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Abstract: Let G; be the graph obtained froid; by adhering the root of isomorphic tregsto every vertex ofi;,
andd;_;11 be the degree of vertices in the leyelIn this paper we study the spectrum of the adjacency matrix
A(G;) and the Laplacian matrix(G;) for all positive integeti, and give some results about the spectrum of the
adjacency matrixA(G;) and the Laplacian matriX(gG;). By using these results, an upper bound for the largest
eigenvalue of the adjacency matrXG; ) is obtained:

M(A(G)) < maX{QSIJI'lSal?—Q{\/dj -1+ \/dj—H — 1}, \/dk—l -1+ \/dk —-1+1, \/dk —l4+14+1- 1},

and an upper bound for the largest eigenvalue of the Laplacian nigty} is also obtained:

,ul(L(gz))<maX{ max {\/dj—l-i-dj-i-\/dj+1—1},\/dk,1—l+dk71+\/dk—l+1,\/dk—l+1+dk+1}-

2<j<k—2
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1 Introduction For example, the complete grapty, hasn vertices,
and each distinct pair are adjacent. Thus, the graph

Let G be a simple undirected graph with vertex set K, has adjacency matrix

V = {v1,ve, ...}, Whichn = |V]. Let A(G) be

a (0, 1)-adjacency matrix ofs. SinceA(G) is a real
symmetric matrix, all of its eigenvalues are real. With-
out loss of generality, that they are ordered in non- A(Ky) =
increasing order, i.e.,

— = = O

1
0
1
1

_— O ==
O =

AM(G) > Xa(G) > ... > M\(G), (1)
and an easy calculation shows that that spectrum of
and call them the spectrum @éf, The largest eigen- K, is:
value)\; (G) is called the spectral radius 6f. 3 _1
If the destine eigenvalues af(G) are SpecA(Ky) = ( 1 3 )
M(G) > Xa(G) > .. > As(G), About the spectrum and the spectral radius of
graphs, a great deal of investigation is carried out

and their muliplicities are [1][2][3]. Specially, to the special graphs, for example

m(A1), m(A2), ..., m(As), [4] stu_died the spectral radius of_bicyclic graphs with
n vertices and diametet, [5] studied the spectral ra-
then we shall write dius of trees with fixed diameter. In [6] V. Nikiforov

proved that ifG is a graph of orden > 2, maximum
degree), and girth at least, then
(M) M(G) . A(G)
SpecA(G) = ( m) mOa) .. m) | M(G) < min{A, Vi =1},
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where)\; (G) is the largest eigenvalue of the adjacency
matrix of G.
In [7] X.D.Zhang proved

2A —1—-2/AA-1)
<A-— ,
n(n—1)A
whereG be a simple connected non-regular graph of
ordern andA be the maximum degree 6f.

Let d(v;) denote the degree af, € V, i
1,2,....,n,and let

D(G) = diag(d(v1), d(v2),...,d(vy,))
be the diagonal matrix of vertex degrees. The Lapla-
cian matrix ofG is L(G) = D(G) — A(G) . Clearly,
L(G) is a real symmetric matrix. From this fact and
Gersgorin’s Theorem, it follows that its eigenvalues
are nonnegative real numbers. Therefore, the eigen-
values of L(G), which are call the Laplacian eigen-
value of G , can be denote by

:ul(G) > MQ(G) > ...z ,U'n(G) =0.
We callu1 (G) the Laplacian spectral radius 6f

If the destine eigenvalues &f(G) are

pi(G) > p2(G) > ... > ps(G),
and their muliplicities are

A(G)

m(ﬂl)v m(:u2)’ ey m(MS)v
then we shall write

m(G)
m(p1)

p2(G)
m(p2)

ps(G)

SpecL(G) = < m(is)

For the Laplacian eigenvalues and the Laplacian
spectral radius of simple graphs, there are many good
results. In [8], some of the many results known for
Laplacian matrices are given. Fiedler [9] proved that
G is a connected graph if and only if the second small-
est eigenvalue of (G) is positive. This eigenvalue is
call the algebraic connectivity @f, denoted byy(G).

In [10] Li and Pan proved the following result:

LetG be a simple connected graph witlvertices
andm edges. Denote b, § the largest and smallest
degrees of vertices i@. Then

p1(G) < /282 + dm —26(n — 1) + 2A(5 — 1)

In [11], Shu,Hong and Wenren proved a sharp upper
bound as follows:

n

w1 (G) < dy, + % - J (dp — %)2 + > di(d; — dy).

=1

whered; > ds > ... > d, is the degree sequence of
G.
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2 Preliminaries

Let 7 be an unweighted rooted tree bflevels such
that in each level the vertices have equal degr€e.
be a complete graph drvertices. LeG, be the graph
obtained fromK; by adhering the root of isomorphic
trees7 to every vertex of<;. Similar to the definition
of tree’s level, we agree that the complete gr&phs
at levell, and thatG, hask levels. Thus the vertices
in the levelk have degreé.

Forj = 1,2,3,...,k, letn,_;;, andd_;;, be
the number of vertices and the degree of them in the
level j. Observe that;, = [ is the number of vertices
in level 1 andn; the number of vertices in levélthe
number of pendant vertices). Then,

ng—1 = (dr, — 1+ 1)ny,

Ng—j = (dk—j-‘rl - 1)nk’—j+1aj =2,3,...,k—1.
Observe thatly, is the degree of vertices of the com-
plete graph¥; in G, d; is the degree of the vertices in
the levelk, n;, = | . The total number of vertices in
the graphg; is

k—1
n = Z n; + l.
j=1

Example 2.1Follow (Fig.1) is an example of a such
graphG, for k = 3,n1 = 24,no = 8,ng = 4,d; =
1,dy =4,ds = 5.

2120
23 53 19 1817
2
32 1 15
36 35 29 13
33 34
2
1 26 2% o8 12
2 1
4 10
5 6 7 g 9
Fig.1 graphG,

In general, using the labels n — 1...,1, in this
order, our labeling for the vertices 6f is:
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(1) First, we label the vertices df; with clock- In general, our labeling yields to
wise direction.
(2) For one of vertices of level(j = 1,2, ...,k — 0
1), the bigger its labeling is , then the vertex of level ct o o
j + 1 adjacent to it should be labeled first. T -
(3) Label from levell to levelk in turn. A(G) = Cy :

[12], [13] studied the spectrum of the adjacency
matrix A(G;) and the eigenvalues of Laplacian matrix

L(G,) for casd = 1 andl = 2 respectively. In this pa- . Ci-1
per we will study the spectrum of the adjacency matrix Ci1 Bi
A(G;) and the eigenvalues of Laplacian matfixG;)
for all positive integet. 011 1

We introduce the following notations: 0 1 1

(1) 0 is the all zeros matrix, the order 6fwill be whereB; = :
clear from the context in which it is used. 11 1 0

(2)Iy, is the identity matrix of ordem x m.

(3)my = ;o forj = 1,2, k1. L(G) =

(4) em is the all ones column vetor of dimension diln, —Ci
m. 0T doln, —Co

Forj = 1,2,....k — 1, Cj; is the block diagonal o
matrix ,

€m;
€m. . dk—llnk_l —Cr-1
Cj = ! i *Ckal Ui
em, where

with n;, diagonal blocks. Thus, the order 6f; is dp  —1 -1 -1
Ng X Nj41. -1 dk -1 - —1

For example we use these notation with the graph Ur = dyln, — B = : : Do
GainFig.1my = 7L = 3,my = 12 = 2, then 121 -1 ... dk

Cl :diag{eg,eg,eg,eg,e3,e3,e3,e3}, . o .
Apply the Gaussian elimination procedure we ob-

Cy = diag{ez, ez, ez, ez}, tained the following lemma:
The adjacency matri¥(G,) in Fig.1 become Lemma 2.1Let M =
I C
0 C; 0 G
C I, C
AGy=| cf o o |, P
0 ¢ By Cs
01 11
1 0 1 1 op—1In, Cr-1
whereBy = 110 1 and C{,f arln, + By
1 1 10 let
1= a1
d1124 —Cl 0
L(Gy) = | —CT dolsg —-Cs |, and
o -ci u, ni_p 1
6‘:C¥‘— = 7j:2737"'7k7/8'—17é0'
where Ty B ’
5 -1 -1 -1 If 8; #0forallj =1,2,...,k — 1, then
-1 5 -1 -1
Ui=dsla=Bi=1 4 4 5 4 |- detM = B By2..0" )
-1 -1 -1 5 x(Br +1—1)(B — 1)L
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Proof. Apply the Gaussian elimination procedure,
without row interchanges, td/ to obtain the block
upper triangular matrix

B1ln, Ch
BoIn, Co

ﬁSIns

Cr—1
Biln, + B

Br—1In,_,

Hence,
detM = 37 352,35 det (B In, + By).
Since
det(\NI — B)) = (A =1+ 1)(A+ 1)1,
o)

det(ﬁklnk + Bl) = (_1)ld€t(_ﬁk1nk - Bl)
= (Bp+1—1)(B — 1)L

Then
detM = By 6320y (B + 1= 1)(B, — 1!
Thus, (2) is proved#

Lemma 2.2Let My =
arln,, —-C4
—Cf a21n2 _CQ
—CQT '
ag—1lny,_, —Cr—1
—01371 orln, — B
let
B =a1
and
nj—1 1 .
ﬁJ:Oé]— )y J :2737"'7k7/8j—17£0'
nj Bi-1

If 3; #0forallj =1,2,....,k — 1, then

detMO = ﬁ{“ QLZBZ‘iEl (3)
X (B =1+ 1) (B + 1)1
Proof. Apply the Gaussian elimination procedure,

without row interchanges, td/, to obtain the block
upper triangular matrix

Giln, —Ci

,BQIn2 _CQ

ﬂ3In3
Br—1In,_, —Cr-1
Brln, — B
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Hence,
detMy = B 352 ...00 1 det (ByIny, — Bi)-
Since
det(\NI — B)) = (A =1+ 1)(A+ 1)1,
SO
det(BTn, — B) = (Be — 1+ D(Be + 1),

Then

detMo = 37 852...0, 7 (Be — L+ 1) (B + 1)L

Thus, (3) is proved#

3 The spectrum of the adjacency ma-
trix and the Laplacian matrix of G,

In this section we will apply Lemma3.1, Lemma 3.2
and Lemma 3.3 to study the spectrum of the adjacency
matrix and the Laplacian matrix ¢f;

Lemma 3.1[14] Let H bek x k symmetric tridiagonal
matrix:

al bl
bl a9 b2
by
H = ,
ag—1 br—1
be—1  ag

and Q;(\)(j = 0,1,2,..., k) be the characteristic
polynomials of thej x j leading principal submatrix
of matrix H. Then

Qo(N) = 1,
Q) = A-a, @
Qi) = (A =a)Qj-1(N\) = b3 _1Q;-2(N),

(1 =2,3,...,k).

Lemma 3.714] Let H andQ;(\)(j = 0,1,2, ..., k)
be matrix as in Lemma 3.1, then all rooxé’)(z' =
1,2,...,5) of Q;(j = 0,1,2,....k) are real and sim-
ple:

AD S AP s s /\g-]),
and the roots of);_; and@);, respectively, separate
each other strictly:

)\gj) > )\gj*l) > )\gj) > )\gjfl) > > )\gj_*ll) > )\g.j).
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Lemma 3.315] Let A, B be n x n Hermitian ma-
trix. Assume that3 is positive semidefite and that the
eigenvalues oft andA+ B are arranged in decreasing
order asin (1). Then

Ai(A) < N(A+B) forall i=1,2,...,n.

3.1 The spectrum of the adjacency matrix ofG;
Let

={1,2,...,k—1}
and
Q:{j€¢:nj>nj+1}.
Observe thatn,_; = (dp—j11 — D)ng—jy1,] =
2,3,...k —landng_; = (dp — ! + 1)n;. Observe
also that ifj € ¢ — Q thenn; = n;,1 and(j is the
identity matrix of ordem;.

Theorem 3.1.1Let
So(A) =1,51(\) = A,
Si(A) = ASjm1(A) — RS a(N)for o =

nj

S (V) = (4 DSie1 (V) = 228 5(3)

and

SE) = (A= 1+1)8k_1(\) — ”’“l—l Si_a(N).

Then
(i) If S;(A) #0,forj =1,2,...,k — 1, then

det\ = A(G) = (S (\)1SE0) 5)
xljea S57 (V).

(iThe spectrum of A(G) is o(A(G)) =
(Ujea{A : Sj(A) =0 U{A: S, (A) =0 U {X:
SH(\) = 0}.

Proof. SupposeS;(A) #Oforall j =1,2,...,k — 1.
We apply Lemma 2.2 tad/y = \I — A(G)).
My =X — A(G) =

AL,, —C4
—ClT AL, —Ch
_02T :
AL, , —CrL_1
- kT—l )‘Ink*Bl
We have

Br=A=81(A) #0,
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n11

n2 1
ni 1

~np S1(N)
AS1(A) = 285(0)
S1(N)

Sa(N)
S1(N)

Similarly, forj =3,4,....k — 1,k

Bi =

Br—l+1 =

nj—1 1
n; ﬁ] 1
nj-15j-2(A)
nj Sj-1(A)

ASj—1(A) = HESj-2 (M)

Si(A)
Sj-1(A)

Sk(M)

Si—1(A)
20,

+1

Sk—1(A)
Sk(A) + Sk—1(\)

Sk-1(A)

A+ 1)Sk—1(A) = 52Sp—2(N)

Si—1(N)

S (N)
Sk—1(A)’

Sk(A)
Sk—

1()\)_l+1

Sp(A) = (1 = 1)Sk-1(N)

Sk—1(N)

A =1+1)Sk_1(A) — LSk o (N)

Sk—1(N)

S (V)

Sp—1(A)

Therefore, from Lemma 2.2,

det(\ — A(G1))

a2 () SpETT ) SEOY (Sp ()Y
= RN LT B0y S0

= SMTTR(N)SERTE(N).LSI T ()
XSI!(A)(S,:(A))Z—l

= (S

llS
k

HSnJ i1 )\

JEQ
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Thus (i) is proved. Similar to the proof in [13], we
can get (i) by (i) .#

Let R, and R, be thek x k symmetric tridiago-
nal matrices

+ _
Rk -
0 Vde — 1
Vda —1 0 Vds —1
Vds —1
de—1 —1 0 Vde —1+1
Vde —1+1 -1
andR; =
0 Vds — 1
Vde — 1 0 Vds —1
\/dg—l
\dg—1—1 0 Vde —1+1
Vdp —1+1 —1
Observe that

R} = R, + diag{0,0,...,0,1}.

Theorem 3.1.2Forj = 1,2,3, ...,k — 1, let R; be the
j x j leading principal submatrig; . Then

det()\I — Rj) = SJ(/\),] = 1, 2, ceey k— 1,
det0\I—-Ry) = S; (N,
det NI — Rf) = Si(N).

Proof. We apply Lemma 3.1, in our case, = as =
we=ag_1 =0,a, =1—1(or ar=-1)and

b1 = ,/”z: = Ve —1+1,

N U
b = njﬂ_./d]+1 1

for j=1,2,3,...k—2.

For these values, the recursion formula (4) gives the

polynomialsS;(A),j = 0,1,2,....k — 1, 8,7 (\) and
S (N).

This completes the proo#
Theorem3.1.3LetR;,j = 1,2,....,k—1, R andR;
as above. then

()0 (A(G) = (Ujeao (Ry) U (Rf) Uo(Ry).

(i) The multiplicity of each eigenvalue of the ma-
trix R;, as an eigenvalue of(G;), is atleast; —n; ;1
for j € Q, 1 for the eigenvalues oR: and! — 1 for
the eigenvalues ok, .

Proof. (i) is an immediate consequence of Theorem
3.1.1 and Theorem 3.1.2. From Lemma 3.2 that the

eigenvaluesofz;,j =1,2,....k — 1, R,j andR, are

ISSN: 1109-2777
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simply. Finally, we use (5) and Theorem 3.1.2 to ob-
tain(ii). #

Theorem 3.1.4Let A(G;) be the adjacency matrix of
G;. Then

(@) o(Rj—1) N o(R;) =
2,3, ... k—1.

(@) o(Rik—1) No(RY) = ¢ and o(Ry_1) N
o(Ry) = ¢.

(a3) The largest eigenvalue dﬁj is the largest
eigenvalue ofA(G;) and the largest eigenvalue Bf;
is the second largest eigenvalueA(ig; ).

Proof. (a;) and (&) follow from Lemma 3.2.

By Lemma 3.3 and

¢ for j =

R} = R, + diag{0,0,...,0,1},

we can get the eigenvaluesBL+ are greater or equal
to the eigenvalues aR, . Now (&) follow from this
fact and Lemma3.2#

Example 3.1.1
23 22 21 20
24
38 17
27 37
18 16
39 44
361
45 49 43
28 15
35
5‘ '48
40 l ' 13 14
46 \ 47
30
29
42
41 12
31
32
1 33
2 34 7 10
5 © 8 9 11
Fig.2 graphGs
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For the graplgs in Fig.2 forl =5,k = 4,n1 =
30,712 = 10,713 = Ny = 5,d1 = 1,d2 = 4,d3 =
3,dy = 5.

m=om=( 9 )

0 V3

Rs=| V3 0 V2

0 V2 0
0 vV3 0 0
R — V3 0 V2 0
Y710 V2 oo o1
0 0 1 4
0 vV3 0 0
R — V3 0 V2 0
471 0 v2 o0 1
0o 0 1 -1

andQ = {1,2}. By Theorem 3.1.3, the eigenvalues

of A(Gs) in Fig.2 are the eigenvalues &, Re, R}
andR, , they are

Ry: 0

Ry —1.7320 1.7320

Ry —2.4142 —-1.3028 0.4142 2.3028
Rf: —2.2696 —0.1444 2.1444 4.2696

The spectral radius ofi5 in Fig.2 is A\1(A(G5)) =
4.2696.

SpecA(Gs) =
4.2696 2.3028 2.1444 1.7320
1 4 1 5

04142 0 —0.1444 —1.3028
4 20 1 4

—1.7320 —2.2696 —2.4142
5 1 4 '

3.2 The spectrum of the Laplacian matrix ofG;
Theorem 3.2.1l et

Py(p) =1, Pi(p) = p—1,

Pj(n) = (1 — dj) Pj—1(p) — =+ Pia(p), for - j =
2.3, ...k,

Nk—1
)

P () = (i — (dg + 1)) Pl (1) —

ISSN: 1109-2777
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and

neg—1

Py (1) = (= (dp=141)) P (1) ==

Py _o(p).

Then
(i) If Pj(pn) #0,forallj =1,2,....,k — 1, then

det(pl = L(G)) = (BB o
X [ljea B}’ (W)
(i)The spectrum of L(G;) is o(L(G)) =
(Ujealp = Pi(n) = 0) U{p: Py () = 0} U {ps -
P (u) = 0}.
Proof. SupposeP;(n) # Oforall j =1,2,...,k — 1.
We apply Lemma 2.1 td/ = uI — L(G;), we denote
n— dj = Ty, (] =12,.. k?), then
M = pI - L(G) =

II'lInl C1
ClT m2In2 Cs

cy

Th—1Iny_, Cr-1
cF, Trln, + B

We have

fr=p—di=p—1=P(u)#0,

B = () -

na 31
ni 1

* mPi(p)
(b — d2) Pr(p) — 72 Po(p)

Py ()
_ P(p)
T A"

Similarly, forj = 3,4,....k— 1,k

= lLL—

nj_l 1
nj Bj—1
nj_1 Pj_o(u)
nj Pj_1(p)
(1 = dj) Pjo1(p) — == Pja (1)
Pi_1(p)
Pi(p)

~ Pia(u) 70

Issue 4, Volume 7, April 2008
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Thus

Br—1 =

(1 —di — 1) Pr_q(p) — ™52 Pr_o(p)
Pr_1(p)

O +1—1

D .
+ (1= 1)Ps—1(p)
Pr—1(p)
(p—di +1—1)Pea(p) —
Pr—1(p)

nkfl Pk—Q(:u')

Py (p)
Pre-1(p)’

Therefore, from Lemma 2.1,

L(G))

_ Pnl(u)Pznz(u)“_P;fIl(u) Py (n) (P ()"
! P2 (p) " P () Pe—1(p)  PITY(w)

= P (p )P"T"S(u) PR ()

X Py () (P ()"~
= (BF W) P [P ()
JEQ

det(ul —

Thus (i) is proved. Similar to the proof Theorem
3.1.1, we can get (ii) by (i) #
Let W, andW,  be thek x k symmetric tridiag-
onal matrices

W =
1 Vds — 1
Vdz —1 do ds — 1
ds — 1
dik—1—1 di—1 Vde —1+1
Vdp —1+1 di +1
andW,” =
1 Vd; —1
dz — 1 do Vds — 1
ds — 1 B
dp_1—1 dr_1 Vde —1+1
Vdr —1+1  dp—1+1
Observe that
W =W, + diag{0,0, ...,0,1}.

ISSN: 1109-2777
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Theorem 3.2.2Forj = 1,2,3,....,k — 1, let W, be
thej x j leading principal submatriW,j. Then

det(ul — Wj) Pj(p),j=1,2,...,k—1,
det(pI —Wy7) = P (w),
det(uI = W,") = P (n).

Proof. Similar to the proof of Theorem 3.1.2, in this
case,a; = 1, a; = djforj = 2,3,..,k -1, a, =
drp +1(oray =dp—1+1)and

:\/dk—l—i-l,

M g —
bj = ”j+1_ djp1—1

for 7=1,2,3,....k—2.

bg—1 =

For these values, recursion formula (4) gives the poly-
nomials Pj(u),j = 0,1,2,...k — 1, P (u) and
P (p)-

This completes the proof#

Similar to the proof of Theorem 3.1.3, we can get:
Theorem 3.2.3Let W;,j = 1,2,....,k — 1,W," and
W, as above. then

()0 (L(G1) = (Ujeao (W;) U (W) Ua(Wy).

(i) The multiplicity of each eigenvalue of the ma-
trix 1V;, as an eigenvalue df(G; ), is at leasty; —n ;1
for j € €, 1 for the eigenvalues dff’,” and/ — 1 for
the eigenvalues div,.

Theorem 3.2.4Let L(G;) be the Laplacian matrix of
G;. Then

23(b1) (1 ) No(W;) = ¢ for j =
by (W) o) — 6 and o(Wy)n
(W, ) = 6.

(bs) det W; = 1forj = 1,2,...,
0 anddet W, = 1.

(b4) The largest eigenvalue ch+ is the largest
eigenvalue ofL(G;) .

(bs) The smallest eigenvalue (W,j is the alge-
braic connectivityg;.
Proof. (b;) and () follow from Lemma 3.2.

Now we apply the Gaussian elimination proce-
dure, without row interchanges, to redudg to the
upper triangular matrix

k—1,det W, =

Wj =
1 de—1
1 ds — 1
1
dj71—1
1 dji —1

1
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The same procedure appliétd,” and W, gives the The spectral radius of/5 in Fig.2 is u1(L(Gs)) =

triangular matrices 6.4244.
W= SpecL(Gs) =
L oo 6.4244 5.5287 5.2586 4.7912
1 Vds — 1 4 1 4 5
' - 2.8327 2.2511 1 0.6385
k-1 — 1
TR ey 1 o0l
l
0.2088 0.0658 0
andW, = 5 4 1)
1 Vd2—1
1 V-1 4 An upper bound for the largest
- : eigenvalue of the adjacency ma-
e T trix A(G;) and the Laplacian ma-
0 trix L(G))

respectively. Thus @) is proved and) is the smallest
eigenvalue ofV, .
Since

In this section we will give an upper bound for the

largest eigenvalue of the adjacency matrix and the

Laplaican matrix of graply;.

Wit = W, + diag{0,0, ...,0,1}, Lemma 4.13] Let B = (b;;) be a nonnegative x n
matrix and\ is the largest eigenvalue of matrix.

by Lemma 3.3, the eigenvalues df," are greater or ~ Denote theth row sum ofB by s;(B). Then

equal to the eigenvalues oF, . Now (by) and (&) in si(B) <\ < (B
follow from this fact and Lemma3.2# 12?71 silB) <A< 112%}% si(B),
Example 3.2.1For the graplgs in Fig.2 the left equality holds if and only if the right equality
also holds.
1 V3
Wi=1W; = V3 4 4.1 An upper bound for the largest eigenvalue of
the adjacency matrix A(G;)
1 V3 0 : L
wa=| v3 14 2 Theorem 4.1.1Let G, (I is a positive integer) be the
3 graph as above and th@thask levels,d;_ ;41 be the
0 v2 3 degree of vertices in the levg] then
\}g \f \% ! M(A(G) < max
W, = 0 V3 3 1 {maX2§j§k—2{\/dj — 1+ /djy1 — 1},
o o 1 6 \/d,H—1+\/dk—z+1,\/dk—z+1+5—1}.
0 V3 0 0 Proof. Let R} =
_ 3 0 20
W4 — \éi \/§ \éi 1 0 V d2 —1
o o0 1 1 Vds — 1 0 Vds —1
\/d3 —1 ' . )
and2 = {1,2}. By Theorem 3.2.2, the eigenvalues fde 1 —1 0 Var=T+1
of L(Gs) in Fig.2 are the eigenvalues @f;, Wy, W, Vi =1+ 1 -1
andv,’, they are we now apply Lemma 4.1 to conclude
%1 - 2%)88 4.7912 Ai(F) < max
9 : . .
W, : 0 0.6385 2.8327 5.5287 {maX2SJSk—2{\/dJ — 1V -1
W, 0.0658 22511 5.2586 6.4244 V-1 =1+ Vd =1+ 1,Vd =1+ 1+1- 1}-
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From Theorem 3.3.4, we easily have
Al(A(gl)) < max
{max2§j§k‘—2{\/dj — 1+ Vdjn -1},
\/dk_1—1+\/dk—l+1,\/dk—l+1+l—1}.#

4.2 An upper bound for the largest eigenvalue of
the Laplacian matrix L(G;)

In this section we give an upper bound for the
largest eigenvalue of the Laplacian matfigG;).
Theorem 4.2.1Let G, (I is a positive integer) be the
graph as above and th@thask levels,d;_ ;41 be the
degree of vertices in the levg] then

p1(L(Gr)) < max

{mascscjcno{Vd =1 +d; + a1 — 1),
Vid—1 =14+ dp1 + Vd, — 1 +1,

Vi =T+ 1+ dg + 1}.

Proof. Let W," =

1 Vds — 1
Vda — 1 da Vds —1
\/dg—l '
\/dkfl—l di—1 Vde —1+1
Vdy —1+1 dr +1

we now apply Lemma 4.1 to conclude

(W) < max

{masocjcn oV =1 +d; + Vdji — 1},
Vg1 =1+ dp—1 +Vd, —T+1,

Vi =T+ 1+dy + 1}.

From Theorem 3.2.4, we easily have

p1(L(Gr)) < max

{maXQSjgk_g{w/dj -1+ dj + \/derl — 1},
Vd—1 =T+ dp1 +Vd, — 1 +1,

Vi =T+ 1+dy + 1}.#

5 Conclusion

We studied the spectrum of the adjacency matrix
A(G;) and the spectrum of the Laplacian matfi¢g; )
for all positive integef with an effective way.

(. LetRj,j = 1,2,...,k — 1,R; andR,_ as in
section 3. We found that:

(1)7(A(G) = (Ujeao (R;) Ua(R{)Ua(Ry,).

(I2) The multiplicity of each eigenvalue of the ma-
trix R;, as an eigenvalue of(G;), is atleast; —n, 41
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for j € Q, 1 for the eigenvalues oJRkF and! — 1 for
the eigenvalues ok, .

(I3)The largest eigenvalue Q‘R;L is the largest
eigenvalue ofA(G;) and the largest eigenvalue Bf;
is the second largest eigenvalueA(ig; ).

It is very convenient with conclusions; §(12)(13)
to calculate the spectrum of the adjacency matrix
A(G).

In section 4.1, according to the resulig(l2)(13)
and Lemma 4.1, an upper bound for the largest eigen-
value of the adjacency matrix(G;) is obtained:

Al(A(gl)) < max
{mascj<ho{V/d =1+ Vi1 — 1},
\/d,H—1+\/dk—l+1,¢dk—z+1+5—1}.

(). Let W;,5 = 1,2,...,k — 1,W;" andW, as
in section 3.2. We found that:

() o(L(G) = (Ujeaa(Wy)) U o(W;5) U
a(W,").

(Il) The multiplicity of each eigenvalue of the
matrix IV;, as an eigenvalue di(G;), is at least; —
nj1 for j € Q, 1 for the eigenvalues diV, andl —1
for the eigenvalues dfv;".

(Il's) The largest eigenvalue (W,j is the largest
eigenvalue of_(G;).

(Il4) The smallest eigenvalue WJ is the alge-
braic connectivityg;.

In  section 4.2, according to the
results(ly)(112)(Ils) and Lemma 4.1, an upper
bound for the largest eigenvalue of the Laplacian
matrix L(G;) is obtained:

ul(L(gl)) < max

{ maxocjcnof V& =1+ d; + /dji1 — 1},
Vg1 =1+ dp—1 +Vd, —T+1,

Vi =T+ 1+dy+ 1}.
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