, 
software breakdown). If failures occur, the dynamics 
of the system will certainly change. Thus, in such a 
case, a controller is sought so that it can stabilize the 
system in all situations. Another application is the 
design of a fixed controller for a set of linear plants 
characterized by different modes of operations or for 
nonlinear plants linearized at several regions. 

Lots of researchers have been devoted 
themselves in solving the simultaneous stabilization 
problem. Blondel and Gevers [10] studied the 
computational complexity of simultaneous 
stabilization and proved that the simultaneous 
stabilization for three linear systems is rationally 
non-decidable. From [15]-[16], it is possible to 
conclude that this problem is very difficult to solve 
due to its NP-hard nature. Paskota et al. [3] presented 
a computational technique for optimal simultaneous 
stabilization for linear systems via linear state 
feedback. Cao and Lam [7] dealt with simultaneous 
linear-quadratic (LQ) optimal control design for a set 
of linear time-invariant (LTI) systems via piecewise 
constant output feedback. Cao and Sun [8] proposed 
an iterative linear matrix inequality (LMI) algorithm 
to seek a state/output feedback controller for a set of 
MIMO plants. In [9], a numerical algorithm is 
introduced to solve the problem of simultaneous 
stabilization of a collection of MIMO plants via static 
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output feedback using a set of coupled algebraic 
matrix inequalities (ARI’s). Other design results on 
simultaneously stabilizing controller can also be found 
in [12]-[13]. 

In the above-mentioned approaches, these 
researchers employ the LQ control approach to solve 
the simultaneous stabilization problem for a collection 
of LTI systems without time delay and uncertainties. 
To our best knowledge, there are no general 
techniques for solving the problem of simultaneous 
stabilization for a collection of uncertain time-delay 
systems via static output feedback. For a single 
system with time delay and uncertainties, the robust 
stability analysis problem is quite complicated and 
recently, has been studied via several different 
techniques. The criteria for asymptotic stability of 
such systems can be classified as delay-independent, 
which are independent of the size of time-delay, for 
example [20,21], or delay-dependent, which include 
information on the size of delay, for example [22,23]. 
Meanwhile, some different stability criteria have also 
been proposed via the LMI approach [24]-[27].  

In this paper, we focused on the problem of 
simultaneous stabilization for a collection of interval 
time-delay systems via a static output feedback 
controller. It will be shown that the considered 
problem is solvable if a corresponding matrix measure 
assignment problem is solvable. The matrix measure 
is widely applied in the analysis of stability properties 
of uncertain and/or time-delay systems [4, 5, 14]. 
Although it has been widely employed in the 
robustness analysis problem, nevertheless, few has 
investigated about the controller synthesis problem. 
Recently, linear matrix inequalities (LMI’s) have 
emerged as a powerful formulation and design 
technique for a variety of linear control problems 
[6,17,18]. Software like Matlab’s LMI Control 
Toolbox [18] is available to solve LMI’s problems in 
a fast and user-friendly manner. In this paper, we shall 
show that the matrix measure assignment problem is 
equivalent to an LMI feasibility problem. Thus, a 
controller solving the matrix measure assignment 
problem and then solving the simultaneous 
stabilization problem for a collection of interval time 
delay systems can be obtained via solving an LMI 
problem.  

The paper is organized as follows. Section 2 
proposes the problem formulation and reviews the 
basic properties of the matrix measure. In Section 3, a 
collection of interval time-delay systems are 
discussed. In the section, the stability and robustness 
conditions for the considered system are also derived. 
It is shown that the problem of static output-feedback 

controller design for a collection of interval 
time-delay systems is solvable if a corresponding 
matrix measure assignment problem is solvable. 
Further, The sufficient condition with P I=  is 
formulated in the format of linear matrix inequalities 
(LMIs). When P I≠  is considered, the sufficient 
condition becomes a nonlinear matrix inequality 
problem and a heuristic iterative algorithm based on 
the LMI technique is presented to solve the coupled 
matrix inequalities. Section 4 shows an illustrative 
example. Finally, conclusions are given in Section 5. 

 
Notations: 
 In what follows, O is a zero matrix with an 
appropriate dimension, I is an identity matrix with an 
appropriate dimension, TM  denotes the transpose of 
the matrix M, M* denotes the conjugate transpose of 
the matrix M, M >0 ( 0M ≥ ) means that the matrix 
M is positive definite (semidefinite), M <0 ( 0M ≤ ) 
means that the matrix M is negative definite 
(semidefinite). 
 
 
2. Problem Formulation and 

Preliminaries 
Consider a collection of interval time-delay systems: 
   ˆ ˆ( ) ( ) ( ) ( )i i i i i i i it t t h t= + − +x A x D x B u& , 1,2, ,i p= K  (1) 

( ) ( )i i it t=y C x , 1,2, ,i p= K            (2) 

where ( ) n
i t ∈ℜx  is the state, ih  is the time-delay of 

the system, ( ) m
i t ∈ℜu  is the control input, and 

( ) r
i t ∈ℜy  is the controlled output. n m

i
×∈ℜB  and 

r n
i

×∈ℜC  are constant matrices. ˆ n n
i

×∈ℜA  and 
ˆ n n

i
×∈ℜD  are matrices whose elements vary in some 

prescribed ranges; e.g., iÂ  and iD̂  are such that 
ˆ [ ],      
ˆ [ ],      

ii i i
i jk jk jkjk

ii i i
i jk jk jkjk

a a a a

d d d d

= ≤ ≤

= ≤ ≤

A

D
 1,2, ,i p= K        (3) 

where i
jka  is the jk-th element of the matrix iÂ , i

jka  

and i
jka  denote its low bound and upper bound, 

respectively, i
jkd  is the jk-th element of the matrix iD̂ , 

and i
jkd  and i

jkd  denote its low bound and upper 

bound, respectively. Those bounds i
jka , i

jka ,  i
jkd , 

and i
jkd are known real values.  
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 The design goal is to find a matrix F such that the 
static output feedback controller  
    ( ) ( )i it t=u Fy  , pi ,,2,1 K=        (4) 
ensures all the closed-loop interval time-delay systems 
being asymptotically stable. 

We now introduce several properties about matrix 
measure as follows. The matrix measure of a constant 
matrix M is defined as 

    ( )
0

|| || 1
( ) lim v

v
θ

θ
µ

θ+→

+ −
≡

I M
M          (5) 

where ||.||v is a suitable matrix norm (see [5]). 
 
Lemma 2.1 [5]: The matrix measure has following 
properties. 
(a). µv(.) is convex; i. e., 

( )
1 1

k k
v vj j j jj j
µ α α µ

⎛ ⎞
≤∑ ∑⎜ ⎟⎜ ⎟= =⎝ ⎠

M M  for all α j ≥ 0.  (6) 

 (b). For any norm and any constant matrix M 
  || || ( ) Re ( ) ( ) || ||v v v vµ λ µ− ≤− − ≤ ≤ ≤M M M M M .   (7) 
 (c). Suppose ijm  is the ij-th element of M, then 

    1( ) max Re( ) | |m mjj ijj i j
µ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

= + ∑
≠

M ,        (8) 

    *
2 ( ) max ( ) / 2ii

µ λ⎡ ⎤= +⎣ ⎦M M M ,       (9) 

( ) max Re( ) | |ii iji i j
m mµ∞

≠

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∑M .        (10) 

 
 
3. Main Results 
From (1), (2) and (4), the collection of closed-loop 
systems can be described as:  

ˆ ˆ( ) ( ) ( ) ( )i i i i i i i it t t h= + + −x A B FC x D x&  , 1,2, ,i p= K  
( ) ( )i i it t=y C x ,  1,2, ,i p= K  

Denote 
[ ],   [ ]i i

i jki jka a= =A A ,  1,2, ,i p= K         (11) 

   [ ],   [ ]i i
i jki jkd d= =D D , 1,2, ,i p= K         (12) 

and let 
1 1

2 2
( ),   ( )i i i i ii= + = +A A A D D D , 1,2, ,i p= K   (13) 

 ,   ,i i i i i i= − = −M A A N D D 1,2, ,i p= K      (14) 
where iA  and iD  are the average matrices of iA  
and iA , and of iD  and iD , respectively. Furthermore, 

iM  and iN  are the maximal bias matrices between 
ˆ

iA  and iA , and between ˆ
iD  and iD , respectively.  

  We first derive a new sufficient condition to ensure 
the stability of a collection of unforced time-delay 
systems without uncertainty 

 
( ) ( ) ( )
( ) ( )

i i i i i i

i i i

t t t h
t t
= + −
=

x A x D x
y C x
&

, 1,2, ,i p= K  .  (15) 

 
 
3.1 LMI approach 
Theorem 3.1: For any 0ε > , if  

 2
2

1 1( )
2 2i iµ ε
ε

< − −A D , 1, 2, ,i p= K ,   (16) 

then the equilibrium of a collection of unforced system 
(15) is asymptotically stable. 
 
Proof: Consider a Lyapunov function as 

i

 t

 t-h

1( ( )) ( ) ( ) ( ) ( )T T
i i i i iV t t t s s ds

ε
= + ∫x x x x x , 

1,2, ,i p= K .   
The time derivative of ( ( ))iV tx  is 

1( ( )) 2 ( ) ( ) ( ) ( )

1               ( ) ( )

i i

i

T T
i i i

T
i i i

V t t t + t t

t h t h

ε

ε

=

− − −

x x x x x

x x

& &

   

   

( )( ( ) ( ))

   ( ( ) ( )) ( )
1 1  + ( ) ( ) ( ) ( )

T
i i i i i i

T
i i i i i i

T T
i i i i i i

t t + t h

+ t + t h t

t t t h t h
ε ε

= −

−

− − −

x A x D x

A x D x x

x x x x

   

   

1( )( ) ( )

 + ( ) ( ) ( ) ( )
1 ( ( ) ( ))

T T
i i i i

T T T
i i i i i i i i

T
i i i i

t + + t

t t h + t h t

t h t h

ε

ε

=

− −

− − ⋅ −

x A A I x

x D x x D x

x x

  

Set ( ) [ ( )  ( )]T T T
i i i it t t h= −x x x . We obtain 

1

( ( )) ( ) ( )
1

T
i i i

T
i i i

T
i

V t t tε

ε

⎡ ⎤+ +⎢ ⎥
= ⎢ ⎥

⎢ ⎥−⎢ ⎥⎣ ⎦

A A I D
x x x

D I

& . 

By Schur complement, if
1 0T T

i i i iε
ε

+ + + <A A I D D , 
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then 

1

1

T
i i i

T
i

ε

ε

⎡ ⎤+ +⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

A A I D

D I
 is negative definite. 

From (16), we obtain 

2

2 2 2

2
2

1( )

1( ) ( ) ( )

12 ( )

0

T T
i i i i

T T
i i i i

i i

+ + +µ ε
ε

µ µ µ ε
ε

µ ε
ε

≤ + + +

≤ + +

<

A A I D D

A A I D D

A D

 

This proves
1 0T T

i i i iε
ε

+ + + <A A I D D , and then 

1

0
1

T
i i i

T
i

ε

ε

⎡ ⎤+ +⎢ ⎥
<⎢ ⎥

⎢ ⎥−⎢ ⎥⎣ ⎦

A A I D

D I
.  

So ( ( )) 0iV t <x&  for all ( ) 0i t ≠x . This completes 
the proof.                                □ 
  □ 
 Theorem 3.1 provides a simple method to verify the 
stability of a collection of unforced time-delay systems 
(15). In what follows, we shall consider the stability 
conditions of a collection of unforced time-delay 
systems with uncertainty. 
 
Theorem 3.2: Consider a collection of interval 
time-delay systems 

  
ˆ ˆ( ) ( ) ( )

( ) ( )
i i i i i i

i i i

t t t h
t t
= + −
=

x A x D x
y C x
&  , 1,2, ,i p= K   (17) 

where ˆ
iA  and ˆ

iD  are defined in (3). If  

2 2
2

1 1 1( )
2 2 2i i i i i iµ ε ε ε
ε

< − − − − ⋅ −A M D N D N

, 1,2, ,i p= K ,                 (18) 
then (17) is robustly asymptotically stable. 
 
Proof: Since 

2

2
1ˆ ˆ2 ( )i iµ ε
ε

+ +A D

2
2

12 ( )i i i iµ ε
ε

= + ∆ + + + ∆A A D D

2 2
2 2

12 ( ) 2 ( ) 2i i i i i iµ µ ε ε ε
ε

= + ∆ + + + ⋅ ∆ + ∆A A D D D D

2 2
2

12 ( ) 2 2i i i i i iµ ε ε ε
ε

< + + + + ⋅ +A M D N D N

0<
This completes the proof.            □ 
 
 With the above theorems, we have the following 
corollary. 
 
Corollary 1: Suppose that static output feedback gain 
F  satisfy the following conditions  

2
2

1 1( )
2 2i i i i i i iµ ε ε
ε

+ < − − − − ⋅A B FC M D N D  

21
2 iε− N , 1,2, ,i p= K ,    (19)

then the equilibrium of the closed-loop time-delay 
system with norm-bounded uncertainties represented as 

ˆ ˆ( ) ( ) ( ) ( )
( ) ( )

i i i i i i i i

i i i

t t t h
t t
= + + −
=

x A B FC x D x
y C x
& , 1,2, ,i p= K  

                     (20) 
is robustly asymptotically stable. 
 
 Corollary 1 reveals that if the constant control 
gain satisfies (19), then a collection of interval 
time-delay systems are robustly asymptotically stable. 

For simplicity of notation, define 
2 21 1 1

2 2 2i i i i i iγ ε ε ε
ε

= − − − − ⋅ −M D N D N ,

1,2, ,i p= K . 
Thus, (19) becomes 
   2 ( )i i i iµ γ+ <A B FC , 1,2, ,i p= K .    (21) 

 
Define { }2( ) | ( )m r

i i i i i iγ µ γ×ℑ ≡ ∈ℜ + <F A B FC , 

for 1,2, ,i p= K . The admissible solution set 
is 1 1 2 2( ) ( ) ( )p pγ γ γℑ ≡ ℑ ℑ ⋅⋅ ⋅ ℑI I I . Then, we can 
have the following theorem. 
 
Theorem 3.4: The admissible solution set ℑ  is 
convex. 
Proof: Since the intersection of convex sets is convex, 
we only need to prove that ( )i iγℑ  is convex for each i. 
Assume 1 ( )i iγ∈ℑF  and 2 ( )i iγ∈ℑF , which means 

2 1( )i i i iµ γ+ <A B F C  and 2 2( )i i i iµ γ+ <A B F C . Then, 
to prove that ( )i iγℑ  is convex is same as to prove 

1 2(1 ) ( )i iα α γ+ − ∈ℑF F , or equivalently to prove 

2 1 2( ( (1 ) ) )i i i iµ α α γ+ + − <A B F F C , for all 0 1α≤ ≤ . 
Note that 
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 )))1((( 212 iii CFFBA ααµ −++  
))1()1(( 212 iiiiii CFBCFBAA ααααµ −++−+=  

)))(1()(( 212 iiiiii CFBACFBA +−++= ααµ  
)()1()( 2212 iiiiii CFBACFBA +−++≤ µααµ  

 γ<  
This completes the proof.            □ 
 

From the above discussions, it is concluded that 
the matrix measure assignment problem can be 
considered as a convex feasibility problem. Thus, we 
now turn our attention to reduce the matrix measure 
assignment problem to an LMI feasibility problem. 
 For a matrix U, define ⊥U  as a matrix whose 
columns form bases of the null bases of U. Then, we 
can have the following theorem, which is the main 
result of this paper. 
 
Theorem 3.5:  
(1). The matrix F satisfies  
   2 ( )i i i iµ γ+ <A B FC , 1,2, ,i p= K .     (22) 

if and only if F satisfies LMIs 
  2T T T T

i i i i i i iγ+ − + + <(A A I) B FC C F B 0 , 
          1,2, ,i p= K .                     (23) 
(2). There exists F satisfies (23) if and only if 
 ( ) ( 2 )( )T T

i i i i iγ⊥ ⊥+ − <B A A I B 0 , 1,2, ,i p= K    (24) 
 and  
 ( ) ( 2 )( )T T

i i i i iγ⊥ ⊥+ − <C A A I C 0 , 1,2, ,i p= K    (25) 
 
Proof: We first prove part (1). From (9), it can be shown 
that 2 ( )i i i iµ γ+ <A B FC , 1,2, ,i p= K , are equivalent 
to  

* 2i i i i i i iγ+ + + − <(A B FC ) (A B FC ) I 0, 1,2, ,i p= K . (26) 
which are equivalent to 

2T T T T
i i i i i i iγ+ − + + <(A A I) B FC C F B 0 , 1,2, ,i p= K . 

 This completes the proof of part (1). For the part (2), 
recall the result in [19]. Given a symmetric matrix 

n n×∈ℜΨ  and two matrices U and V both with a 
column dimension n, there exists a matrix Θ  of a 
compatible dimension such that T T T+ +U V V UΨ Θ Θ  
< 0  if and only if T

⊥ ⊥ <U U 0Ψ  and T
⊥ ⊥ <V V 0Ψ . 

Letting 2T
i i i iγ= + −(A A I)Ψ , T

i i=V B , i i=U C , and 

= FΘ , the part (2) is obvious.  
 

Theorem 3.3 tells us that if (24) and (25) hold, then 
there exists a matrix F that satisfies LMIs (23). In fact, 
such an F also solves (22). This means that if (24) and 

(25) hold, then the admissible solution set ℑ  is not 
empty. Note that a matrix F satisfying LMIs (23) can 
easily be obtained by using Matlab’s LMI Control 
Toolbox if ℑ  is not empty. The obtained F then can 
also solve the considered problem.  

 
Remark: The approach described above can be applied 
to solve the simultaneous output feedback stabilization 
problem for a collection of uncertain systems: 
    ( ) ( ) ( ) ( )i i i i i it t t∆= + +x A A x B u& , 1,2, ,i p= K   
    ( ) ( )i i it t=y C x , 1,2, ,i p= K   
    || ||i iρ∆ ≤A , 1,2, ,i p= K          
where n

i ∈ℜx  is the state, m
i ∈ℜu  is the control 

input, and r
i ∈ℜy  is the output; and iA , iB , and 

iC  are constant matrices of appropriate dimensions. 
The design goal is to find a matrix F such that the static 
output feedback controller  
    ( ) ( )i it t=u Fy , 1,2, ,i p= K          
can stabilize all the closed loop systems in the presence 
of uncertainty i∆A .  
 Since 2 ( )  i iµ ∆ ∆≤A A , it is known that if we can 
find a feedback matrix F such that  
    2 ( )i i i iµ ρ+ < −A B FC , 1,2, ,i p= K      (27) 
then all the closed-loop systems are asymptotically 
stable. This problem can be easily solved via our 
approach. 
 
3.2 Iterative LMI approach 
Theorem 3.6: For any 0ε > , if exists a symmetric and 
positive definite matrix n n×∈ℜP  such that the 
following inequalities are satisfied 

 2
2

1( )
2 2i i

εµ
ε

< − −PA PD , 1, 2, ,i p= K ,  (28) 

then the equilibrium of a collection of unforced system 
(15) is asymptotically stable. 
 
Proof: Consider a Lyapunov function as 

i

 t

 t-h

1( ( )) ( ) ( ) ( ) ( )T T
i i i i iV t t t s s ds

ε
= + ∫x x Px x x , 

1,2, ,i p= K .   
The time derivative of ( ( ))iV tx  is 

1( ( )) ( ) ( ) ( ) ( ) ( ) ( )

1               ( ) ( )

i

i

T T T
i i i i i i

T
i i i

V t t t + t t t t

t h t h

ε

ε

= +

− − −

x x Px x Px x x

x x

& & &
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( ) ( ( ) ( ))

   ( ( ) ( )) ( )
1 1   + ( ) ( ) ( ) ( )

T
i i i i i i

T
i i i i i i

T T
i i i i i i

t t + t h

+ t + t h t

t t t h t h
ε ε

= −

−

− − −

x P A x D x

A x D x Px

x x x x

   

   

1( )( ) ( )

  + ( ) ( ) ( ) ( )
1 ( ( ) ( ))

T T
i i i i

T T T
i i i i i i i i

T
i i i i

t + + t

t t h + t h t

t h t h

ε

ε

=

− −

− − ⋅ −

x A P PA I x

x PD x x D Px

x x

  

Set ( ) [ ( )  ( )]T T T
i i i it t t h= −x x x . We obtain 

1

( ( )) ( ) ( )
1

T
i i i

T
i i i

T
i

V t t tε

ε

⎡ ⎤+ +⎢ ⎥
= ⎢ ⎥

⎢ ⎥−⎢ ⎥⎣ ⎦

A P PA I PD
x x x

D P I

& . 

By Schur complement, if
1T

i i ε
+ + +A P PA I  

0T
i iε <PD D P , then 

1

1

T
i i i

T
i

ε

ε

⎡ ⎤+ +⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

A P PA I PD

D P I
 is 

negative definite. From (16), we obtain 

2

2 2 2

2
2

1( )

1( ) ( ) ( )

12 ( )

0

T T
i i i i

T T
i i i i

i i

+ + +µ ε
ε

µ µ µ ε
ε

µ ε
ε

≤ + + +

≤ + +

<

A P PA I PD D P

A P PA I PD D P

PA PD

 

This proves 2
1( ) 0T T

i i i iµ ε
ε

+ + + <A P PA I PD D P  

⇒
1 0T T

i i i iε
ε

+ + + <A P PA I PD D P , and then 

1

0
1

T
i i i

T
i

ε

ε

⎡ ⎤+ +⎢ ⎥
<⎢ ⎥

⎢ ⎥−⎢ ⎥⎣ ⎦

A P PA I PD

D P I
.  

So ( ( )) 0iV t <x&  for all ( ) 0i t ≠x . This completes 
the proof.                                □ 
   
 In what follows, we shall consider the stability 
conditions of a collection of unforced time-delay 
systems with uncertainty. 

 
Theorem 3.7: If  

2 2 2
2

2 2

1( )
2 2
1                 ,  1, 2, ,                     (29)
2

i i i i i

i i p

εµ ε
ε

ε

< − − − − ⋅

− =

PA P M P D P N D

P N K

                  
then (17) is robustly asymptotically stable. 
 
Proof: Since 

2

2
1ˆ ˆ2 ( )i iµ ε
ε

+ +PA PD

2
2

12 ( )i i i iµ ε
ε

= + ∆ + + + ∆PA P A PD P D

2
2 2

12 ( ) 2 ( ) 2i i i i iµ µ ε ε
ε

= + ∆ + + + ⋅ ∆PA P A PD PD P D

  
2

iε+ ∆P D  

2 2 2
2

12 ( ) 2 2i i i i iµ ε ε
ε

< + + + + ⋅PA P M P D P N D

  
2 2

iε+ P N  
0<

This completes the proof.            □ 
 
 With the above theorems, we have the following 
corollary. 
 
Corollary 2: Suppose that static output feedback gain 
F  satisfy the following conditions  

2 2
2

1 1( ( ))
2 2i i i i iµ ε
ε

+ < − − −P A B FC P M P D

2 2 21
2i i iε ε− ⋅ −P N D P N , 1,2, ,i p= K ,  (30)

then the equilibrium of the closed-loop time-delay 
system with norm-bounded uncertainties represented as 
(20) is robustly asymptotically stable. 
 
 For simplicity of notation, define 

2 2 21 1
2 2i i i i iη ε ε
ε

= − − − − ⋅P M P D P N D

    2 21
2 iε− P N , 1,2, ,i p= K . 

Thus, (30) becomes 
 2 ( ( ))i i i iµ η+ <P A B FC , 1,2, ,i p= K .    (31) 

 The matrix inequality (31) leads to nonlinear 
matrix inequality optimization, a non-convex 
programming problem. Non-convexity implies the 
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existence of local minima and the nonlinear matrix 
inequality problems are NP-hard. However, we shall 
reduce the matrix measure assignment problem (31) to 
a matrix inequality problem from the following 
theorem. 

 
Theorem 3.8: The static output feedback gains F satisfy 
the following conditions 
   2 ( ( ))i i i iµ η+ <P A B FC , 1,2, ,i p= K .  (32) 
if and only if F satisfy the following matrix inequality 
 2 0T T T

i i i i i i iη+ − + + <(PA A P I) PB FC C FB P , 

1,2, ,i p= K .                (33) 
Proof: From (9), it can be shown that 

2 ( ( ))i i i iµ η+ <P A B FC , 1,2, ,i p= K , are equivalent 

to ( ) 2 0T
i i i i i i iη+ + + − <P(A B FC ) (P A B FC ) I , 

1,2, ,i p= K , which are also equivalent to 

2 0T T T
i i i i i i iη+ − + + <(PA A P I) PB FC C FB P , 

1,2, ,i p= K . This completes the proof.       □ 
 
  In fact, the above matrix inequality (33) problem is 
generally very difficult for which to obtain solutions or 
to determine feasibility. However, if we can derive an 
iterative form for its feasibility, we may construct an 
iterative algorithm based on the LMI technique [28]. 
 If P is fixed in (33), then it reduces to an LMI 
problem in the unknowns F The LMI problem is convex 
and can be solved if a feasible solution exists. If we 
simply perturb (33) by Pβ− , then we obtain a 
necessary condition for static output feedback 
stabilizability, i.e.,  
   

2 0T T T T
i i i i i i iη β+ − − + + <PA A P I P PB FC C F B P ,

1,2, ,i p= K . 
Consequently, the closed-loop system matrices 

i i i+A B FC  have eigenvalues on the left-hand side of 
the line ( ) / 2s βℜ =  in the complex s-plane. 
 
 Iterative Linear Matrix Inequality Algorithm: 
 
Step 1) Set m=1, select S>0. Solve the following ARE: 
 0T T

i i i i+ − + =A P PA PB B P S  
 and set =F P , 1,2, ,i p= K . 
Step 2) Solve the following optimization problem for 

mP  and mβ . 
 OP1: Minimize mβ  subject to the LMI 

constraints shown in (34)-(35). 

2T
m i i m i m m m i iγ β+ − − +P A A P I P P B FC

0T T T
i i m+ <C F B P              (34) 

0T
m m= >P P               (35) 

Step 3) If 0mβ ≤ , mP  is a feasible solution. STOP. 
Step 4) Solve the following optimization problem for 

mP . 
 OP2: Minimize trace( mP ) subject to the 

LMI constraints shown in (34)-(35). 
Step 5) If m δ− <F P , a predetermined tolerance, 

go to Step 6); else set =F P  
 and m=m+1, then go to Step 2). 
Step 6) This algorithm cannot get a feasible solution. 

STOP. 
 
In Step 2) is viewed as a generalized eigenvalue 
minimization problem. This step ensures that the 
poles of the global closed-loop system move to 
the left half-plane gradually. Numerical 
experiences denoted that β  may converge 
slowly in some cases. The algorithm is terminated 
when 1m mβ β− −  is smaller than a prescribed 
tolerance for a fixed number of successive 
iterations. In Step 3), we set 0mβ =  and let the 
algorithm continue iterating to make the 
difference of F  and P as small as possible if a 
feasible solution is obtained and the feedback 
gain is too large. The condition (34) guarantees 
the existence of a solution of optimization 
problem OP2. The solution mP  implies that the 
sequence trace( mP ) is bounded below. If mβ  is 
fixed for m>q and q is a positive constant, it is not 
difficult to find that the solution sequence 
trace( mP ) is a monotonic decreasing sequence. 
OP2 may be infeasible due to the effect of 
numerical errors in Step 2). In such a case, one 
may set m m mβ β β= + ∆  for some small positive 
number mβ∆ , and solve OP2 again. 
 
 
4. Illustrative Examples 
Example: Consider two interval time-delay systems 
described by (1)-(3) with the same dimension: 
System 1: 
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 1

103.8 105.6 93.5
134.3 79.1 119.2 ,  
89.4 133.6 136.5

− − −⎡ ⎤
⎢ ⎥= − − −⎢ ⎥
⎢ ⎥− − −⎣ ⎦

A

1

101.7 103.9 91.6
131.5 77.2 116.6 ,  
86.2 129.1 113.4

− − −⎡ ⎤
⎢ ⎥= − − −⎢ ⎥
⎢ ⎥− − −⎣ ⎦

A  

   ,
3.25.03.3
1.22.33.0
8.07.04.0

1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
−−
−−

=D  

  ,
2.15.07.0

1.08.18.0
3.00.12.0

1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−

−−
=D  

   ,
43
35
71

1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

=B   ⎥
⎦

⎤
⎢
⎣

⎡
−−

−
=

352
187

1C . 

 
System 2: 
   

 2

102.1 111.3 90.7
91.2 86.1 113.7 ,  

130.8 120.5 77.2

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

A

2

104.6 114.2 94.5
93.7 89.9 116.8 ,  

134.6 124.4 80.5

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

A  

   ,
2.49.03.2
0.40.59.0
1.12.07.0

2

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
−−
−−

=D  

  ,
4.32.01.1
0.10.33.1
7.08.03.0

2

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−
−−

=D  

 2

1 7
5 3 ,  
3 4

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

B  2

13.37 10.51 8.59
11.49 9.67 8.2
− − −⎡ ⎤

= ⎢ ⎥
⎣ ⎦

C . 

The delay times 11 =h  and 12 =h . The problem is to 
find F such that iiii γµ <+ )(2 FCBA  for 2 ,1=i , 
where  

   )(  ),(
2

1

2

1
iiiiii DDDAAA +=+= , 2 ,1=i , 

   ,  , iiiiii DDNAAM −=−=  2 ,1=i , 
  
 

2 21 1 1
2 2 2i i i i i iγ ε ε ε
ε

= − − − − ⋅ −M D N D N , 

2 ,1=i . 
We can obtain 1 10.4484γ = −  and 2 14.9262γ = − . 
Then we can easily compute a solution F from the 
following LMIs using Matlab’s LMI Control Toolbox. 
    0BFCFCBI)A(A <++−+ TTTT

1111111 2γ  

    0BFCFCBI)A(A <++−+ TTTT
2222222 2γ  

A solution is obtained as:  

    
10.4616 13.3610
1.9983 0.3117

− −⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

F . 

It is easy to check that 2 1 1 1( )µ + =A B FC  

12.3590− , which is less than 1 10.4484γ = − . 
Similarly, 2 2 2 2( )µ + =A B FC -26.5851 < 2γ =  

14.9262− . It then can be inferred that the collection 
of systems ˆ( ) ( ) ( )i i i ix t x t= +A B FC& ˆ ( )i i ix t h+ −D , 
for 1,2i = , are all robustly stable. 
 
 
5.  Conclusions 

In this paper, finding an admissible solution to the 
matrix measure assignment problem can solve the 
problem of simultaneously stabilizing controller 
design via static output feedback for a collection of 
interval time-delay systems. We presented an LMI 
approach to solve the matrix measure assignment 
problem. It was shown that the admissible solution set 
of the matrix measure assignment problem is convex. 
It is also shown that the matrix measure assignment 
problem is equivalent to an LMI feasibility problem. 
A necessary and sufficient condition for the existence 
of output feedback controllers to the matrix measure 
assignment problem is obtained. Finally, an 
illustrative example is given to show the correctness 
of the proposed approach. Our approach does not need 
to find a common positive definite matrix and the 
verification of stability is very easy. Simulation results 
have verified and confirmed the effectiveness of the 
new approach in the simultaneous stabilization of a 
collection of interval time-delay systems. 
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