
A Novel Solution for the Hausdorff Measure Computation of Sierpinski
Carpet

QILI XIAO, LIFENG XI, JIFANG LI

School of Computer Science and Information Technology
Zhejiang Wanli University
Ningbo, Zhejiang, 315100

P. R. CHINA
http://www.zwu.edu.cn

Abstract: - The computation of the Hausdorff measure of fractals is the basic problem in fractal geometry.
However, this is very difficult. The genetic algorithm is one of optimization algorithms to resolve complicated
problems of wide scope, and has great capabilities in self-organizing, self-adaptation and self-learning. Lifeng
Xi professor put forward to the thought of computing the Hausdorff measure of fractals using the genetic
algorithm several years ago. In this paper, we mainly discuss the realization of the genetic algorithm on the
Sierpinski carpet with compression ratio 1/4 in detail, including the encoding and decoding method, generation
of the initial population, fitness computation, and genetic operators. Finally the Hausdorff measure of the
Sierpinski carpet with compression ratio 1/4 is obtained. Experimental results show that the genetic algorithm is
an effective and universal method of calculation of the Hausdorff measure.

Key-Words: - Sierpinski carpet; Hausdorff measure; genetic algorithm

1 Introduction
The computation and estimation of the Hausdorff
dimension and measure of fractals are important
problem in fractal geometry [1-3]. Generally, the
computation of the Hausdorff dimension, especially
Hausdorff measure, is very difficult. Koch curve,
Sierpinski gasket and the Sierpinski carpet are the
three well-known self-similar fractals on R2 . Their
Hausdorff dimensions are known, but their
Hausdorff measures remain unknown [4-9].

The genetic algorithm is adaptive methods which
may be used to solve search and optimization
problems [10-12]. The genetic algorithm is based on
the genetic processes of biological organisms. Over
many generations, natural populations evolve
according to the principles of natural selection and
“survival of the fittest”. By mimicking this process,
the genetic algorithm is able to “evolve” solutions to
real world problems, if they have been suitably
encoded. The basic principles of the genetic
algorithm were first laid down rigorously by
Holland [13, 14].

The genetic algorithm works with a population
of “individuals”, each representing a possible
solution to a given problem. Each individual is
assigned a “fitness score” according to how good a
solution to the problem it is [15]. The highly-fit
individuals are given opportunities to “reproduce”,
by “cross breeding” with other individuals in the

population. This produces new individuals as
“offspring”, which share some features taken from
each “parent”. The least fit members of the
population are less likely to get selected for
reproduction, and so “die out” [16].

A whole new population of possible solutions is
thus produced by selecting the best individuals from
the current “generation”, and mating them to
produce a new set of individuals. This new
generation contains a higher proportion of the
characteristics possessed by the good members of
the previous generation [17, 18]. In this way, over
many generations, good characteristics are spread
throughout the population. By favouring the mating
of the more fit individuals, the most promising areas
of the search space are explored. If the genetic
algorithm has been designed well, the population
will converge to an optimal solution to the problem

In the genetic algorithm, the evaluation function
or objective function provides a measure of
performance with respect to a particular set of
parameters [19]. The fitness function transforms that
measure of performance into an allocation of
reproductive opportunities. The evaluation of a
string representing a set of parameters is
independent of the evaluation of any other string.
The fitness of that string, however, is always
defined with respect to other members of the current
population. In the genetic algorithm, fitness is

WSEAS TRANSACTIONS on SYSTEMS

Qili Xiao, Lifeng Xi and Jifang Li

ISSN: 1109-2777 548 Issue 5, Volume 7, May 2008

defined by: fi /fA where fi is the evaluation
associated with string i and fA is the average
evaluation of all the strings in the population.

Fitness can also be assigned based on a string's
rank in the population or by sampling methods, such
as tournament selection. The execution of the
genetic algorithm is a two-stage process. It starts
with the current population. Selection is applied to
the current population to create an intermediate
population. Then recombination and mutation are
applied to the intermediate population to create the
next population. The process of going from the
current population to the next population constitutes
one generation in the execution of the genetic
algorithm [20].

The standard genetic algorithm can be
represented as follows:

Fig. 1: standard genetic algorithm
In the first generation the current population is

also the initial population. After calculating fi /fA for
all the strings in the current population, selection is
carried out. The probability that strings in the
current population are copied (i.e. duplicated) and
placed in the intermediate generation is in
proportion to their fitness.

Individuals are chosen using “stochastic
sampling with replacement” to fill the intermediate
population [21, 22]. A selection process that will
more closely match the expected fitness values is
“remainder stochastic sampling”. For each string i
where fi /fA is greater than 1.0, the integer portion of
this number indicates how many copies of that
string are directly placed in the intermediate
population. All strings (including those with fi /fA
less than 1.0) then place additional copies in the
intermediate population with a probability
corresponding to the fractional portion of fi /fA. For
example, a string with fi /fA = 1:36 places 1 copy in
the intermediate population, and then receives a
0:36 chance of placing a second copy. A string with

a fitness of fi /fA = 0:54 has a 0:54 chance of placing
one string in the intermediate population.
Remainder stochastic sampling is most efficiently
implemented using a method known as stochastic
universal sampling. Assume that the population is
laid out in random order as in a pie graph, where
each individual is assigned space on the pie graph in
proportion to fitness [23]. An outer roulette wheel is
placed around the pie with N equally-spaced
pointers. A single spin of the roulette wheel will
now simultaneously pick all N members of the
intermediate population.

After selection has been carried out the
construction of the intermediate population is
complete and recombination can occur [24, 25].
This can be viewed as creating the next population
from the intermediate population. Crossover is
applied to randomly paired strings with a probability
denoted pc. (The population should already be
sufficiently shuffled by the random selection
process.) Pick a pair of strings. With probability pc
“recombine” these strings to form two new strings
that are inserted into the next population. Consider
the following binary string: 1101001100101101.
The string would represent a possible solution to
some parameter optimization problem. New sample
points in the space are generated by recombining
two parent strings. Consider this string
1101001100101101 and another binary string,
yxyyxyxxyyyxyxxy, in which the values 0 and 1 are
denoted by x and y. Using a single randomly-chosen
recombination point, 1-point crossover occurs as
follows:

11010 \/ 01100101101
yxyyx /\ yxxyyyxyxxy
Swapping the fragments between the two parents

produces the following offspring:
11010yxxyyyxyxxy and yxyyx01100101101
After recombination, we can apply a mutation

operator. For each bit in the population, mutate with
some low probability pm. Typically the mutation rate
is applied with 0.1%-1% probability. After the
process of selection, recombination and mutation is
complete, the next population can be evaluated. The
process of valuation, selection, recombination and
mutation forms one generation in the execution of
the genetic algorithm.

Lifeng Xi and Zhongdi Cen put forward to the
thought of computing the Hausdorff measure of
fractals using the genetic algorithm [26]. However,
they didn’t continue to compute the Hausdorff
measure aimed at certain a fractal. Under the
direction of Lifeng Xi professor, we studied further
how to compute the Hausdorff measure of the
Sierpinski gasket with the genetic algorithm. The

WSEAS TRANSACTIONS on SYSTEMS Qili Xiao, Lifeng Xi and Jifang Li

ISSN: 1109-2777 549 Issue 5, Volume 7, May 2008

more exact Hausdorff measure of the Sierpinski
gasket with compression ratio 1/3 at present was
obtained [27].

In this paper, we will mainly focus on how to use
the genetic algorithm to compute the Hausdorff
measure of the Sierpinski carpet with compression
ratio 1/4. Section 2 outlines the Sierpinski carpet
knowledge. Then we will discuss the encoding and
decoding method, fitness computation in detail in
Section 3. The experimental results and the future
work will be given in Section 4. Finally, the
summary will be given in Section 5.

2 Sierpinski Carpet
Take a unit square in the Euclidean plane R2 and
denote it by F0. Dividing each side of F0 into four
equal parts, sixteen equal small squares are got with
length 1/4. Removing the interior of all small
squares except for the four ones lying on the
vertexes of F0, we get a set denoted by F1. If the
above procedure is repeated for each small square in
F1, the set F2 is obtained. Repeating the above
procedure infinitely (such as Fig. 2), we have

......10 mFFF ⊃⊃⊃ . The non-empty set is
called the Sierpinski carpet yielded by F0 [26- 28].

mm FF ∞
=∩= 0

 Fig. 2: the structure of the Sierpinski carpet
By [1, 3], the Hausdorff dimension s of F is 1,

and the Hausdorff measure H(F) of F meets the
following condition [29, 30],

)(
||inflim)(

' U
UFH

mFUm μ∈∞→
=

where are the following four mappings.

4/)(1 xxS =
)0,4/3(4/)(2 += xxS

)4/3,4/3(4/)(3 += xxS
)4/3,0(4/)(4 += xxS

and , = {U | U

is a union of some small squares in the m-th
structure}

)(... 0... 2121
FSSSF

mm iiiiii ooo=

iiF ...21

mF ′

mi

3 Realization of Genetic Algorithm

3.1 individual coding
Before the genetic algorithm can be run, a suitable
coding (or representation) for the problem must be
devised. We also require a fitness function, which
assigns a figure of merit to each coded solution.
During the run, parents must be selected for
reproduction, and recombined to generate offspring.

It is assumed that a potential solution to a
problem may be represented as a set of parameters.
These parameters (known as genes) are joined
together to form a string of values (often referred to
as a chromosome). For example, if our problem is to
maximise a function of three variables F(x; y; z), we
might represent each variable by a 10-bit binary
number (suitably scaled). Our chromosome would
therefore contain three genes, and consist of 30
binary digits. The set of parameters represented by a
particular chromosome is referred to as a genotype.
The genotype contains the information required to
construct an organism which is referred to as the
phenotype [31, 32]. For example, in a bridge design
task, the set of parameters specifying a particular
design is the genotype, while the finished
construction is the phenotype.

The fitness of an individual depends on the
performance of the phenotype. This can be inferred
from the genotype. It can be computed from the
chromosome using the fitness function. Assuming
the interaction between parameters is nonlinear, the
size of the search space is related to the number of
bits used in the problem encoding. For a bit string
encoding of length L; the size of the search space is
2L and forms a hypercube. The genetic algorithm
samples the corners of this L-dimensional
hypercube. Generally, most test functions are at
least 30 bits in length; anything much smaller
represents a space which can be enumerated.
Obviously, the expression 2L grows exponentially.
As long as the number of “good solutions” to a
problem is sparse with respect to the size of the
search space, then random search or search by
enumeration of a large search space is not a
practical form of problem solving. On the other
hand, any search other than random search imposes
some bias in terms of how it looks for better
solutions and where it looks in the search space.

With the wide application of genetic algorithm,
many coding methods are put forward. There are
three kinds binary coding method, float coding
method, symbol coding method. Binary coding
method is the most familiar coding method that an
individual is made of some 0 or 1. Binary coding
has the advantage [9, 17, 33]. It is the advantage that
coding and decoding is easy to operate. The other

WSEAS TRANSACTIONS on SYSTEMS Qili Xiao, Lifeng Xi and Jifang Li

ISSN: 1109-2777 550 Issue 5, Volume 7, May 2008

advantage is that the implement of the genetic
operation is easy.

During the process of calculating the Hausdorff
measure, the method of binary code with fixed
length is used. The encoding method is as follows: if

 is contained in the set , then its
corresponding code is 1, otherwise its corresponding
code is 0. In this way, a code list of 4m length can
show whether each one of the 4m equal small squares
in the m-th structure is chosen or not. In order to
solve the problem easily, the origin is regarded as
the starting point here, and every small square is
encoded according to the anticlockwise order.

miiiF ...21

'
mFU ∈

Now let’s state the detail encoding method with
the second structure. In the second structure, there
are 42=16 equal small squares altogether. If we
regard the origin as the starting point and encode
every one according to the anticlockwise order, the
marks of the 16 squares are as shown in Fig. 3. We
choose every one of the 16 squares one by one
according to their marks from small to large. If a
square is chosen, we use 1 to represent on the
corresponding position of the individual code,
otherwise use 0. For example, 1001 0010 0100 0000
represents that four squares of the 16 squares in the
second structure are chosen and their marks are 1, 4,
7 and 10 respectively (such as Fig. 3).

Fig. 3: small squares of the second structure

3.2 generation of initial population
The population is the foundation of evolution of the
genetic algorithm. The character of the population
decides the search capability of the genetic
algorithm. And the astringency of the genetic
algorithm is determined by the astringency of the
population [9, 31]. During the calculation of the
Hausdorff measure, individuals of initial population
are randomly generated by the system.

3.3 decoding
During the calculation of the Hausdorff measure, an
individual represents a choice. Then it is the
decoding method that any binary digit 1 of the
individual represents which of the 4m equal small

squares is chosen, namely that the corresponding
small square is the result which functions act on F0.
The detail of decoding is as follows:

(1) Firstly, divide the whole code into four equal
length groups, every small square that is represented
by 0 or 1 in the first group is inside the square S1(F0),
and every small square that is represented by 0 or 1
in the second group is inside the square S2(F0), and
every small square that is represented by 0 or 1 in
the third group is inside the square S3(F0), and every
small square that is represented by 0 or 1 in the forth
group is inside the square S4(F0).

(2) Secondly, respectively divide every group
above into four equal length groups, every small
square that is represented by 0 or 1 in the first group
of every group above is respectively inside the
square S1 S1(F0) and S1 S2(F0) and S1 o S3(F0) and
S1 S4(F0), and every small square that is
represented by 0 or 1 in the second group of every
group above is respectively inside the square S2o S1
(F0) and S2 S2(F0) and S2 S3(F0) and S2 S4(F0),
and the rest may be deduced by analogy.

o o
o

o o o

(3) Finally, continue dividing every group of the
second step into four equal length groups until there
is only one digit 0 or 1 in every group.

Now let’s state the detail decoding method with
the third structure. In the third structure, there are
43=64 equal small squares altogether. For the
individual 0100 0110 0000 0000 0010 0000 0011
0000 0000 0000 0101 0000 0010 0000 0010 1100, it
is obvious that the corresponding small square
represented by every 1 of the individual is the result
which functions act on F0 through the following step.

(1) Divide the whole code into four equal length
groups, the following four groups can be obtained.

0100 0110 0000 0000
0010 0000 0011 0000
0000 0000 0101 0000
0010 0000 0010 1100
Every small square that is represented by 0 or 1

in the first group 0100 0110 0000 0000 is inside the
square S1(F0). Every small square in the second
group 0010 0000 0011 0000 is inside the square
S2(F0). Every small square in the third group 0000
0000 0101 0000 is inside the square S3(F0). Every
small square in the forth group 0010 0000 0010
1100 is inside the square S4(F0).

(2) Respectively divide every group above into
four equal length groups, the following sixteen
groups are obtained.

For the first group of the first step, there are four
groups following.

0100
0110
0000

WSEAS TRANSACTIONS on SYSTEMS Qili Xiao, Lifeng Xi and Jifang Li

ISSN: 1109-2777 551 Issue 5, Volume 7, May 2008

0000
Every small square that is represented by 0 or 1

in the first group 0100 is inside the square S1 S1(F0).
Every small square in the second group 0110 is
inside the square S1 o S2(F0). Every small square in
the third group 0000 is inside the square S1 S3(F0).
Every small square in the forth group 0000 is inside
the square S1 S4(F0).

o

o

o
For the second group the first step, there are four

groups following.
0010
0000
0011
0000
Every small square that is represented by 0 or 1

in the first group 0010 is inside the square S2 S1(F0).
Every small square in the second group 0000 is
inside the square S2 o S2(F0). Every small square in
the third group 0011 is inside the square S2 S3(F0).
Every small square in the forth group 0000 is inside
the square S2 S4(F0).

o

o

o
For the third group of the first step, there are four

groups following.
0000
0000
0101
0000
Every small square that is represented by 0 or 1

in the first group 0000 is inside the square S3 S1(F0).
Every small square in the second group 0000 is
inside the square S3 o S2(F0). Every small square in
the third group 0101 is inside the square S3 S3(F0).
Every small square in the forth group 0000 is inside
the square S3 S4(F0).

o

o

o
For the forth group of the first step, there are four

groups following.
0010
0000
0010
1100
Every small square that is represented by 0 or 1

in the first group 0010 is inside the square S4 S1(F0).
Every small square in the second group 0000 is
inside the square S4 o S2(F0). Every small square in
the third group 0001 is inside the square S4 S3(F0).
Every small square in the forth group 1100 is inside
the square S4 S4(F0).

o

o

o
(3) Continue dividing every group of the second

step into four equal length groups until there is only
one digit 0 or 1 in every group. The small square
represented by 1 of the individual 0100 0110 0000
0000 0010 0000 0011 0000 0000 0000 0101 0000
0010 0000 0010 1100 is S2 S1 S1(F0),
S2 S2 S1(F0), S3 S2 S1(F0), S3 S1 S2(F0),

S3 S3 S2(F0), S4 S3 S2(F0), S2 S3 S3(F0),
S2 S4o S4(F0) respectively from left to right.

o o
oo o o o o

o
o

o o o o o

The following is the detail programming code to
realize decoding with C programming language [34,
35, 36].

k=0; l=j;
for (r=m; r>0; r=r-1)
{
p=pow(4,r);
l=l%p;
if (l<0.25*p) { func[k]='a'; }
else if (l<0.5*p) { func[k]='b';}
else if(l<0.75*p) {func[k]='c';}
else if (l<p) { func[k]='d';}
k=k+1;
}
REMARK 1 Variable j is used to keep the j-th

figure of an individual code.
REMARK 2 In the whole programming code,

variable m expresses the m-th construction during
the generation of Sierpinski carpet.

REMARK 3 Array func[m] is used to keep the m
functions that act on the unit square F0.

REMARK 4 In the programming code, ‘a’
expresses the function S1, ‘b’ expresses the function
S2, ‘c’ expresses the function S3, and ‘d’ expresses
the function S4.

3.4 Fitness evaluation
Once initial individuals are randomly generated
according to the way mentioned above, we then
have to optimize the individuals to obtain the best
results. Therefore, a numerical fitness function is
needed in order to quantitatively evaluate the
suitability of each individual. In the genetic
algorithm, the goodness and badness of an
individual is distinguished by individual fitness. The
good individuals are selected by individual fitness,
and preserved in the next generation, so that more
and more good individuals generate in the next
generation. During the calculation using the genetic
algorithm, fitness function influences on astringency
of the genetic algorithm and the pace of
constringency [37-39].

Here fitness function is F(U)= μ (U)/|U|, then
finding minimum value is transformed into finding
maximum value, where μ (U) represents the value
of dividing the number of 1’s in the individual code
by 4m, and |U| represents the maximum distance of
two random vertexes of eight vertexes of two
random small squares. In order to calculate the
maximum distance of any set U, a construction
function series of every square in U must be found

WSEAS TRANSACTIONS on SYSTEMS Qili Xiao, Lifeng Xi and Jifang Li

ISSN: 1109-2777 552 Issue 5, Volume 7, May 2008

first, and then the coordinates of all vertexes of all
small squares in U can be calculated.

Step 1 Calculate the coordinates of all vertexes
of all small squares. The detail calculation is as
follows.

(1) Work out the construction function series of
all small squares as introduced above.

(2) Calculate the coordinates of the left bottom
vertex of all small squares. The detail is as follows.

Suppose A, B, C and D are four equal small
squares in the m-th structure, and they are inside the
square E that is one of the squares in the (m-1)-th
structure (such as Fig. 4). If the coordinates of the
left bottom vertex of the square E is (x0, y0), the
coordinates of the left bottom vertex of small
squares A, B, C and D are listed as follows:

)*4/3,0(),(),(
)*4/3,*4/3(),(),(

)0,*4/3(),(),(
),(),(

00

00

00

00

lyxyx
llyxyx

lyxyx
yxyx

DD

CC

BB

AA

+=
+=
+=

=

Where l represents the length of the side of the

square E, and l=1/4m-1.

Fig. 4: square E and four small squares of the

next structure
Suppose the corresponding functions of any a

small square are in the array variable func[m]. The
following programming code can calculate the
coordinates of the left bottom vertex of the small
square.

double **loc;
loc=(double**)malloc(sizeof(double*)*4*

chromlength);
for(i=0;i<4*chromlength;i++)
loc[i]=(double*)malloc(sizeof(double)*2);
for (k=0;k<m;k++)
{
 pw=1/pow(4, k);
 switch (func[k])
case 'a':
{
 loc[line][0]=loc[line][0];
 loc[line][1]=loc[line][1];
 break;
}
case 'b':

{
 loc[line][0]=loc[line][0]+0.75*pw;
 loc[line][1]= loc[line][1];
 break;
}
case 'c':
{
 loc[line][0]=loc[line][0]+0.75*pw;
 loc[line][1]= loc[line][1]+ 0.75*pw;
 break;
}
case 'd':
{
 loc[line][0]=loc[line][0];
 loc[line][1]= loc[line][1]+ 0.75*pw;
 break;
}
}
REMARK 5 In the whole paper, variable loc is an

array that is used to preserve the vertexes of small
squares.

REMARK 6 In the whole paper, variable
chromlength is used to preserve the length of
individual code.

(3) Calculate the coordinates of the other
vertexes of all small squares. The detail is as follows:
If a small square is one of squares in the m-th
structure and the coordinates of the left bottom
vertex is (x, y), the coordinates of other vertexes in
anticlockwise order are the following:

(x, y) + (1/4m, 0)
(x, y) + (1/4m, 1/4m)
(x, y) + (0, 1/4m)
The detail programming code is following.
x= loc[line][0];
y= loc[line][1];
pw=1/pow(4,m);
for (k=2 ; k< 5; k++)
{
 line=line+1;
 switch (k)
 case 2:
{
 loc[line][0]=x+pw;
 loc[line][1]= y ;
 break;
}
case 3:
{
 loc[line][0]=x+pw;
 loc[line][1]=y+pw;
break;
}
case 4:
{

WSEAS TRANSACTIONS on SYSTEMS Qili Xiao, Lifeng Xi and Jifang Li

ISSN: 1109-2777 553 Issue 5, Volume 7, May 2008

loc[line][0]= x;
loc[line][1]=y+pw;
break;
}
}
Step 2 Calculate the individual fitness.
(1) Find the coordinates of the small squares

chosen in the current individual according to the
result of step 1.

(2) Calculate the diameter |U| and the number of
1’s in the individual code.

(3) Calculate the corresponding fitness.
The detail programming code is following.
if (num==0) popfitness[i]= 0;
else
{
 for (j=0 ; j< line ; j++)
 for (k=j+1 ; k<= line ; k++)
 {
 x1=loc[j][0];
 x2=loc[k][0];
y1=loc[j][1];
y2= loc[k][1];
s=sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
if (s>diameter) diameter=s;
}
popfitness[i]= num/(diameter*chromlength);
}
REMARK 7 Variable num is used to preserve the

1’s number of an individual.
REMARK 8 Variable popfitness is an array that is

used to preserve individual fitness.

3.5 Genetic operations
Characteristic of the genetic algorithm is that the
imitating of the selection, crossover and mutation of
biology inheritance and evolution obtains the best
solution of problem. The selection, crossover and
mutation processes are the most important parts of
the genetic algorithm.

3.5.1 Selection
This operator selects chromosomes in the population
for reproduction. The fitter the chromosome, the
more times it is likely to be selected to reproduce.
Selection embodies the theory of survival of the
fittest. The evaluation of individuals is the basis of
the selection operation. The purpose of selection is
to improve the astringency and the computation
efficiency. The familiar selection operators are
proportion selection, preserving the best individual,
expectation selection. Proportion selection is the
basal and common selection operation. The standard
genetic algorithm uses proportion selection. But the

standard genetic algorithm has no astringency [40].
The selection of preserving the best individual is
used in order to obtain the best solution of problem.
The selection of preserving the best individual can
guarantee that the individual with the biggest fitness
appearing while the implement of the genetic
algorithm can be preserved [41].

3.5.2 Crossover
This operator exchanges subsequence of two
chromosomes to create two offspring. For example,
the strings 10000100 and 11111111 could be
crossed over after the third locus in each to produce
the two offspring 10011111 and 11100100.

Crossover operator is the most important
operation of genetic operation in the genetic
algorithm. Crossover operation is the main method
to generate the new individual. Crossover operation
decides the whole search capability of the genetic
algorithm. The search capability of the genetic
algorithm is improved rapidly. The familiar
crossover operators are one-point crossover, two-
point crossover and multi-point crossover. The
traditional genetic algorithm uses 1-point crossover,
where the two mating chromosomes are each cut
once at corresponding points, and the sections after
the cuts exchanged. However, many different
crossover algorithms have been devised, often
involving more than one cut point. DeJong
investigated the effectiveness of multiple-point
crossover, and concluded that 2-point crossover
gives an improvement, but that adding further
crossover points reduces the performance of the
genetic algorithm. The problem with adding
additional crossover points is that building blocks
are more likely to be disrupted. However, an
advantage of having more crossover points is that
the problem space may be searched more
thoroughly.

During the calculation of the Hausdorff measure,
we use the three crossover above. At the same time,
we seek after a new crossover operation “and / or”
crossover [42-44]. “And / or” crossover displays the
more excellent capability. The detail realization is
following.

(1) Select two individuals F1 and F2.
(2) Generate a new individual with “and”

Boolean calculation on F1 and F2.
(3) Generate a new individual with “or” Boolean

calculation on F1 and F2.
The detail programming code is the following.
for (i=0;i<popsize-1;i=i+2)
{
 p=rand()%1000/1000.0;
 if (p<pc)

WSEAS TRANSACTIONS on SYSTEMS Qili Xiao, Lifeng Xi and Jifang Li

ISSN: 1109-2777 554 Issue 5, Volume 7, May 2008

 for (j=0;j<chromlength;j++)
{
 pop[i][j]=pop[i][j] && pop[i+1][j];
pop[i+1][j]=pop[i][j] || pop[i+1][j];
}
}

3.5.2 Mutation
Mutation is traditionally seen as a “background”
operator, responsible for re-introducing
inadvertently “lost” gene values (alleles), preventing
genetic drift, and providing a small element of
random search in the vicinity of the population
when it has largely converged. It is generally held
that crossover is the main force leading to a
thorough search of the problem space.

This operator randomly flips some bits in a
chromosome. For example, the string 00000100
might be mutated in its second position to yield
01000100. Mutation can occur at each bit position
in a string with some probability, usually very small
(e.g., 0.001).

The advantage of mutation operation is the
following [45]. One is to improve the local search
capability. The other is to maintain the diversity of
population and to prevent pre-maturation.

During the calculation of the Hausdorff measure,
we mainly use gene mutation.

4 Experimental Results and Analysis
During the calculation of the Hausdorrf measure, the
values of the key parameters are the following. The
crossover probability pc=0.9, the mutation
probability pm=0.001, the population size
popsize=50, the generation number gen=100.
According to above-mentioned ideas, we have
developed the whole programming code. The result
of the experiment is what Table 1 shows.

Table 1: values of H (F)

m H(F) computation times
(unit: second)

1 1.41421 1
2 1.41421 1
3 1.41421 1
4 1.41421 3
5 1.41421 120
6 1.41421 21106
7 1.41421 4200658

From Table 1, we can conclude that the
Hausdorff measure of the Sierpinski carpet with
compression ratio 1/4 H (F) =1.41421. Obviously,
the result is uniform with the result of the 30th

reference [30]. At the same time, the experimental
results have proved further that the exact Hausdorff
measure of the Sierpinski carpet with compression
ratio 1/4 is 1.41421.

It can be seen easily that the Hausdorff measure
can be obtained quickly when m≤6 from Table 1.
But when m>6, the calculating time increases
sharply. During the experiment, we found that much
time is spent on calculating the fitness. Therefore,
the future work is to improve the method of
calculating the fitness further.

5 Summary
It is noticed that the search space expands rapidly
with the increase of times of recursions due to the
structure of fractals. So far it is hard to calculate the
exact value of Hausdorff measure by computer.
Therefore, it seems necessary to find an effective
algorithm to calculate or estimate the Hausdorff
measure. The major advantage of the genetic
algorithm is the flexibility and robustness as a
global search method. They can deal with highly
nonlinear problems and non-differentiable functions
as well as functions with multiple local optima. In
fact, the above experiment has proved that genetic
algorithm is a kind of effective method to calculate
or estimate the Hausdorff measures at present.

References:
[1] Falconer, K., Techniques in Fractal Geometry,

Wiley, 1997.
[2] Qiuli Guo, Hausdorff Dimension of Level Set

Related to Symbolic System. International
Journal of Nonlinear Science. Vol. 3, 2007, 63-
67.

[3] Qiuli Guo, Haiyi Jiang, Lifeng Xi, Hausdorff
Dimension of Generalized Sierpinski Carpet,
International Journal of Nonlinear Science, Vol.
2, 2006, 153-158.

[4] Li Wenxia, Xiao Dongmei, Dimensions of
Measure on General Sierpinski Carpet, Acta
Mathematica Sinica, Vol. 19, 1999, 81- 85.

[5] Zuoling Zhou: Hausdorff Measure Of Self-
Similar Set: Koch Curve. Science In China(A).
Vol. 28, 1998, 103-107.

[6] Dai Xinrong, An Estimate of Hausdorff
Measure of Sierpinski Gasket, Journal of
Zhejiang University of Technology, Vol. 29,
2001, 86-90.

[7] Zhou Zuoling, Hausdorff measure of self-
similar set: Koch curve, Science in China (A).
Vol. 28, 1998, 103-107.

WSEAS TRANSACTIONS on SYSTEMS Qili Xiao, Lifeng Xi and Jifang Li

ISSN: 1109-2777 555 Issue 5, Volume 7, May 2008

[8] Wang Xinhua, Hausdorff Measure of
Sierpinski Carpet, Progress in Natural Science,
vol. 11, 2001, 383- 387.

[9] Zeng Chaoyi, Xu Shaoyuan, The Hausdorff
Measure of a Sierpinski Sponge, Mathematics
in Practice and Theory, vol. 9, 2007, 141-143.

[10] Zhou Ming, Sun Shudong, Theory and
Application of Genetic Algorithm, National
Defence Industry Press, 2002.

[11] Zhang Lin, Zhang Bo, Research on the
Mechanism of Genetic Algorithms, Journal of
Software, Vol. 11, 2000, 945-952.

[12] Hou Guangkun, Luo Jiangpeng, Modeling
Idealized Parallel Genetic Algorithms, Journal
of Software, Vol. 5, 1999, 557- 560.

[13] Xiao Jun, Application Of Genetic Algorithms,
Computer Science, Vol. 32, 2005, 246- 247.

[14] Yu Nong, Li Yushu, Wang Runsheng, Optimal
Morphological Filters Using Genetic Algorithm
for Automatic Target Detection, Journal of
Software, Vol. 24, 2001, 337-346.

[15] Esmaelzadeh, R.; Naghash, A.; Mortazavi, M.
Rendezvous Trajectory Optimization Using
Real Genetic Algorithm Combined with
Gradient Method. WSEAS Transactions on
Systems, Vol. 5, 2006, 2875-2880.

[16] Li Minqiang, Kou JiSong, Theory and
Application of Genetic Algorithm, Beijing
Science & Technology Press, 2002.

[17] Wang Xiaoping, Cao Liming, Theory,
Application and Software Realization of
Genetic Algorithm, Publishing Company of
Xi'an Jiaotong University, 2002.

[18] Dubey, Manisha; Sharma, Avdhesh; Agnihotri,
Gayatri; Gupta, Pankaj, Optimal Tuning of
Parameters of Fuzzy Logic Power System
Stabilizer Using Genetic Algorithm, WSEAS
Transactions on Systems, Vol. 4, 2005, 225-
232.

[19] Joachins, Parallel Geneticalgorithms: Theory
and Applications, Isopress, 1993.

[20] Zheng Liping, Hao Zhongxiao, A Review on
the Theory for the Genetic Algorithm, Vol. 21,
2003, 50-54.

[21] Dai Xiaohui, Li Mingqiang, Kou Jisong,
Survey on the Theory of Genetic Algorithms,
Control and Decision, Vol. 15, 2000, 263-269.

[22] Benitez-Perez, Hector; Saavedra-Hernandez, H.;
Ortega-Arjona, J.L. On-Line Reconfiguration
For A Type of Networked Control System
Using Genetic Algorithms, WSEAS
Transactions on Systems, Vol. 6, 2007, 167-
172.

[23] Ren Ping, Genetic Algorithms, Journal of
Engineering Mathematics, Vol. 16, 1-8.

[24] Mahfoud, S., Mani, G., Financial Forecasting
Using Genetic Algorithms, Applied Artificial
Intelligence, Vol. 10, 1996, 543-565.

[25] Fogel D B., Evolutionary Computation:
Toward a New Philosophy of Machine
Intelligence, IEEE Press, 1995.

[26] Xi Lifeng, Cen Zhongdi, Some Front Problems
of Fractal- Computation of Hausdorff Measure,
Journal of Zhejiang Wanli University, Vol. 14,
2001, 1-3.

[27] Qili Xiao, Lifeng Xi, Hausdorff Measure
Estimation of Sierpinski Gasket Based on
Genetic Algorithm. Computer Engineering and
Applications, Vol. 44, 2008, 61-63.

[28] Huang Chunchao, A Elementary Proof for
Hausdorff Mearsure of Sierpinski Carpet, Acta
Mathematica Sinica, Vol. 43, 2000, 599- 603.

[29] Zhao Yanfen, Huang Jinghua, The Hausdorff
Measure of Sierpinski Carpet on Rectangle,
Journal of Hubei University, Vol. 21, 1999,
185- 189.

[30] Zhou Zuoling, Wu Min, The Hausdorff
Measure of a Sierpinski Carpet, Science in
China (A). Vol. 29, 1999, 138-144.

[31] Chen Guoliang, Wang Xufa, Genetic
Algorithm and Its Application, People Post
Publishing Company, 2001.

[32] Cui Xunxue, Lin Chuang, A Preference-Based
Multi-Objective Concordance Genetic
Algorithm, Journal of Software, Vol. 16, 2005,
761-770.

[33] Dai Xiaohui, Li Minqiang, Koujisong, Study
on the Performance Analysis of Genetic
Algorithms, Journal of Software, Vol. 12,2001,
742- 750.

[34] Yu Xinning, Wang Wenpeng, Zhang Jun,
Module Programming of Genetic Algorithm,
Vol. 13, 2003, 4-7.

[35] Michalewicz, Z., Genetic Algorithms +
DataStructures = Evolution Programs,
Springer-Verlag, 1994.

[36] Koza, J.R., Genetic Programming, MIT Press,
Cambridge, MA, 1991.

[37] He Jun, Huang Houkuang, Kang Lishang, The
Computational Time of Genetic Algorithms for
Fully Deceptive Problem, Chinese J.Computers,
Vol. 22, 1999, 999-1003.

[38] Yang Qiwen, Jiang Jingping, Zhang Guohon,
Improving Optimization Speed for Genetic
Algorithms, Journal of Software, Vol. 12, 2001,
270- 275.

[39] Zhang Jin, Li Dongli, Li Ping, Comparative
Study of Genetic Algorithms Encoding
Mechanism, Journal of China University of
Mining & Technology, Vol. 31, 2002, 637-640.

WSEAS TRANSACTIONS on SYSTEMS Qili Xiao, Lifeng Xi and Jifang Li

ISSN: 1109-2777 556 Issue 5, Volume 7, May 2008

[40] Xu Zongben, Nie Zankan, Zhang Wenxiu,
Almost Sure Convergence of Genetic
Algorithms: a Martingale Approach, CHINESE
J. COMPUTERS, Vol. 25, 2003, 785-793.

[41] Wu Haoyang, Chang Bingguo, Zhu Changchun,
Liujunhua, A Multigroup Parallel Genetic
Algorithm Based on Simulated Annealing
Method, Journal of Software, Vol. 11, 2000,
416-420.

[42] Tu Huiyuan, Crossover Operator Analysis of
Genetic Algorithms, J. Wuhan Univ., Vol. 51,
2005, 22-24.

[43] Gong Daoxiong, Ruan Xiaogang, A New
Crossover Operator, Computer Engineering and
Applications, Vol. 6, 2004, 7-11.

[44] Ren Qingsheng, Ye zhongxing, Zeng Jin, Qi
Feihu, Search Capability of Crossover Operator,
Journal of Computer Research & Development,
Vol. 36, 1999, 1317-1322.

[45] Wang Jiyi, Wu Yanxian, Implementation of
Adaptive Multiple Bit Mutation Genetic
Algorithm, Computer Science, Vol. 30, 2003,
141-143.

WSEAS TRANSACTIONS on SYSTEMS Qili Xiao, Lifeng Xi and Jifang Li

ISSN: 1109-2777 557 Issue 5, Volume 7, May 2008

