
A Novel Architecture for Data Mining Grid Scheduler

MEIQUN LIU1, KUN GAO2, ZHONG WAN1
1 Culture and Communication College

Zhejiang Wanli University
No. 8, South Qian Hu Road, 315100, Ningbo, Zhejiang

P. R. China
http://www.zwu.edu.cn

2 Computer Science and Information Technology College
Zhejiang Wanli University

No. 8, South Qian Hu Road, 315100, Ningbo, Zhejiang
P. R. China

http://www.zwu.edu.cn

Abstract: In order to improve the performance of Data Mining applications, an effective method is task
parallelization. The scheduler on Grid plays an important role to management subtasks so as to achieve high
performance. We introduce an additional component that we call serializer, whose purpose is to decompose the
tasks into a series of independent tasks according the directed acyclic graph (DAG), and send them to the
scheduler queue as soon as they become executable with respect to the DAG dependencies. The experimental
result demonstrates that the architecture has good performance.

Key-Words: Scheduling Architecture, Knowledge Grid, Data Mining

1 Introduction
Generally, data mining (sometimes called data or
knowledge discovery) is the process of analyzing
data from different perspectives and summarizing it
into useful information - information that can be used
to increase revenue, cuts costs, or both. Data mining
software is one of a number of analytical tools for
analyzing data. It allows users to analyze data from
many different dimensions or angles, categorize it,
and summarize the relationships identified.
Technically, data mining is the process of finding
correlations or patterns among dozens of fields in
large relational databases. This technology is widely
used more and more.

Because of the expensive computation power and
the distributed nature of data, the Knowledge Grid
(K-Grid) [1] will become nature platform to
implement Data Mining (DM) computation. In order
to improve the performance of DM applications, an
effective method is task parallelization. The
scheduler on Grid [10] plays an important role to
management subtasks so as to achieve high
performance. In this paper, we first take an example
of DM application to present a method of
parallelization. The objective of this method is to
decompose DM application into subtasks and then
combine those subtasks to form GAG. We focus on
the design of online dynamic scheduler that schedule
subtasks according to the structure of the DAG.

Many efforts have already been devoted to the
problem of scheduling distributed jobs in distributed
environment and grid platform [2], [3] [13-18]. Many
of the schedulers propose their own solution to the
problem. Nevertheless, there are some characteristics
of scheduling DM tasks that make the previous
approaches inadequate.

First of all we lack an accurate analytical cost
model for DM tasks. In the case of [18] system, the
parametric, exactly known cost of each job allows the
system to foresee with a high degree of accuracy
which is going to be the execution time of each job.
This does not hold for DM, where the execution time
of an algorithm in general depend on the input
parameters in a non linear way, and also on the
dataset internal correlations, so that, given the same
algorithm, the same set of parameters and two dataset
of identical dimensions, the execution time can vary
of orders of magnitude. The same can be said for
other performance metrics, as memory requirement
and I/O activity.

The other characteristic is that scheduling a DM
task in general implies scheduling computation and
data transfer [4]. Traditional schedulers typically
only address the first problem, that of scheduling
computations. In the case of DM, since the dataset are
typically big, it is also necessary to properly take into
account the time needed to transfer data and to
consider when and if it is worth to move data to a

WSEAS TRANSACTIONS on SYSTEMS Meiqun Liu, Kun Gao, Zhong Wan

ISSN: 1109-2777
373

Issue 4, Volume 7, April 2008

different location in order to optimize resource usage
or overall completion time.

DM applications running on the K-Grid can be
parallelized. Such, we can parallelize single DM
application to several subtasks; several tasks may be
combined to form a workflow. We call such
scheduler as K-Grid Scheduler, or KGS. KGS should
have the fowling feature:

1. On-line. KGS must schedule the
components of DM DAGs as soon as
they arrive in the system.

2. Dynamic. It must apply cost models to
predict future resource status and
pro-actively assign jobs to resources.

3. Adaptive. It must continuously interact
with the Grid Information Service, in
order to have an updated view of the
system status in terms of machine and
network loads.

We briefly describe here the design of KGS. A
model for the resources of the K-Grid is composed by
a set of hosts, onto which the DM tasks are executed,
a network connecting the hosts and a centralized
scheduler, KGS, where all requests arrive. The main
task of KGS is to execute tasks composition. We
consider that the basic components of a DM task are
algorithms and datasets. They can be combined in a
structured way, thus forming a DAG. In the
following sections, we give a more accurate
description of the mapping process, starting from the
definition of models for the system architecture, the
cost of DM tasks, and their execution.

Scheduling DAGs on a distributed platform is a
non-trivial problem which has been faced by a
number of algorithms [5]. It is crucial to take into
account data dependencies among the different
components of the DAGs present in the system. For
this reason, we introduce in the system an additional
component that we call serializer, whose purpose is
to decompose the tasks into a series of independent
tasks according corresponding DAG, and send them
to the scheduler queue as soon as they become
executable w.r.t. the DAG dependencies.

Related works: Data mining techniques are
applied to achieve process improvement [19]. It can
help engineers to understand the process know-how
will enhance their core competiveness. Especially,
the information about process improvement or
product development frequently is held behind such
know-how, it is called as the manufacturing
intelligence. Such manufacturing intelligence will
provide a positive contribution to process
improvement. In order to address such issue, the
authors propose an approach based on artificial
neural networks (ANNs) data mining technique to

mine the manufacturing intelligence. The rationality
and feasibility of the proposed procedure can also be
demonstrated well according to the illustrative
example in this study.

Data mining techniques presented in the literature
are usually used for prediction and they are tested on
well known benchmark problems. System
identification is a practical engineering problem and
an abdicative task which is affected by several kinds
of modeling assumptions and measurement errors.
Therefore, system identification is supported by
multiple-model reasoning strategies. In [20], the
author is to study the use of data mining techniques
for system identification. One goal of the author is to
improve views of model-space topologies. The
presence of clusters of models having the same
characteristics, thereby defining model classes, is an
example of useful topological information. Distance
metrics add knowledge related to cluster dissimilarity.
Engineers are thus better able to improve decision
making for system identification.

Although some research has been dedicated to the
development of Knowledge Discovery in Databases
(KDD) assistance mechanisms, little effort has been
directed to the deployment of tools that assist humans
during the KDD task definition stage. In order to
satisfy this need for a KDD task definition assistance
device, [21] proposes three different approaches: a)
the first one is called theoretical approach and is
based on concepts from the Theory of Attribute
Equivalence in Databases and from Topological
Spaces; b) the second employs Artificial Neural
Networks to learn mappings between heterogeneous
patterns and is called experimental approach; c) the
third one combines the abovementioned approaches
to implement what is called hybrid approach.

In this paper, we propose an effective scheduling
solution for those subtasks to minimize total response
time. The rest of this paper is organised as follows: in
section 2, we present how to map a DM application to
DAG. In section 3, we present the architecture for a
K-Grid scheduler that result in the minimal response
time. In section 4, we conduct experiments to
evaluate the architecture. Finally section 5 concludes
this paper.

2 Decomposing DM Applications to
DAG
K-Grid services can be used to construct complex
problem solving environments, which exploit DM
kernels as basic software components that can be
applied one after the other, in a modular way. A
general DM task on the K-Grid can therefore be

WSEAS TRANSACTIONS on SYSTEMS Meiqun Liu, Kun Gao, Zhong Wan

ISSN: 1109-2777
374

Issue 4, Volume 7, April 2008

described as a DAG whose nodes are the DM
algorithms being applied, and the links represent data
dependencies among the components. In this section,
we present how to map DM applications to DAG.

2.1 Modeling DM Applications
We surveyed three major classes of DM applications,
namely association rule mining, classification rule
mining, and pattern discovery in combinatorial
databases. We note the resemblance among the
computation models of these three application
classes.

A task is the main computation applied on a
pattern. Not only are all tasks of any one application
of the same kind, but tasks of different applications
are actually very similar. They all take a pattern and a
subset of the database and count the number of
records in the subset that match the pattern. In the
classification rule mining case, counts of matched
records are divided into c baskets, where c is the
number of distinct classes.

The similarities among the specifications of these
applications are obvious, which inspired us to study
the similarities among their computation models.
They usually follow a generate-and-test
paradigm-generate a candidate pattern, then test
whether it is any good. Furthermore, there is some
interdependence among the patterns that gives rise to
pruning, i.e., if a pattern occurs too rarely, then so
will any superpattern. These interdependences entail
a lattice of patterns, which can be used to guide the
computation.

In fact, this notion of pattern lattice can apply to
any DM application that follows this
generate-and-test paradigm. We call this application
class pattern lattice DM. In order to characterize the
computation models of these applications more
concretely, we define them more carefully in Section
2.2.

2.2 Defining DM Applications
In general, a DM application defines the following
elements.

1. A database D.
2. Patterns and a function len(pattern p) which

returns the length of p. The length of a
pattern is a non-negative integer. We use {}
to represent zero-length patterns in
association rule mining.

3. A function goodness(pattern p) which
returns a measure of p according to the
specifications of the application.

4. A function good (p) which returns 1 if p is a
good pattern or a good subpattern and 0
otherwise. Zero-length patterns are always
good.

The result of a DM application is the set of all
good patterns. If a pattern is not good, neither will
any of its superpatterns be. In other words, it is
necessary to consider a pattern if and only if all of its
subpatterns are good.

Let us define an immediate subpattern of a
pattern q to be a subpattern p of q where

len(p) = len(q)-1
Conversely, q is called an immediate superpattern

of p. Except for the zero-length pattern; all the
patterns in a DM problem are generated from their
immediate subpatterns. In order for all the patterns to
be uniquely generated, a pattern q and one of its
immediate subpatterns p have to establish a
childparent relationship (i.e., q is a child pattern of p
and p is the parent pattern of q). Except for the
zero-length pattern, each pattern must have one and
only one parent pattern. For example, in sequence
pattern discovery, *FRR* can be a child pattern of
FR; in association rule mining, {2, 3, 4} can be a
child pattern of {2, 3}; and in classification rule
mining, (C = c1)^(B = b2)^(A = a1) can be a child
pattern of (C = c1)^(B = b2).

2.3 Solving DM Applications
Having defined DM applications as above, it is easy
to see that an optimal sequential program that solves
a DM application does the following:

1. generates all child patterns of the
zero-length pattern;

2. computes goodness(p) if all of p's
immediate subpatterns are good;

3. if good(p) then generate all child
patterns of p;

4. applies 2 and 3 repeatedly until there are
no more patterns to be considered.

Because the zero-length pattern is always good
and the only immediate subpatterns of its children is
the zero-length pattern itself, the computation starts
on all its children, which are all length 1 patterns.
After these patterns are computed, good patterns
generate their child sets. Not all of these new patterns
will be computed-only those whose every immediate
subpattern is good will be.

2.4 Mapping DM application to DAG
We propose to use a DAG structure called
exploration DAG (E-GAG, for short) to characterize

WSEAS TRANSACTIONS on SYSTEMS Meiqun Liu, Kun Gao, Zhong Wan

ISSN: 1109-2777
375

Issue 4, Volume 7, April 2008

pattern lattice DM applications. We first describe
how to map a DM application to an E-GAG.

The E-GAG constructed for a DM application has
as many vertices as the number of all possible
patterns (including the zero-length pattern). Each
vertex is labeled with a pattern and no two vertices
are labeled with the same pattern. Hence there is a
one-to-one relation between the set of vertices of the
E-GAG and the set of all possible patterns. Therefore,
we refer to a vertex and the pattern it is labeled with
interchangeably.

Fig.1 a complete E-GAG for an association rule
mining application on the set of items {1, 2, 3, 4}.

There is an incident edge on a pattern p from each
immediate subpattern of p. All patterns except the
zero-length pattern have at least one incident edge on
them. The zero-length pattern has an outgoing edge
to each pattern of length 1. Fig.1 shows an E-GAG
mapped from an association rule mining application.

3 Knowledge Grid Scheduler
3.1 Serialization Process
We consider that the basic building blocks of a DM
task are algorithms and datasets. They can be
combined in a structured way, thus forming a DAG.
DM components correspond to a particular algorithm
to be executed on a given dataset, provided a certain
set of input parameters for the algorithm. We can

therefore describe each DM components L with the
triple:

L = (A, D, {P}).
Where,
A is the DM algorithm;
D is the input dataset;
{P} is the set of algorithm parameters.
For example if A corresponds to “Association

Mining”, then {P} could be the minimum confidence
for a discovered rule to be meaningful. It is important
to notice that A does not refer to a specific
implementation. We could therefore have more
different implementations for the same algorithm, so
that the scheduler should take into account a
multiplicity of choices among different algorithms
and different implementations. The best choice could
be chosen considering the current system status, the
programs availability and implementation
compatibility with different architectures.

Scheduling DAGs on a distributed platform is a
non-trivial problem which has been faced by a
number of algorithms in the past. Although it is
crucial to take into account data dependencies among
the different components of the DAGs present in the
system, we first want to concentrate ourselves on the
cost model for DM tasks and on the problem of
bringing communication costs into the scheduling
policy. For this reason, we introduce in the system an
additional component that we call serializer (Fig.2),
whose purpose is to decompose the tasks in the DAG
into a series of independent tasks, and send them to
the scheduler queue as soon as they become
executable w.r.t. the DAG dependencies.

Such serialization process is not trivial at all and
leaves many important problems opened, such as
determine the best ordering among tasks in a DAG
that preserve data dependencies and minimizes
execution time.

Nevertheless, at this stage of the analysis, we are
mainly concerned with other aspects in the system,
namely the definition of an accurate cost model for
single DM tasks and the inclusion of communications
into the scheduling policy.

3.2 Cost Model
The following cost model assumes that each input
dataset is initially stored on a single machine mh,
while the knowledge model extracted must be moved
to a machine mk. Due to decisions taken by the
scheduler, datasets may be moved to other machines
and thus replicated, or may be partitioned among
diverse machines composing a cluster for parallel
execution. Therefore, the scheduler has to take into

WSEAS TRANSACTIONS on SYSTEMS Meiqun Liu, Kun Gao, Zhong Wan

ISSN: 1109-2777
376

Issue 4, Volume 7, April 2008

account that several copies (replicated or distributed)
of a dataset may exist on the machines of its Grid.

Fig. 2 Serializer

3.2.1 Sequential Execution
Suppose that the whole dataset is stored on a single
machine mh. Task ti is executed sequentially by a
code running on machine mj, with an execution time
of eij. In general we also have to consider the
communications needed to move Di from machine h
to machine mj, and the further communications to

move the results | (to machine m)i iDa |
k. The total

execution time is thus:
| | / | () | /ij i hj ij i i jkE D b e D bα= + +

Of course, the relative communication costs

involved in dataset movements are zeroed if either
h=j or j = k.

3.2.2 Parallel Execution
Task ti is executed in parallel by a code running on a
cluster clJ, with an execution time of eiJ. In general,
we have also to consider the communications needed
to move Di from machine mh to cluster clJ, and to

move the results | (to machine m)i iDa |

thu

k. The total
execution time is

s:
| | / | | | () | / | |

J J
t J

i J i i J
iJ iJm cl

ht

D cl D clE e
b t Jm cl

tkb
α

∈
= + +∑ ∑ ∈

 costs are

ion needed to move the knowledge result
model extracted from machines j to machine k. From
the above
def

Of course, the relative communication
zeroed if the dataset is already distributed, and is
allocated on the machines of clJ.

3.2.2 Performance Metrics
Eij and EiJ are the expected total execution times of
task ti when no load is present in the system. When
load is present on machines and networks, scheduling
will delay the start and thus the completion of a task.
In the following we will analyze the actual
completion time of a task for the sequential case. A
similar analysis could be done for the parallel case.
Let Cij be the wall-clock time at which all
communications and sequential computation
involved in the execution of ti complete. To define
Cij we need to define the starting times of
communications and computation. Let shj be the start
time of communication needed to move the input
dataset from machine h to machine j, let sj be the start
time of the sequential execution of task ti on machine
j, and, finally, let sjk be the start time of
communicat

initions:

1 2 1
| | | () |()i i i

ij hj ij hj hj
hj jk

D DC s e s E
b b 2

αδ δ δ δ= + + + + + = + + +

Where,

0)(1 ≥+−=
hjb

And
0)(2 ≥

i
hjj

D
ssδ

+−= ijjjk essδ
So, if Ai is the arrival time of task ti, and ti is the

only task in execution on the system, then the optimal
completion time of the task on machine mj is:

ij i ijC A E= +

Suppose that jm
 is the specific machine chosen by

our scheduling algorithm for executing a task ti.
Let

i ij
C C=
And

i

Let T be the set of tasks to be scheduled.
span for the com

ijC C=

plete scheduling is The make

defined as i , and measures the overall
throughput of the system.

max ()t T iCÎ

WSEAS TRANSACTIONS on SYSTEMS Meiqun Liu, Kun Gao, Zhong Wan

ISSN: 1109-2777
377

Issue 4, Volume 7, April 2008

3.3 Predicting DM Tasks Execution Time
DM application computation times depend on many
factors: data size, specific mining parameters
provided by users and actual status of the Grid etc.
Moreover, the correlations between the items present
in the various transactions of a dataset largely
infl

ntime, we identify similar
app

s. We can use several
stat

ors, as applications

ilar to

ent the reduct algorithm and
pplication runtime estimation algorithm. For further

essary rough set

s that can
be d

have low
rele

uence the response times of DM applications.
Thus, predicting its performance becomes very
difficult.

Our application runtime prediction algorithms
operate on the principle that applications with similar
characteristics have similar runtimes. Thus, we
maintain a history of applications that have executed
along with their respective runtimes. To estimate a
given application's ru

lications in the history and then compute a
statistical estimate of their runtimes. We use this as
the predicted runtime.

The fundamental problem with this approach is
the definition of similarity; diverse views exist on the
criteria that make two applications similar. For
instance, we can say that two applications are similar
because the same user on the same machine
submitted them or because they have the same
application name and are required to operate on the
same size data. Thus, we must develop techniques
that can effectively identify similar applications.
Such techniques must be able to accurately choose
applications' attributes that best determine similarity.
Having identified a similarity template, the next step
is to estimate the applications' runtime based on
previous, similar application

istical measures to compute the prediction,
including measures of central tendency such as the
mean and linear regression.

Rough sets theory as a mathematical tool to deal
with uncertainty in data provides us with a sound
theoretical basis to determine the properties that
define similarity. Rough sets operate entirely on the
basis of the data that is available in the history and
require no external additional information. The
history represents an information system in which the
objects are the previous applications whose runtimes
and other properties have been recorded. The
attributes in the information system are these
applications' properties. The decision attribute is the
application runtime, and the other recorded
properties constitute the condition attributes. This
history model intuitively facilitates reasoning about
the recorded properties so as to identify the
dependency between the recorded attributes and the
runtime. So, we can concretize similarity in terms of
the condition attributes that are relevant and

significant in determining the runtime. Thus, the set
of attributes that have a strong dependency relation
with the runtime can form a good similarity template.
The objective of similarity templates in application
runtime estimation is to identify a set of
characteristics on the basis of which we can compare
applications. We could try identical matching, i.e. if n
characteristics are recorded in the history, two
applications are similar if they are identical with
respect to all n properties. However, this
considerably limits our ability to find similar
applications because not all recorded properties are
necessarily relevant in determining the runtime. Such
an approach could also lead to err
that have important similarities might be considered
dissimilar even if they differed in a characteristic that
had little bearing on the runtime.
A similarity template should consist of the most
important set of attributes that determine the runtime
without any superfluous attributes. A reduct consists
of the minimal set of condition attributes that have
the same discerning power as the entire information
system. In other words, the similarity template is
equivalent to a reduct that includes the most
significant attributes. Finding a reduct is sim
feature selection problem. All reducts of a dataset can
be found by constructing a kind of discernibility
function from the dataset and simplifying it.
In the following, we pres
a
detailed information see [6, 11], nec
notions see [12, 14-18].

3.3.1 Heuristic Reduct Algorithm
Every entry in discernibility matrix is a set of
attributes that can be distinguished by the attributes.
The more frequent an attribute appears in entries of
discernibility matrix, the more instance pairs can be
distinguished by this attribute. So appearing
frequency represents the distinguish ability of the
attribute. In other words, appearing frequency
implies relevance between attribute and class label.
Thus attributes’ frequency can be used as heuristic.
We can sort attributes into ascending order by its
frequency, and add first attribute (which one with
highest appearing frequency) to reduct. Then we
examine reduct by number of instance pair

istinguished by this reduct. If threshold cannot be
satisfied, next attribute is added to reduct. Do it
recursively until stop criteria are satisfied.

In an optimal feature subset, feature should have
high relevance with class label, and

vance with other features in the subset. This
approach can take out irrelevant attributes, but how
about redundant attributes? For example:

WSEAS TRANSACTIONS on SYSTEMS Meiqun Liu, Kun Gao, Zhong Wan

ISSN: 1109-2777
378

Issue 4, Volume 7, April 2008

Attribute a has highest appearing frequency in
discernibility matrix. Attribute b is completely
dependents with a, and b’s appearing frequency only
lower than attribute a. If there is attribute c with
appearing frequency lower than attribute b, but
attribute c is irrelevant with attribute attribute a.
According this approach a should be added in reduct
firstly, and then b is added. Attribute c is added to
reduct after attribute b. But in fact, it is obviously
attr

cla

 entry length is 1, the
onl

e two properties.
The attribute with highest frequency is selected to
reduct. If several attributes have same frequency, the
shortest one will take precedence.

 system: I;
n attribute set: A;

 of information system I: Reduct.

 discernibility matrix M, calculate
freq ngth(ai).

(M)

 {m}, where intersection of entry m and
Red

 length(ai)

ing frequency attribute f
form re are several attributes with same
appearing frequency, choose the shortest one as f.

ct + {f},
F = F - {f}
Step
Go to Step 3.

f

 0 otherwise. For example, in an information
sys

red
sys duct it would recur |A|
− 1

O(|A||U| +2|A|+|A| |U|).

than time complexity of [13] alogrithm (O(|A| |U|)).

ibute b cannot provide any additional distinguish
ability to the feature subset, and it should be take out
from reduct.

So the above approach can not guarantee that
attributes in subset have low relevance with each
other. In order to solve this problem, we propose a
simple but efficient method to avoid adding
redundant attributes to reduct. After an attribute ai
added to reduct, we remove all entries containing ai
from discernibility matrix, recount attributes’
appearing frequency in remained entries. Then
attribute with highest new appearing frequency
should be added to reduct. In fact, the remained
entries represent the instances in boundary region
with respect to attribute subset. According to
attribute subsets, those instances cannot be distinctly

ssified into positive region or negative region.
Thus the less boundary region attributes means the
more powerful classify capacity.

On the other hand, length of entry means how
many attributes can distinguish corresponding
instance pair. Shorter entry implies only few
attributes can distinguish corresponding instance pair.
The shorter the entry is, the more important attributes
in this entry are. Extremely, if

y attribute contained in this entry is a member of
core. So the length of entry also can be used as
another heuristic information.

In our algorithm, every attribute has two
properties: appearing frequency in discernibility
matrix and shortest entry length. Attribute’s
appearing frequency is updated after a new attribute
added to reduct; attribute’s length is the length of
shortest entry containing this attribute and it is
calculated when discernibility matrix is computed.
We select attribute according thes

We list our algorithm as follows:
Input:
Information
Conditio
Decision attribute set: D;
Threshold.
Output:

A reduct
Initial State:
Reduct = Null, k = 1.
Step 1:
Generate
uency(ai) and le
CardM = Card
Step 2:
Reduct = Core
F = A – Core
Step 3:
M = M -
uct is not empty.
Recount frequency(ai) and
Step 4:
k = Card(M)/CardM
if K <= Threshold, Stop.
Step 5:
Choose highest appear
 F. If the

Reduct = redu

 6:

Fig. 3 a Heuristic Reduct Algorithm

3.3.2 Implement and Time Complexity
In order to save space, attribute sets are implemented
as bit vector. Length of bit vector is equal to number
of attributes. A bit of bit vector is set to 1 i
corresponding attribute is contained by attribute
subset,

tem I with four attributes {a1, a2, a3, a4} , a bit
vector of attribute subset {a1, a4} is represented as
1001.

Since discernibility matrix is a symmetrical
matrix, there are |U|(|U|−1)/2 entries in matrix. To
generate each entry, every attribute value of
corresponding instance pair should be compared. So
in step 1, the cost for generating discernibility matrix
is O(|A||U|2) . But in fact, there are much less entries
in discernibility matrix, since entry corresponding to
same class instance pair is empty. Cost for finding
out highest appearing frequency attribute is O(|A|),
and cost for finding out shortest attribute is also
O(|A|) . In the worst case, supposing that there are no

undant and irrelevant attribute in information
tem, in order to generate re
 times. So the cost to calculate reduct is (|A|2|U|2).
In conclusion, the total cost of our algorithm is

2 2 2

So the time complexity is O(|A|2|U|2) . It is less
3 2

WSEAS TRANSACTIONS on SYSTEMS Meiqun Liu, Kun Gao, Zhong Wan

ISSN: 1109-2777
379

Issue 4, Volume 7, April 2008

3.3.3 Application Runtime Estimation Algorithm
Let's now look at the estimation algorithm as a whole.
Its input is a history record of application
characteristics collected over time, specifically
including actual recorded runtimes, and a task T with
kno

ct to an application
bec

te.

the
of estimating application runtime.

Step 6. Compute the mean of the runtimes of the
bjects: EQ ∩ H.

on

needed. Therefore for each job, the scheduler will

 such policy as
Min C

time is given by an exponential
distribution.

wn parameters whose runtime we wish to
estimate.

Step 1. Partition the history into decision and
condition attributes. The recorded runtime is the
decision attribute, and the other recorded
characteristics are the condition attributes. The
approach is to record a comprehensive history of all
possible statistics with respe

ause identifying the attributes that determine the
runtime isn't always possible.

Step 2. Apply the rough sets algorithm to the
history and identify the similarity templa

Step 3. Combine the current task T with the
history H to form a current history HT.

Step 4. Determine from HT the equivalence
classes with respect to the identified similarity
templates. This implies grouping into classes
previous tasks in the history that are identical with
respect to the similarity template. Because the
similarity template generated using rough sets is a
reduct, this leads to the equivalence classes
consisting of previous tasks that are identical with
respect to the characteristics that have the most
significant bearing on the runtime. In this case, rough
sets provide a basis for identifying the similarity
template and finding previous tasks that match the
current task by the intuitive use of equivalence
classes. Thus, we integrate the process of matching

 current task with previous tasks in the history into
the overall process

Step 5. Identify the equivalence class EQ to
which T belongs.

o

3.4 Scheduling Policy and Execution Model
We now describe how this cost model can be used by
a scheduler that receives a list of jobs to be executed

the K-Grid, and has to decide for each of them
which is the best resource to start the execution on.

Choosing the best resource implies the definition
of a scheduling policy, targeted at the optimization of
some metric. One frequent choice [7] is to minimize
the completion time of each job. This is done by
taking into account the actual ready time for the
machine that will execute the job and the cost of
execution on that machine, plus the communications

chose the machine that will finish the job earlier. For
this reason in the following we refer to

imum ompletion Time (MCT).
Jobs L (A, D, {P}) arrive at the scheduler from

an external source, with given timestamps. They
queue in the scheduler and wait. We assume the jobs
have no dependencies among one another and their
interarrival

Fig. 4 The model of the scheduler

ueues, plotted in Figure 4, with
diff

ctive) jobs being blocked by heavier (batch)
job

-cycle of a job in the system is the
following:

The scheduler internal structure can be modeled as a
network of three q

erent policies.
Jobs arrive in the main queue Qm, where

predicting jobs are generated and appended to the
predicting queue Qp. Both queues are managed with
a FIFO policy. From Qp jobs are inserted into the
system for execution. Once predicting is completed,
the job in inserted in the final queue Qf , where it is
processed for the real execution. Since the scheduler
knows the duration of jobs in Qf , due to the prior
predicting, Qf is managed with a Shortest Remaining
Time First (SRTF) policy in order to avoid light
(intera

s.
The life

WSEAS TRANSACTIONS on SYSTEMS Meiqun Liu, Kun Gao, Zhong Wan

ISSN: 1109-2777
380

Issue 4, Volume 7, April 2008

1. Jobs arrive in the main queue Qm with a given
timestamp. They are processed with FIFO policy.
When a job is processed, the scheduler generates a
predicting job and put this request in the predicting
queue, with the same timestamp.

2. If a job in Qm has parameters equals to that of a
previously processed job, it is directly inserted into
the final queue Qf , with the same timestamp.

3. If the predicting job has finished, it is inserted
in the Qf queue, and timestamp given by the current
time. Every time a job leaves the scheduler, a global
execution plan is updated, that contains the busy
times for every host in the system, obtained by the
cost model associated to every execution.

4. Every time a job has finished we update the
global execution plan.

5. When predicting is successfully finished, jobs
are inserted in Qf , where different possibilities are
evaluated and the best option selected. Jobs in Qf are
processed in an SRFT fashion. Each job has an
associated duration, obtained from the execution of
predicting.

4 Experiment Results
We adopted the MCT (Minimum Completion Time)
[8, 9] +rough set approach to validate that our
hypothesis is feasible and efficient. The mapper does
not consider node multitasking, and is responsible for
choosing the schedule for computations involved in

the execution of a given task, but also of starting
tasks and checking their completion. The MCT
mapping heuristics is very simple. Each time a task is
submitted, the mapper evaluates the expected ready
time of each machine. The expected ready time is an
estimate of the ready time, the earliest time a given
resource is ready after the execution of jobs
previously assigned to it. Such estimate is based on

both estimated and actual execution times of all the
tasks that have been assigned to the resource in the
past. To update resource ready times, when
computations involved in the execution of a task
complete, a report is sent to the mapper. The mapper
then evaluate all possible execution plans for other
task and chooses the one that reduce the completion
time of the task. To evaluate our MCT scheduler that
exploits rough set as a technique for performance
prediction, we designed a simulation framework that
allowed us to compare our approach with a Blind
mapping strategy, which does not base its decisions
on performance predictions at all. Since the blind
strategy is unaware of predicted runtime, so it
scheduled tasks according the principle of FCFS
(first come first serve).

0

50

100

150

200

250

300

350

10% 20% 30% 40% 50% 60%

Persentage of heavy tasks
Fig. 5 Preliminary Experimental Results

M
a
k
e
s
p
a
n
(
T
i
m
e

U
n
i
t
e
s
) MCT+Rough

Blind

 The simulated environment is composed of fifteen
machines installed with GT3. Those machines have
different physical configurations, operating systems
and bandwidth of network. We used histories with
500 records as the condition attributes for estimation
applications runtime. Data Ming tasks to be

WSEAS TRANSACTIONS on SYSTEMS Meiqun Liu, Kun Gao, Zhong Wan

ISSN: 1109-2777
381

Issue 4, Volume 7, April 2008

scheduled arrive in a burst, according to an
exponential distribution, and have random execution
costs. Datasets are all of medium size, and are
randomly located on those machines. Figure 5 shows
the improvements in makespans obtained by our
technique over the blind one when the percentage of
heavy tasks is varied.

5 Conclusion and Future Work
In order to improve the performance, we propose a
method that makes Data Mining applications
parallelization in dynamic Grid environment. For this
target, we introduce an additional component that we
call serializer, whose purpose is to decompose the
tasks into a series of independent tasks according the
DAG structure, and send them to the scheduler queue
as soon as they become executable with respect to the
DAG dependencies. The experimental result
demonstrates that the architecture has good
performance.

In the future, we will use the technique to build a
wide Web Service interface, so that some
applications can visit this interface to obtain the
performance parameter which they needed for
enhancing the performance of system.

References:
[1] D. Talia and M. Cannataro. Knowledge grid:

architecture for distributed knowledge discovery.
Communications of the ACM, 2002.

[2] H. J. Siegel and A. Shoukat. Techniques for
mapping tasks to machines in heterogeneous
computing systems. Journal of Systems
Architecture, 2000.

[3] W. Smith, I. Foster, and V. Taylor. Predicting
application run times using historical information.
In IPPS/SPDP Workshop on Job Scheduling
Strategies for Parallel Processing, 1998.

[4] S. Parthasarathy. Towards network-aware Data
Mining. In Workshop on Parallel and Distributed
Data Mining, held along with IPDPS01, 2001.

[5] Yu-Kwong Kwok and Ishfaq Ahmad.
Benchmarking and comparison of the task graph
scheduling algorithms. Journal of Parallel and
Distributed Computing, 59(3):381–422, 1999.

[6] Kun Gao, Youquan Ji, Meiqun Liu, Jiaxun Chen,
Rough Set Based Computation Times Estimation
on Knowledge Grid, Lecture Notes in Computer
Science, Volume 3470, July 2005, Pages 557 –
566.

[7] H. J. Siegel and A. Shoukat. Techniques for
mapping tasks to machines in heterogeneous

computing systems. Journal of Systems
Architecture, 2000.

[8] M. Maheswaran, A. Shoukat, H. J. Siegel, D.
Hensgen, and R. F. Freund. Dynamic matching
and scheduling of a class of independent tasks
onto heterogeneous computing systems. In 8th
HCW, 1999.

[9] H. J. Siegel and Shoukat Ali. Techniques for
Mapping Tasks to Machines in Heterogeneous
Computing Systems. Journal of Systems
Architecture, (46):627–639, 2000.

[10] A. Chervenak, I. Foster, C. Kesselman, C.
Salisbury, and S. Tuecke. The Data Grid: towards
an architecture for the distributed management
and analysis of large scientific datasets. Journal of
Network and Computer Applications,
(23):187–200, 2001.

[11] Kun Gao, Kexiong Chen, Meiqun Liu, Jiaxun
Chen, Rough Set Based Data Mining Tasks
Scheduling on Knowledge Grid, Lecture Notes in
Computer Science, Volume 3528, May 2005,
Pages 150 – 155

[12] J. Komorowski , et al., Rough Sets: A Tutorial,
Rough-Fuzzy Hybridization: A New Trend in
Decision Making , S.K. Pal and A. Skowron, eds.,
Springer-Verlag, pp. 3-98, 199

[13] Keyun Hu, lili Diao and Chunyi Shi: A Heuristic
Optimal Reduct algorithm. 22nd Intl. Sym. on
Intelligent Data Engineering and Automated
Learning (IDEAL2000), Hong Kong, (2002)

[14] X.Hu, Knowledge discovery in databases: An
attribute-oriented rough set approach, Ph.D thesis,
Regina university, 1995.

[15] J.Starzyk, D.E.Nelson, K.Sturtz, Reduct
generation in information systems, Bulletin of
international rough set society, volume 3, 1998.

[16] S.K.Pal, A.Skowron, Rough Fuzzy
Hybridization-A new trend in decision-making,
Springer, 1999.

[17] Witten,I,H., and Eibe,F., “Data Mining:
Practical Machine Learning Tools and
Techniques with Java Implementations”, Morgan
Kauffman, 1999.

[18] Keyun Hu, lili Diao and Chunyi Shi: A Heuristic
Optimal Reduct algorithm. 22nd Intl. Sym. on
Intelligent Data Engineering and Automated
Learning (IDEAL2000), Hong Kong, (2002)

[19] Hsies, K.L., Applying data mining techniques
into achieving process improvement, WSEAS
Transactions on Systems, Volume v 5, Issue 12,
December 2006, p 2774-2780, ISSN 1109-2777

[20] Saitta, S., Raphael, B., Smith, I.F.C., Data
mining for decision support in multiple-model
system identification, WSEAS Transactions on

WSEAS TRANSACTIONS on SYSTEMS Meiqun Liu, Kun Gao, Zhong Wan

ISSN: 1109-2777
382

Issue 4, Volume 7, April 2008

Systems, Volume 5, Issue 12, December 2006, p
2795-2800, ISSN 1109-2777

[21] Goldschmidt, R., Passos, E., Vellasco, M.,
Intelligent assistance in KDD task definition,
WSEAS Transactions on Systems, Volume 4,
Issue 10, October 2005, Pages 1676-1686, ISSN:
1109-2777

WSEAS TRANSACTIONS on SYSTEMS Meiqun Liu, Kun Gao, Zhong Wan

ISSN: 1109-2777
383

Issue 4, Volume 7, April 2008

