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Abstract: In order to improve the performance of Data Mining applications, an effective method is task 
parallelization. The scheduler on Grid plays an important role to management subtasks so as to achieve high 
performance. We introduce an additional component that we call serializer, whose purpose is to decompose the 
tasks into a series of independent tasks according the directed acyclic graph (DAG), and send them to the 
scheduler queue as soon as they become executable with respect to the DAG dependencies. The experimental 
result demonstrates that the architecture has good performance. 
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1   Introduction 
Generally, data mining (sometimes called data or 
knowledge discovery) is the process of analyzing 
data from different perspectives and summarizing it 
into useful information - information that can be used 
to increase revenue, cuts costs, or both. Data mining 
software is one of a number of analytical tools for 
analyzing data. It allows users to analyze data from 
many different dimensions or angles, categorize it, 
and summarize the relationships identified. 
Technically, data mining is the process of finding 
correlations or patterns among dozens of fields in 
large relational databases. This technology is widely 
used more and more.  

Because of the expensive computation power and 
the distributed nature of data, the Knowledge Grid 
(K-Grid) [1] will become nature platform to 
implement Data Mining (DM) computation. In order 
to improve the performance of DM applications, an 
effective method is task parallelization. The 
scheduler on Grid [10] plays an important role to 
management subtasks so as to achieve high 
performance. In this paper, we first take an example 
of DM application to present a method of 
parallelization. The objective of this method is to 
decompose DM application into subtasks and then 
combine those subtasks to form GAG. We focus on 
the design of online dynamic scheduler that schedule 
subtasks according to the structure of the DAG. 

Many efforts have already been devoted to the 
problem of scheduling distributed jobs in distributed 
environment and grid platform [2], [3] [13-18]. Many 
of the schedulers propose their own solution to the 
problem. Nevertheless, there are some characteristics 
of scheduling DM tasks that make the previous 
approaches inadequate.  

First of all we lack an accurate analytical cost 
model for DM tasks. In the case of [18] system, the 
parametric, exactly known cost of each job allows the 
system to foresee with a high degree of accuracy 
which is going to be the execution time of each job. 
This does not hold for DM, where the execution time 
of an algorithm in general depend on the input 
parameters in a non linear way, and also on the 
dataset internal correlations, so that, given the same 
algorithm, the same set of parameters and two dataset 
of identical dimensions, the execution time can vary 
of orders of magnitude. The same can be said for 
other performance metrics, as memory requirement 
and I/O activity.  

The other characteristic is that scheduling a DM 
task in general implies scheduling computation and 
data transfer [4]. Traditional schedulers typically 
only address the first problem, that of scheduling 
computations. In the case of DM, since the dataset are 
typically big, it is also necessary to properly take into 
account the time needed to transfer data and to 
consider when and if it is worth to move data to a 
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different location in order to optimize resource usage 
or overall completion time.  

DM applications running on the K-Grid can be 
parallelized. Such, we can parallelize single DM 
application to several subtasks; several tasks may be 
combined to form a workflow. We call such 
scheduler as K-Grid Scheduler, or KGS. KGS should 
have the fowling feature: 

1. On-line. KGS must schedule the 
components of DM DAGs as soon as 
they arrive in the system. 

2. Dynamic. It must apply cost models to 
predict future resource status and 
pro-actively assign jobs to resources. 

3. Adaptive. It must continuously interact 
with the Grid Information Service, in 
order to have an updated view of the 
system status in terms of machine and 
network loads. 

We briefly describe here the design of KGS. A 
model for the resources of the K-Grid is composed by 
a set of hosts, onto which the DM tasks are executed, 
a network connecting the hosts and a centralized 
scheduler, KGS, where all requests arrive. The main 
task of KGS is to execute tasks composition. We 
consider that the basic components of a DM task are 
algorithms and datasets. They can be combined in a 
structured way, thus forming a DAG. In the 
following sections, we give a more accurate 
description of the mapping process, starting from the 
definition of models for the system architecture, the 
cost of DM tasks, and their execution. 

Scheduling DAGs on a distributed platform is a 
non-trivial problem which has been faced by a 
number of algorithms [5]. It is crucial to take into 
account data dependencies among the different 
components of the DAGs present in the system. For 
this reason, we introduce in the system an additional 
component that we call serializer, whose purpose is 
to decompose the tasks into a series of independent 
tasks according corresponding DAG, and send them 
to the scheduler queue as soon as they become 
executable w.r.t. the DAG dependencies. 

Related works: Data mining techniques are 
applied to achieve process improvement [19]. It can 
help engineers to understand the process know-how 
will enhance their core competiveness. Especially, 
the information about process improvement or 
product development frequently is held behind such 
know-how, it is called as the manufacturing 
intelligence. Such manufacturing intelligence will 
provide a positive contribution to process 
improvement. In order to address such issue, the 
authors propose an approach based on artificial 
neural networks (ANNs) data mining technique to 

mine the manufacturing intelligence. The rationality 
and feasibility of the proposed procedure can also be 
demonstrated well according to the illustrative 
example in this study. 

Data mining techniques presented in the literature 
are usually used for prediction and they are tested on 
well known benchmark problems. System 
identification is a practical engineering problem and 
an abdicative task which is affected by several kinds 
of modeling assumptions and measurement errors. 
Therefore, system identification is supported by 
multiple-model reasoning strategies. In [20], the 
author is to study the use of data mining techniques 
for system identification. One goal of the author is to 
improve views of model-space topologies. The 
presence of clusters of models having the same 
characteristics, thereby defining model classes, is an 
example of useful topological information. Distance 
metrics add knowledge related to cluster dissimilarity. 
Engineers are thus better able to improve decision 
making for system identification. 

Although some research has been dedicated to the 
development of Knowledge Discovery in Databases 
(KDD) assistance mechanisms, little effort has been 
directed to the deployment of tools that assist humans 
during the KDD task definition stage. In order to 
satisfy this need for a KDD task definition assistance 
device, [21] proposes three different approaches: a) 
the first one is called theoretical approach and is 
based on concepts from the Theory of Attribute 
Equivalence in Databases and from Topological 
Spaces; b) the second employs Artificial Neural 
Networks to learn mappings between heterogeneous 
patterns and is called experimental approach; c) the 
third one combines the abovementioned approaches 
to implement what is called hybrid approach.  

In this paper, we propose an effective scheduling 
solution for those subtasks to minimize total response 
time. The rest of this paper is organised as follows: in 
section 2, we present how to map a DM application to 
DAG. In section 3, we present the architecture for a 
K-Grid scheduler that result in the minimal response 
time. In section 4, we conduct experiments to 
evaluate the architecture. Finally section 5 concludes 
this paper. 
 
 
2   Decomposing DM Applications to 
DAG 
K-Grid services can be used to construct complex 
problem solving environments, which exploit DM 
kernels as basic software components that can be 
applied one after the other, in a modular way. A 
general DM task on the K-Grid can therefore be 
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described as a DAG whose nodes are the DM 
algorithms being applied, and the links represent data 
dependencies among the components. In this section, 
we present how to map DM applications to DAG. 
 
 
2.1 Modeling DM Applications 
We surveyed three major classes of DM applications, 
namely association rule mining, classification rule 
mining, and pattern discovery in combinatorial 
databases. We note the resemblance among the 
computation models of these three application 
classes.  

A task is the main computation applied on a 
pattern. Not only are all tasks of any one application 
of the same kind, but tasks of different applications 
are actually very similar. They all take a pattern and a 
subset of the database and count the number of 
records in the subset that match the pattern. In the 
classification rule mining case, counts of matched 
records are divided into c baskets, where c is the 
number of distinct classes. 

The similarities among the specifications of these 
applications are obvious, which inspired us to study 
the similarities among their computation models. 
They usually follow a generate-and-test 
paradigm-generate a candidate pattern, then test 
whether it is any good. Furthermore, there is some 
interdependence among the patterns that gives rise to 
pruning, i.e., if a pattern occurs too rarely, then so 
will any superpattern. These interdependences entail 
a lattice of patterns, which can be used to guide the 
computation.  

In fact, this notion of pattern lattice can apply to 
any DM application that follows this 
generate-and-test paradigm. We call this application 
class pattern lattice DM. In order to characterize the 
computation models of these applications more 
concretely, we define them more carefully in Section 
2.2. 
 
 
2.2 Defining DM Applications 
In general, a DM application defines the following 
elements. 

1. A database D. 
2. Patterns and a function len(pattern p) which 

returns the length of p. The length of a 
pattern is a non-negative integer. We use {} 
to represent zero-length patterns in 
association rule mining. 

3. A function goodness(pattern p) which 
returns a measure of p according to the 
specifications of the application. 

4. A function good (p) which returns 1 if p is a 
good pattern or a good subpattern and 0 
otherwise. Zero-length patterns are always 
good. 

The result of a DM application is the set of all 
good patterns. If a pattern is not good, neither will 
any of its superpatterns be. In other words, it is 
necessary to consider a pattern if and only if all of its 
subpatterns are good. 

Let us define an immediate subpattern of a 
pattern q to be a subpattern p of q where  

len(p) = len(q)-1 
Conversely, q is called an immediate superpattern 

of p. Except for the zero-length pattern; all the 
patterns in a DM problem are generated from their 
immediate subpatterns. In order for all the patterns to 
be uniquely generated, a pattern q and one of its 
immediate subpatterns p have to establish a 
childparent relationship (i.e., q is a child pattern of p 
and p is the parent pattern of q). Except for the 
zero-length pattern, each pattern must have one and 
only one parent pattern. For example, in sequence 
pattern discovery, *FRR* can be a child pattern of 
*FR*; in association rule mining, {2, 3, 4} can be a 
child pattern of {2, 3}; and in classification rule 
mining, (C = c1)^(B = b2)^(A = a1) can be a child 
pattern of (C = c1)^(B = b2). 
 
 
2.3 Solving DM Applications 
Having defined DM applications as above, it is easy 
to see that an optimal sequential program that solves 
a DM application does the following: 

1. generates all child patterns of the 
zero-length pattern; 

2. computes goodness(p) if all of p's 
immediate subpatterns are good; 

3. if good(p) then generate all child 
patterns of p; 

4. applies 2 and 3 repeatedly until there are 
no more patterns to be considered. 

Because the zero-length pattern is always good 
and the only immediate subpatterns of its children is 
the zero-length pattern itself, the computation starts 
on all its children, which are all length 1 patterns. 
After these patterns are computed, good patterns 
generate their child sets. Not all of these new patterns 
will be computed-only those whose every immediate 
subpattern is good will be. 
 
 
2.4 Mapping DM application to DAG 
We propose to use a DAG structure called 
exploration DAG (E-GAG, for short) to characterize 
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pattern lattice DM applications. We first describe 
how to map a DM application to an E-GAG. 

The E-GAG constructed for a DM application has 
as many vertices as the number of all possible 
patterns (including the zero-length pattern). Each 
vertex is labeled with a pattern and no two vertices 
are labeled with the same pattern. Hence there is a 
one-to-one relation between the set of vertices of the 
E-GAG and the set of all possible patterns. Therefore, 
we refer to a vertex and the pattern it is labeled with 
interchangeably. 

 
 
Fig.1 a complete E-GAG for an association rule 
mining application on the set of items {1, 2, 3, 4}. 
 

There is an incident edge on a pattern p from each 
immediate subpattern of p. All patterns except the 
zero-length pattern have at least one incident edge on 
them. The zero-length pattern has an outgoing edge 
to each pattern of length 1. Fig.1 shows an E-GAG 
mapped from an association rule mining application. 
 
3 Knowledge Grid Scheduler 
3.1 Serialization Process 
We consider that the basic building blocks of a DM 
task are algorithms and datasets. They can be 
combined in a structured way, thus forming a DAG. 
DM components correspond to a particular algorithm 
to be executed on a given dataset, provided a certain 
set of input parameters for the algorithm. We can 

therefore describe each DM components L with the 
triple: 

L = (A, D, {P}).  
Where, 
A is the DM algorithm; 
D is the input dataset; 
{P} is the set of algorithm parameters.  
For example if A corresponds to “Association 

Mining”, then {P} could be the minimum confidence 
for a discovered rule to be meaningful. It is important 
to notice that A does not refer to a specific 
implementation. We could therefore have more 
different implementations for the same algorithm, so 
that the scheduler should take into account a 
multiplicity of choices among different algorithms 
and different implementations. The best choice could 
be chosen considering the current system status, the 
programs availability and implementation 
compatibility with different architectures. 

Scheduling DAGs on a distributed platform is a 
non-trivial problem which has been faced by a 
number of algorithms in the past. Although it is 
crucial to take into account data dependencies among 
the different components of the DAGs present in the 
system, we first want to concentrate ourselves on the 
cost model for DM tasks and on the problem of 
bringing communication costs into the scheduling 
policy. For this reason, we introduce in the system an 
additional component that we call serializer (Fig.2), 
whose purpose is to decompose the tasks in the DAG 
into a series of independent tasks, and send them to 
the scheduler queue as soon as they become 
executable w.r.t. the DAG dependencies.  

Such serialization process is not trivial at all and 
leaves many important problems opened, such as 
determine the best ordering among tasks in a DAG 
that preserve data dependencies and minimizes 
execution time. 

Nevertheless, at this stage of the analysis, we are 
mainly concerned with other aspects in the system, 
namely the definition of an accurate cost model for 
single DM tasks and the inclusion of communications 
into the scheduling policy. 
 
 
3.2 Cost Model 
The following cost model assumes that each input 
dataset is initially stored on a single machine mh, 
while the knowledge model extracted must be moved 
to a machine mk. Due to decisions taken by the 
scheduler, datasets may be moved to other machines 
and thus replicated, or may be partitioned among 
diverse machines composing a cluster for parallel 
execution. Therefore, the scheduler has to take into 
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account that several copies (replicated or distributed) 
of a dataset may exist on the machines of its Grid. 

Fig. 2 Serializer 
 
3.2.1 Sequential Execution 
Suppose that the whole dataset is stored on a single 
machine mh. Task ti is executed sequentially by a 
code running on machine mj, with an execution time 
of eij. In general we also have to consider the 
communications needed to move Di from machine h 
to machine mj, and the further communications to 

move the results | ( to machine m)i iDa |
k. The total 

execution time is thus: 
| | / | ( ) | /ij i hj ij i i jkE D b e D bα= + +

 
Of course, the relative communication costs 

involved in dataset movements are zeroed if either 
h=j or j = k. 
 
3.2.2 Parallel Execution 
Task ti is executed in parallel by a code running on a 
cluster clJ, with an execution time of eiJ. In general, 
we have also to consider the communications needed 
to move Di from machine mh to cluster clJ, and to 

move the results | ( to machine m)i iDa |

thu

k. The total 
execution time is 

s:
| | / | | | ( ) | / | |

J J
t J

i J i i J
iJ iJm cl

ht

D cl D clE e
b t Jm cl

tkb
α

∈
= + +∑ ∑ ∈

 
 costs are 

ion needed to move the knowledge result 
model extracted from machines j to machine k. From 
the above 
def

Of course, the relative communication
zeroed if the dataset is already distributed, and is 
allocated on the machines of clJ. 
 
3.2.2 Performance Metrics 
Eij and EiJ are the expected total execution times of 
task ti when no load is present in the system. When 
load is present on machines and networks, scheduling 
will delay the start and thus the completion of a task. 
In the following we will analyze the actual 
completion time of a task for the sequential case. A 
similar analysis could be done for the parallel case. 
Let Cij be the wall-clock time at which all 
communications and sequential computation 
involved in the execution of ti complete. To define 
Cij we need to define the starting times of 
communications and computation. Let shj be the start 
time of communication needed to move the input 
dataset from machine h to machine j, let sj be the start 
time of the sequential execution of task ti on machine 
j, and, finally, let sjk be the start time of 
communicat

initions:

1 2 1
| | | ( ) |( )i i i

ij hj ij hj hj
hj jk

D DC s e s E
b b 2

αδ δ δ δ= + + + + + = + + +
 

Where,  

0)(1 ≥+−=
hjb

And 
0)(2 ≥

i
hjj

D
ssδ   

+−= ijjjk essδ  
So, if Ai is the arrival time of task ti, and ti is the 

only task in execution on the system, then the optimal 
completion time of the task on machine mj is: 

ij i ijC A E= +  

Suppose that jm
 is the specific machine chosen by 

our scheduling algorithm for executing a task ti. 
Let 

i ij  
C C=
And 

i

Let T be the set of tasks to be scheduled. 
span for the com

ijC C=
 

plete scheduling is The make

defined as i , and measures the overall 
throughput of the system. 

max ( )t T iCÎ
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3.3 Predicting DM Tasks Execution Time 
DM application computation times depend on many 
factors: data size, specific mining parameters 
provided by users and actual status of the Grid etc. 
Moreover, the correlations between the items present 
in the various transactions of a dataset largely 
infl

ntime, we identify similar 
app

s. We can use several 
stat

ors, as applications 

ilar to 

ent the reduct algorithm and 
pplication runtime estimation algorithm. For further 

essary rough set 

s that can 
be d

have low 
rele

uence the response times of DM applications. 
Thus, predicting its performance becomes very 
difficult. 

Our application runtime prediction algorithms 
operate on the principle that applications with similar 
characteristics have similar runtimes. Thus, we 
maintain a history of applications that have executed 
along with their respective runtimes. To estimate a 
given application's ru

lications in the history and then compute a 
statistical estimate of their runtimes. We use this as 
the predicted runtime.  

The fundamental problem with this approach is 
the definition of similarity; diverse views exist on the 
criteria that make two applications similar. For 
instance, we can say that two applications are similar 
because the same user on the same machine 
submitted them or because they have the same 
application name and are required to operate on the 
same size data. Thus, we must develop techniques 
that can effectively identify similar applications. 
Such techniques must be able to accurately choose 
applications' attributes that best determine similarity. 
Having identified a similarity template, the next step 
is to estimate the applications' runtime based on 
previous, similar application

istical measures to compute the prediction, 
including measures of central tendency such as the 
mean and linear regression. 

Rough sets theory as a mathematical tool to deal 
with uncertainty in data provides us with a sound 
theoretical basis to determine the properties that 
define similarity. Rough sets operate entirely on the 
basis of the data that is available in the history and 
require no external additional information. The 
history represents an information system in which the 
objects are the previous applications whose runtimes 
and other properties have been recorded. The 
attributes in the information system are these 
applications' properties. The decision attribute is the 
application runtime, and the other recorded 
properties constitute the condition attributes. This 
history model intuitively facilitates reasoning about 
the recorded properties so as to identify the 
dependency between the recorded attributes and the 
runtime. So, we can concretize similarity in terms of 
the condition attributes that are relevant and 

significant in determining the runtime. Thus, the set 
of attributes that have a strong dependency relation 
with the runtime can form a good similarity template.  
The objective of similarity templates in application 
runtime estimation is to identify a set of 
characteristics on the basis of which we can compare 
applications. We could try identical matching, i.e. if n 
characteristics are recorded in the history, two 
applications are similar if they are identical with 
respect to all n properties. However, this 
considerably limits our ability to find similar 
applications because not all recorded properties are 
necessarily relevant in determining the runtime. Such 
an approach could also lead to err
that have important similarities might be considered 
dissimilar even if they differed in a characteristic that 
had little bearing on the runtime. 
A similarity template should consist of the most 
important set of attributes that determine the runtime 
without any superfluous attributes. A reduct consists 
of the minimal set of condition attributes that have 
the same discerning power as the entire information 
system. In other words, the similarity template is 
equivalent to a reduct that includes the most 
significant attributes. Finding a reduct is sim
feature selection problem. All reducts of a dataset can 
be found by constructing a kind of discernibility 
function from the dataset and simplifying it.  
In the following, we pres
a
detailed information see [6, 11], nec
notions see [12, 14-18]. 
 
3.3.1 Heuristic Reduct Algorithm 
Every entry in discernibility matrix is a set of 
attributes that can be distinguished by the attributes. 
The more frequent an attribute appears in entries of 
discernibility matrix, the more instance pairs can be 
distinguished by this attribute. So appearing 
frequency represents the distinguish ability of the 
attribute. In other words, appearing frequency 
implies relevance between attribute and class label. 
Thus attributes’ frequency can be used as heuristic. 
We can sort attributes into ascending order by its 
frequency, and add first attribute (which one with 
highest appearing frequency) to reduct. Then we 
examine reduct by number of instance pair

istinguished by this reduct. If threshold cannot be 
satisfied, next attribute is added to reduct. Do it 
recursively until stop criteria are satisfied. 

In an optimal feature subset, feature should have 
high relevance with class label, and 

vance with other features in the subset. This 
approach can take out irrelevant attributes, but how 
about redundant attributes? For example:  
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Attribute a has highest appearing frequency in 
discernibility matrix. Attribute b is completely 
dependents with a, and b’s appearing frequency only 
lower than attribute a. If there is attribute c with 
appearing frequency lower than attribute b, but 
attribute c is irrelevant with attribute attribute a. 
According this approach a should be added in reduct 
firstly, and then b is added. Attribute c is added to 
reduct after attribute b. But in fact, it is obviously 
attr

cla

 entry length is 1, the 
onl

e two properties. 
The attribute with highest frequency is selected to 
reduct. If several attributes have same frequency, the 
shortest one will take precedence. 

 system: I; 
n attribute set: A; 

 of information system I: Reduct. 

 discernibility matrix M, calculate 
freq ngth(ai). 

(M) 

 {m}, where intersection of entry m and 
Red

 length(ai) 

ing frequency attribute f 
form re are several attributes with same 
appearing frequency, choose the shortest one as f. 

ct + {f}, 
F = F - {f} 
Step
Go to Step 3. 

f 

 0 otherwise. For example, in an information 
sys

red
sys duct it would recur |A| 
− 1

O(|A||U| +2|A|+|A| |U| ). 

than time complexity of [13] alogrithm (O(|A| |U| ) ). 

ibute b cannot provide any additional distinguish 
ability to the feature subset, and it should be take out 
from reduct. 

So the above approach can not guarantee that 
attributes in subset have low relevance with each 
other. In order to solve this problem, we propose a 
simple but efficient method to avoid adding 
redundant attributes to reduct. After an attribute ai 
added to reduct, we remove all entries containing ai 
from discernibility matrix, recount attributes’ 
appearing frequency in remained entries. Then 
attribute with highest new appearing frequency 
should be added to reduct. In fact, the remained 
entries represent the instances in boundary region 
with respect to attribute subset. According to 
attribute subsets, those instances cannot be distinctly 

ssified into positive region or negative region. 
Thus the less boundary region attributes means the 
more powerful classify capacity. 

On the other hand, length of entry means how 
many attributes can distinguish corresponding 
instance pair. Shorter entry implies only few 
attributes can distinguish corresponding instance pair. 
The shorter the entry is, the more important attributes 
in this entry are. Extremely, if

y attribute contained in this entry is a member of 
core. So the length of entry also can be used as 
another heuristic information. 

In our algorithm, every attribute has two 
properties: appearing frequency in discernibility 
matrix and shortest entry length. Attribute’s 
appearing frequency is updated after a new attribute 
added to reduct; attribute’s length is the length of 
shortest entry containing this attribute and it is 
calculated when discernibility matrix is computed. 
We select attribute according thes

We list our algorithm as follows: 
Input: 
Information
Conditio
Decision attribute set: D; 
Threshold. 
Output: 

A reduct
Initial State: 
Reduct = Null, k = 1. 
Step 1: 
Generate
uency(ai) and le
CardM = Card
Step 2: 
Reduct = Core 
F = A – Core 
Step 3: 
M = M -
uct is not empty. 
Recount frequency(ai) and
Step 4: 
k = Card(M)/CardM 
if K <= Threshold, Stop. 
Step 5: 
Choose highest appear
 F. If the

Reduct = redu

 6: 

 
Fig. 3 a Heuristic Reduct Algorithm 

 
3.3.2 Implement and Time Complexity 
In order to save space, attribute sets are implemented 
as bit vector. Length of bit vector is equal to number 
of attributes. A bit of bit vector is set to 1 i
corresponding attribute is contained by attribute 
subset,

tem I with four attributes {a1, a2, a3, a4} , a bit 
vector of attribute subset {a1, a4} is represented as 
1001. 

Since discernibility matrix is a symmetrical 
matrix, there are |U|(|U|−1)/2 entries in matrix. To 
generate each entry, every attribute value of 
corresponding instance pair should be compared. So 
in step 1, the cost for generating discernibility matrix 
is O(|A||U|2) . But in fact, there are much less entries 
in discernibility matrix, since entry corresponding to 
same class instance pair is empty. Cost for finding 
out highest appearing frequency attribute is O(|A|), 
and cost for finding out shortest attribute is also 
O(|A|) . In the worst case, supposing that there are no 

undant and irrelevant attribute in information 
tem, in order to generate re
 times. So the cost to calculate reduct is (|A|2|U|2). 
In conclusion, the total cost of our algorithm is 

2 2 2

So the time complexity is O(|A|2|U|2) . It is less 
3 2
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3.3.3 Application Runtime Estimation Algorithm  
Let's now look at the estimation algorithm as a whole. 
Its input is a history record of application 
characteristics collected over time, specifically 
including actual recorded runtimes, and a task T with 
kno

ct to an application 
bec

te.  

the
of estimating application runtime.  

Step 6. Compute the mean of the runtimes of the 
bjects: EQ ∩ H.  

 
on 

needed. Therefore for each job, the scheduler will 

 such policy as 
Min  C

time is given by an exponential 
distribution. 

wn parameters whose runtime we wish to 
estimate. 

Step 1. Partition the history into decision and 
condition attributes. The recorded runtime is the 
decision attribute, and the other recorded 
characteristics are the condition attributes. The 
approach is to record a comprehensive history of all 
possible statistics with respe

ause identifying the attributes that determine the 
runtime isn't always possible.  

Step 2. Apply the rough sets algorithm to the 
history and identify the similarity templa

Step 3. Combine the current task T with the 
history H to form a current history HT.  

Step 4. Determine from HT the equivalence 
classes with respect to the identified similarity 
templates. This implies grouping into classes 
previous tasks in the history that are identical with 
respect to the similarity template. Because the 
similarity template generated using rough sets is a 
reduct, this leads to the equivalence classes 
consisting of previous tasks that are identical with 
respect to the characteristics that have the most 
significant bearing on the runtime. In this case, rough 
sets provide a basis for identifying the similarity 
template and finding previous tasks that match the 
current task by the intuitive use of equivalence 
classes. Thus, we integrate the process of matching 

 current task with previous tasks in the history into 
the overall process 

Step 5. Identify the equivalence class EQ to 
which T belongs.  

o
 
 
3.4 Scheduling Policy and Execution Model 
We now describe how this cost model can be used by 
a scheduler that receives a list of jobs to be executed

the K-Grid, and has to decide for each of them 
which is the best resource to start the execution on. 

Choosing the best resource implies the definition 
of a scheduling policy, targeted at the optimization of 
some metric. One frequent choice [7] is to minimize 
the completion time of each job. This is done by 
taking into account the actual ready time for the 
machine that will execute the job and the cost of 
execution on that machine, plus the communications 

chose the machine that will finish the job earlier. For 
this reason in the following we refer to

imum ompletion Time (MCT). 
Jobs L (A, D, {P}) arrive at the scheduler from 

an external source, with given timestamps. They 
queue in the scheduler and wait. We assume the jobs 
have no dependencies among one another and their 
interarrival 

 
 

Fig. 4 The model of the scheduler 

ueues, plotted in Figure 4, with 
diff

ctive) jobs being blocked by heavier (batch) 
job

-cycle of a job in the system is the 
following:  

 
The scheduler internal structure can be modeled as a 
network of three q

erent policies. 
Jobs arrive in the main queue Qm, where 

predicting jobs are generated and appended to the 
predicting queue Qp. Both queues are managed with 
a FIFO policy. From Qp jobs are inserted into the 
system for execution. Once predicting is completed, 
the job in inserted in the final queue Qf , where it is 
processed for the real execution. Since the scheduler 
knows the duration of jobs in Qf , due to the prior 
predicting, Qf is managed with a Shortest Remaining 
Time First (SRTF) policy in order to avoid light 
(intera

s. 
The life
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1. Jobs arrive in the main queue Qm with a given 
timestamp. They are processed with FIFO policy. 
When a job is processed, the scheduler generates a 
predicting job and put this request in the predicting 
queue, with the same timestamp. 

2. If a job in Qm has parameters equals to that of a 
previously processed job, it is directly inserted into 
the final queue Qf , with the same timestamp. 

3. If the predicting job has finished, it is inserted 
in the Qf queue, and timestamp given by the current 
time. Every time a job leaves the scheduler, a global 
execution plan is updated, that contains the busy 
times for every host in the system, obtained by the 
cost model associated to every execution. 

4. Every time a job has finished we update the 
global execution plan. 

5. When predicting is successfully finished, jobs 
are inserted in Qf , where different possibilities are 
evaluated and the best option selected. Jobs in Qf are 
processed in an SRFT fashion. Each job has an 
associated duration, obtained from the execution of 
predicting.  
 
 
4 Experiment Results 
We adopted the MCT (Minimum Completion Time) 
[8, 9] +rough set approach to validate that our 
hypothesis is feasible and efficient. The mapper does 
not consider node multitasking, and is responsible for 
choosing the schedule for computations involved in 

the execution of a given task, but also of starting 
tasks and checking their completion. The MCT 
mapping heuristics is very simple. Each time a task is 
submitted, the mapper evaluates the expected ready 
time of each machine. The expected ready time is an 
estimate of the ready time, the earliest time a given 
resource is ready after the execution of jobs 
previously assigned to it. Such estimate is based on 

both estimated and actual execution times of all the 
tasks that have been assigned to the resource in the 
past. To update resource ready times, when 
computations involved in the execution of a task 
complete, a report is sent to the mapper. The mapper 
then evaluate all possible execution plans for other 
task and chooses the one that reduce the completion 
time of the task. To evaluate our MCT scheduler that 
exploits rough set as a technique for performance 
prediction, we designed a simulation framework that 
allowed us to compare our approach with a Blind 
mapping strategy, which does not base its decisions 
on performance predictions at all. Since the blind 
strategy is unaware of predicted runtime, so it 
scheduled tasks according the principle of FCFS 
(first come first serve). 
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Fig. 5 Preliminary Experimental Results
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     The simulated environment is composed of fifteen 
machines installed with GT3. Those machines have 
different physical configurations, operating systems 
and bandwidth of network. We used histories with 
500 records as the condition attributes for estimation 
applications runtime. Data Ming tasks to be 
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scheduled arrive in a burst, according to an 
exponential distribution, and have random execution 
costs. Datasets are all of medium size, and are 
randomly located on those machines. Figure 5 shows 
the improvements in makespans obtained by our 
technique over the blind one when the percentage of 
heavy tasks is varied. 
 
 
5   Conclusion and Future Work 
In order to improve the performance, we propose a 
method that makes Data Mining applications 
parallelization in dynamic Grid environment. For this 
target, we introduce an additional component that we 
call serializer, whose purpose is to decompose the 
tasks into a series of independent tasks according the 
DAG structure, and send them to the scheduler queue 
as soon as they become executable with respect to the 
DAG dependencies. The experimental result 
demonstrates that the architecture has good 
performance.  

In the future, we will use the technique to build a 
wide Web Service interface, so that some 
applications can visit this interface to obtain the 
performance parameter which they needed for 
enhancing the performance of system. 
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