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Abstract: - The computation of the Hausdorff measure of fractals is the basic problem in fractal geometry. 
However, this is very difficult. The genetic algorithm is one of optimization algorithms to resolve complicated 
problems of wide scope, and has great capabilities in self-organizing, self-adaptation and self-learning. Lifeng 
Xi professor put forward to the thought of computing the Hausdorff measure of fractals using the genetic 
algorithm several years ago. In this paper, we mainly discuss the realization of the genetic algorithm on the 
Sierpinski carpet with compression ratio 1/4 in detail, including the encoding and decoding method, generation 
of the initial population, fitness computation, and genetic operators. Finally the Hausdorff measure of the 
Sierpinski carpet with compression ratio 1/4 is obtained. Experimental results show that the genetic algorithm is 
an effective and universal method of calculation of the Hausdorff measure. 
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1 Introduction 
The computation and estimation of the Hausdorff 
dimension and measure of fractals are important 
problem in fractal geometry [1-3]. Generally, the 
computation of the Hausdorff dimension, especially 
Hausdorff measure, is very difficult. Koch curve, 
Sierpinski gasket and the Sierpinski carpet are the 
three well-known self-similar fractals on R2 . Their 
Hausdorff dimensions are known, but their 
Hausdorff measures remain unknown [4-9]. 

The genetic algorithm is adaptive methods which 
may be used to solve search and optimization 
problems [10-12]. The genetic algorithm is based on 
the genetic processes of biological organisms. Over 
many generations, natural populations evolve 
according to the principles of natural selection and 
“survival of the fittest”. By mimicking this process, 
the genetic algorithm is able to “evolve” solutions to 
real world problems, if they have been suitably 
encoded. The basic principles of the genetic 
algorithm were first laid down rigorously by 
Holland [13, 14]. 

The genetic algorithm works with a population 
of “individuals”, each representing a possible 
solution to a given problem. Each individual is 
assigned a “fitness score” according to how good a 
solution to the problem it is [15]. The highly-fit 
individuals are given opportunities to “reproduce”, 
by “cross breeding” with other individuals in the 

population. This produces new individuals as 
“offspring”, which share some features taken from 
each “parent”. The least fit members of the 
population are less likely to get selected for 
reproduction, and so “die out” [16]. 

A whole new population of possible solutions is 
thus produced by selecting the best individuals from 
the current “generation”, and mating them to 
produce a new set of individuals. This new 
generation contains a higher proportion of the 
characteristics possessed by the good members of 
the previous generation [17, 18]. In this way, over 
many generations, good characteristics are spread 
throughout the population. By favouring the mating 
of the more fit individuals, the most promising areas 
of the search space are explored. If the genetic 
algorithm has been designed well, the population 
will converge to an optimal solution to the problem 

In the genetic algorithm, the evaluation function 
or objective function provides a measure of 
performance with respect to a particular set of 
parameters [19]. The fitness function transforms that 
measure of performance into an allocation of 
reproductive opportunities. The evaluation of a 
string representing a set of parameters is 
independent of the evaluation of any other string. 
The fitness of that string, however, is always 
defined with respect to other members of the current 
population. In the genetic algorithm, fitness is 
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defined by: fi /fA where fi is the evaluation 
associated with string i and fA is the average 
evaluation of all the strings in the population. 

Fitness can also be assigned based on a string's 
rank in the population or by sampling methods, such 
as tournament selection. The execution of the 
genetic algorithm is a two-stage process. It starts 
with the current population. Selection is applied to 
the current population to create an intermediate 
population. Then recombination and mutation are 
applied to the intermediate population to create the 
next population. The process of going from the 
current population to the next population constitutes 
one generation in the execution of the genetic 
algorithm [20]. 

The standard genetic algorithm can be 
represented as follows: 

 
Fig. 1: standard genetic algorithm 
In the first generation the current population is 

also the initial population. After calculating fi /fA for 
all the strings in the current population, selection is 
carried out. The probability that strings in the 
current population are copied (i.e. duplicated) and 
placed in the intermediate generation is in 
proportion to their fitness. 

Individuals are chosen using “stochastic 
sampling with replacement” to fill the intermediate 
population [21, 22]. A selection process that will 
more closely match the expected fitness values is 
“remainder stochastic sampling”. For each string i 
where fi /fA is greater than 1.0, the integer portion of 
this number indicates how many copies of that 
string are directly placed in the intermediate 
population. All strings (including those with fi /fA 
less than 1.0) then place additional copies in the 
intermediate population with a probability 
corresponding to the fractional portion of fi /fA. For 
example, a string with fi /fA = 1:36 places 1 copy in 
the intermediate population, and then receives a 
0:36 chance of placing a second copy. A string with 

a fitness of fi /fA = 0:54 has a 0:54 chance of placing 
one string in the intermediate population. 
Remainder stochastic sampling is most efficiently 
implemented using a method known as stochastic 
universal sampling. Assume that the population is 
laid out in random order as in a pie graph, where 
each individual is assigned space on the pie graph in 
proportion to fitness [23]. An outer roulette wheel is 
placed around the pie with N equally-spaced 
pointers. A single spin of the roulette wheel will 
now simultaneously pick all N members of the 
intermediate population. 

After selection has been carried out the 
construction of the intermediate population is 
complete and recombination can occur [24, 25]. 
This can be viewed as creating the next population 
from the intermediate population. Crossover is 
applied to randomly paired strings with a probability 
denoted pc. (The population should already be 
sufficiently shuffled by the random selection 
process.) Pick a pair of strings. With probability pc 
“recombine” these strings to form two new strings 
that are inserted into the next population. Consider 
the following binary string: 1101001100101101. 
The string would represent a possible solution to 
some parameter optimization problem. New sample 
points in the space are generated by recombining 
two parent strings. Consider this string 
1101001100101101 and another binary string, 
yxyyxyxxyyyxyxxy, in which the values 0 and 1 are 
denoted by x and y. Using a single randomly-chosen 
recombination point, 1-point crossover occurs as 
follows:  

11010 \/ 01100101101 
yxyyx /\ yxxyyyxyxxy 
Swapping the fragments between the two parents 

produces the following offspring: 
11010yxxyyyxyxxy and yxyyx01100101101 
After recombination, we can apply a mutation 

operator. For each bit in the population, mutate with 
some low probability pm. Typically the mutation rate 
is applied with 0.1%-1% probability. After the 
process of selection, recombination and mutation is 
complete, the next population can be evaluated. The 
process of valuation, selection, recombination and 
mutation forms one generation in the execution of 
the genetic algorithm. 

Lifeng Xi and Zhongdi Cen put forward to the 
thought of computing the Hausdorff measure of 
fractals using the genetic algorithm [26]. However, 
they didn’t continue to compute the Hausdorff 
measure aimed at certain a fractal. Under the 
direction of Lifeng Xi professor, we studied further 
how to compute the Hausdorff measure of the 
Sierpinski gasket with the genetic algorithm. The 
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more exact Hausdorff measure of the Sierpinski 
gasket with compression ratio 1/3 at present was 
obtained [27]. 

In this paper, we will mainly focus on how to use 
the genetic algorithm to compute the Hausdorff 
measure of the Sierpinski carpet with compression 
ratio 1/4. Section 2 outlines the Sierpinski carpet 
knowledge. Then we will discuss the encoding and 
decoding method, fitness computation in detail in 
Section 3. The experimental results and the future 
work will be given in Section 4. Finally, the 
summary will be given in Section 5. 
 
 
2 Sierpinski Carpet 
Take a unit square in the Euclidean plane R2 and 
denote it by F0. Dividing each side of F0 into four 
equal parts, sixteen equal small squares are got with 
length 1/4. Removing the interior of all small 
squares except for the four ones lying on the 
vertexes of F0, we get a set denoted by F1. If the 
above procedure is repeated for each small square in 
F1, the set F2 is obtained. Repeating the above 
procedure infinitely (such as Fig. 2), we have 

......10 mFFF ⊃⊃⊃ . The non-empty set  is 
called the Sierpinski carpet yielded by F0 [26- 28]. 

mm FF ∞
=∩= 0

     Fig. 2: the structure of the Sierpinski carpet 
By [1, 3], the Hausdorff dimension s of F is 1, 

and the Hausdorff measure H(F) of F meets the 
following condition [29, 30], 
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4/)(1 xxS =  
)0,4/3(4/)(2 += xxS  

)4/3,4/3(4/)(3 += xxS  
)4/3,0(4/)(4 += xxS  

and , = {U | U 

is a union of some small squares  in the m-th 
structure} 

)(... 0... 2121
FSSSF

mm iiiiii ooo=

iiF ...21

mF ′

mi

 
 
3 Realization of Genetic Algorithm 
 
 

3.1 individual coding 
Before the genetic algorithm can be run, a suitable 
coding (or representation) for the problem must be 
devised. We also require a fitness function, which 
assigns a figure of merit to each coded solution. 
During the run, parents must be selected for 
reproduction, and recombined to generate offspring. 

It is assumed that a potential solution to a 
problem may be represented as a set of parameters. 
These parameters (known as genes) are joined 
together to form a string of values (often referred to 
as a chromosome). For example, if our problem is to 
maximise a function of three variables F(x; y; z), we 
might represent each variable by a 10-bit binary 
number (suitably scaled). Our chromosome would 
therefore contain three genes, and consist of 30 
binary digits. The set of parameters represented by a 
particular chromosome is referred to as a genotype. 
The genotype contains the information required to 
construct an organism which is referred to as the 
phenotype [31, 32]. For example, in a bridge design 
task, the set of parameters specifying a particular 
design is the genotype, while the finished 
construction is the phenotype. 

The fitness of an individual depends on the 
performance of the phenotype. This can be inferred 
from the genotype. It can be computed from the 
chromosome using the fitness function. Assuming 
the interaction between parameters is nonlinear, the 
size of the search space is related to the number of 
bits used in the problem encoding. For a bit string 
encoding of length L; the size of the search space is 
2L and forms a hypercube. The genetic algorithm 
samples the corners of this L-dimensional 
hypercube. Generally, most test functions are at 
least 30 bits in length; anything much smaller 
represents a space which can be enumerated. 
Obviously, the expression 2L grows exponentially. 
As long as the number of “good solutions” to a 
problem is sparse with respect to the size of the 
search space, then random search or search by 
enumeration of a large search space is not a 
practical form of problem solving. On the other 
hand, any search other than random search imposes 
some bias in terms of how it looks for better 
solutions and where it looks in the search space. 

With the wide application of genetic algorithm, 
many coding methods are put forward. There are 
three kinds binary coding method, float coding 
method, symbol coding method. Binary coding 
method is the most familiar coding method that an 
individual is made of some 0 or 1. Binary coding 
has the advantage [9, 17, 33]. It is the advantage that 
coding and decoding is easy to operate. The other 
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advantage is that the implement of the genetic 
operation is easy. 

During the process of calculating the Hausdorff 
measure, the method of binary code with fixed 
length is used. The encoding method is as follows: if 

 is contained in the set , then its 
corresponding code is 1, otherwise its corresponding 
code is 0. In this way, a code list of 4m length can 
show whether each one of the 4m equal small squares 
in the m-th structure is chosen or not. In order to 
solve the problem easily, the origin is regarded as 
the starting point here, and every small square is 
encoded according to the anticlockwise order. 

miiiF ...21

'
mFU ∈

Now let’s state the detail encoding method with 
the second structure. In the second structure, there 
are 42=16 equal small squares altogether. If we 
regard the origin as the starting point and encode 
every one according to the anticlockwise order, the 
marks of the 16 squares are as shown in Fig. 3. We 
choose every one of the 16 squares one by one 
according to their marks from small to large. If a 
square is chosen, we use 1 to represent on the 
corresponding position of the individual code, 
otherwise use 0. For example, 1001 0010 0100 0000 
represents that four squares of the 16 squares in the 
second structure are chosen and their marks are 1, 4, 
7 and 10 respectively (such as Fig. 3). 

 
Fig. 3: small squares of the second structure 

 
 
3.2 generation of initial population 
The population is the foundation of evolution of the 
genetic algorithm. The character of the population 
decides the search capability of the genetic 
algorithm. And the astringency of the genetic 
algorithm is determined by the astringency of the 
population [9, 31]. During the calculation of the 
Hausdorff measure, individuals of initial population 
are randomly generated by the system. 
 
 
3.3 decoding 
During the calculation of the Hausdorff measure, an 
individual represents a choice. Then it is the 
decoding method that any binary digit 1 of the 
individual represents which of the 4m equal small 

squares is chosen, namely that the corresponding 
small square is the result which functions act on F0. 
The detail of decoding is as follows: 

(1) Firstly, divide the whole code into four equal 
length groups, every small square that is represented 
by 0 or 1 in the first group is inside the square S1(F0), 
and every small square that is represented by 0 or 1 
in the second group is inside the square S2(F0), and 
every small square that is represented by 0 or 1 in 
the third group is inside the square S3(F0), and every 
small square that is represented by 0 or 1 in the forth 
group is inside the square S4(F0). 

(2) Secondly, respectively divide every group 
above into four equal length groups, every small 
square that is represented by 0 or 1 in the first group 
of every group above is respectively inside the 
square S1 S1(F0) and S1 S2(F0) and S1 o S3(F0) and 
S1 S4(F0), and every small square that is 
represented by 0 or 1 in the second group of every 
group above is respectively inside the square S2o S1 
(F0) and S2 S2(F0) and S2 S3(F0) and S2 S4(F0), 
and the rest may be deduced by analogy. 

o o
o

o o o

(3) Finally, continue dividing every group of the 
second step into four equal length groups until there 
is only one digit 0 or 1 in every group. 

Now let’s state the detail decoding method with 
the third structure. In the third structure, there are 
43=64 equal small squares altogether. For the 
individual 0100 0110 0000 0000 0010 0000 0011 
0000 0000 0000 0101 0000 0010 0000 0010 1100, it 
is obvious that the corresponding small square 
represented by every 1 of the individual is the result 
which functions act on F0 through the following step. 

(1) Divide the whole code into four equal length 
groups, the following four groups can be obtained. 

0100 0110 0000 0000 
0010 0000 0011 0000 
0000 0000 0101 0000 
0010 0000 0010 1100 
Every small square that is represented by 0 or 1 

in the first group 0100 0110 0000 0000 is inside the 
square S1(F0). Every small square in the second 
group 0010 0000 0011 0000 is inside the square 
S2(F0). Every small square in the third group 0000 
0000 0101 0000 is inside the square S3(F0). Every 
small square in the forth group 0010 0000 0010 
1100 is inside the square S4(F0). 

(2) Respectively divide every group above into 
four equal length groups, the following sixteen 
groups are obtained. 

For the first group of the first step, there are four 
groups following. 

0100 
0110 
0000 
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0000 
Every small square that is represented by 0 or 1 

in the first group 0100 is inside the square S1 S1(F0). 
Every small square in the second group 0110 is 
inside the square S1 o S2(F0). Every small square in 
the third group 0000 is inside the square S1 S3(F0). 
Every small square in the forth group 0000 is inside 
the square S1 S4(F0). 

o

o

o
For the second group the first step, there are four 

groups following. 
0010 
0000 
0011 
0000 
Every small square that is represented by 0 or 1 

in the first group 0010 is inside the square S2 S1(F0). 
Every small square in the second group 0000 is 
inside the square S2 o S2(F0). Every small square in 
the third group 0011 is inside the square S2 S3(F0). 
Every small square in the forth group 0000 is inside 
the square S2 S4(F0). 

o

o

o
For the third group of the first step, there are four 

groups following. 
0000 
0000 
0101 
0000 
Every small square that is represented by 0 or 1 

in the first group 0000 is inside the square S3 S1(F0). 
Every small square in the second group 0000 is 
inside the square S3 o S2(F0). Every small square in 
the third group 0101 is inside the square S3 S3(F0). 
Every small square in the forth group 0000 is inside 
the square S3 S4(F0). 

o

o

o
For the forth group of the first step, there are four 

groups following. 
0010 
0000 
0010 
1100 
Every small square that is represented by 0 or 1 

in the first group 0010 is inside the square S4 S1(F0). 
Every small square in the second group 0000 is 
inside the square S4 o S2(F0). Every small square in 
the third group 0001 is inside the square S4 S3(F0). 
Every small square in the forth group 1100 is inside 
the square S4 S4(F0). 

o

o

o
(3) Continue dividing every group of the second 

step into four equal length groups until there is only 
one digit 0 or 1 in every group. The small square 
represented by 1 of the individual 0100 0110 0000 
0000 0010 0000 0011 0000 0000 0000 0101 0000 
0010 0000 0010 1100 is S2 S1 S1(F0), 
S2 S2 S1(F0), S3 S2 S1(F0), S3 S1 S2(F0), 

S3 S3 S2(F0), S4 S3 S2(F0), S2 S3 S3(F0), 
S2 S4o S4(F0) respectively from left to right. 

o o
oo o o o o

o
o

o o o o o

The following is the detail programming code to 
realize decoding with C programming language [34, 
35, 36]. 

k=0;  l=j; 
for (r=m; r>0; r=r-1) 
{ 
p=pow(4,r); 
l=l%p; 
if ( l<0.25*p) { func[k]='a'; } 
else  if (l<0.5*p) { func[k]='b';} 
else  if(l<0.75*p) {func[k]='c';} 
else  if (l<p) { func[k]='d';} 
k=k+1; 
} 
REMARK 1 Variable j is used to keep the j-th 

figure of an individual code. 
REMARK 2 In the whole programming code, 

variable m expresses the m-th construction during 
the generation of Sierpinski carpet. 

REMARK 3 Array func[m] is used to keep the m 
functions that act on the unit square F0. 

REMARK 4 In the programming code, ‘a’ 
expresses the function S1, ‘b’ expresses the function 
S2, ‘c’ expresses the function S3, and ‘d’ expresses 
the function S4. 
 
 
3.4 Fitness evaluation 
Once initial individuals are randomly generated 
according to the way mentioned above, we then 
have to optimize the individuals to obtain the best 
results. Therefore, a numerical fitness function is 
needed in order to quantitatively evaluate the 
suitability of each individual. In the genetic 
algorithm, the goodness and badness of an 
individual is distinguished by individual fitness. The 
good individuals are selected by individual fitness, 
and preserved in the next generation, so that more 
and more good individuals generate in the next 
generation. During the calculation using the genetic 
algorithm, fitness function influences on astringency 
of the genetic algorithm and the pace of 
constringency [37-39]. 

Here fitness function is F(U)= μ (U)/|U|, then 
finding minimum value is transformed into finding 
maximum value, where μ (U) represents the value 
of dividing the number of 1’s in the individual code 
by 4m, and |U| represents the maximum distance of 
two random vertexes of eight vertexes of two 
random small squares. In order to calculate the 
maximum distance of any set U, a construction 
function series of every square in U must be found 
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first, and then the coordinates of all vertexes of all 
small squares in U can be calculated. 

Step 1 Calculate the coordinates of all vertexes 
of all small squares. The detail calculation is as 
follows. 

(1) Work out the construction function series of 
all small squares as introduced above. 

(2) Calculate the coordinates of the left bottom 
vertex of all small squares. The detail is as follows. 

Suppose A, B, C and D are four equal small 
squares in the m-th structure, and they are inside the 
square E that is one of the squares in the (m-1)-th 
structure (such as Fig. 4). If the coordinates of the 
left bottom vertex of the square E is (x0, y0), the 
coordinates of the left bottom vertex of small 
squares A, B, C and D are listed as follows: 

)*4/3,0(),(),(
)*4/3,*4/3(),(),(

)0,*4/3(),(),(
),(),(

00

00

00

00

lyxyx
llyxyx

lyxyx
yxyx

DD

CC

BB

AA

+=
+=
+=

=

 
Where l represents the length of the side of the 

square E, and l=1/4m-1. 

 
Fig. 4: square E and four small squares of the 

next structure 
Suppose the corresponding functions of any a 

small square are in the array variable func[m]. The 
following programming code can calculate the 
coordinates of the left bottom vertex of the small 
square. 

double **loc; 
loc=(double**)malloc(sizeof(double*)*4* 

chromlength); 
for(i=0;i<4*chromlength;i++) 
loc[i]=(double*)malloc(sizeof(double)*2); 
for (k=0;k<m;k++) 
{ 
  pw=1/pow(4, k); 
  switch  (func[k]) 
case 'a': 
{ 
  loc[line][0]=loc[line][0]; 
  loc[line][1]=loc[line][1]; 
  break; 
} 
case 'b': 

{ 
  loc[line][0]=loc[line][0]+0.75*pw; 
  loc[line][1]= loc[line][1]; 
  break; 
} 
case  'c': 
{  
  loc[line][0]=loc[line][0]+0.75*pw; 
  loc[line][1]= loc[line][1]+ 0.75*pw; 
  break; 
} 
case 'd': 
{ 
  loc[line][0]=loc[line][0]; 
  loc[line][1]= loc[line][1]+ 0.75*pw; 
  break; 
} 
} 
REMARK 5 In the whole paper, variable loc is an 

array that is used to preserve the vertexes of small 
squares. 

REMARK 6 In the whole paper, variable 
chromlength is used to preserve the length of 
individual code. 

(3) Calculate the coordinates of the other 
vertexes of all small squares. The detail is as follows: 
If a small square is one of squares in the m-th 
structure and the coordinates of the left bottom 
vertex is (x, y), the coordinates of other vertexes in 
anticlockwise order are the following: 

(x, y) + (1/4m, 0) 
(x, y) + (1/4m, 1/4m) 
(x, y) + (0, 1/4m) 
The detail programming code is following. 
x= loc[line][0]; 
y= loc[line][1]; 
pw=1/pow(4,m); 
for ( k=2 ; k< 5; k++) 
{ 
  line=line+1; 
  switch (k) 
  case 2: 
{ 
  loc[line][0]=x+pw; 
  loc[line][1]= y ; 
  break; 
} 
case 3: 
{ 
  loc[line][0]=x+pw; 
  loc[line][1]=y+pw; 
break;  
} 
case 4: 
{ 
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loc[line][0]= x; 
loc[line][1]=y+pw; 
break; 
} 
} 
Step 2 Calculate the individual fitness. 
(1) Find the coordinates of the small squares 

chosen in the current individual according to the 
result of step 1. 

(2) Calculate the diameter |U| and the number of 
1’s in the individual code. 

(3) Calculate the corresponding fitness. 
The detail programming code is following. 
if (num==0)   popfitness[i]= 0; 
else 
{ 
  for (j=0 ; j< line ; j++) 
    for (k=j+1 ; k<= line ; k++) 
    { 
      x1=loc[j][0]; 
      x2=loc[k][0]; 
y1=loc[j][1]; 
y2= loc[k][1]; 
s=sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2)); 
if (s>diameter)   diameter=s; 
} 
popfitness[i]= num/(diameter*chromlength); 
} 
REMARK 7 Variable num is used to preserve the 

1’s number of an individual. 
REMARK 8 Variable popfitness is an array that is 

used to preserve individual fitness. 
 
 

3.5 Genetic operations 
Characteristic of the genetic algorithm is that the 
imitating of the selection, crossover and mutation of 
biology inheritance and evolution obtains the best 
solution of problem. The selection, crossover and 
mutation processes are the most important parts of 
the genetic algorithm. 

 
3.5.1 Selection 
This operator selects chromosomes in the population 
for reproduction. The fitter the chromosome, the 
more times it is likely to be selected to reproduce. 
Selection embodies the theory of survival of the 
fittest. The evaluation of individuals is the basis of 
the selection operation. The purpose of selection is 
to improve the astringency and the computation 
efficiency. The familiar selection operators are 
proportion selection, preserving the best individual, 
expectation selection. Proportion selection is the 
basal and common selection operation. The standard 
genetic algorithm uses proportion selection. But the 

standard genetic algorithm has no astringency [40]. 
The selection of preserving the best individual is 
used in order to obtain the best solution of problem. 
The selection of preserving the best individual can 
guarantee that the individual with the biggest fitness 
appearing while the implement of the genetic 
algorithm can be preserved [41]. 

 
3.5.2 Crossover 
This operator exchanges subsequence of two 
chromosomes to create two offspring. For example, 
the strings 10000100 and 11111111 could be 
crossed over after the third locus in each to produce 
the two offspring 10011111 and 11100100. 

Crossover operator is the most important 
operation of genetic operation in the genetic 
algorithm. Crossover operation is the main method 
to generate the new individual. Crossover operation 
decides the whole search capability of the genetic 
algorithm. The search capability of the genetic 
algorithm is improved rapidly. The familiar 
crossover operators are one-point crossover, two-
point crossover and multi-point crossover. The 
traditional genetic algorithm uses 1-point crossover, 
where the two mating chromosomes are each cut 
once at corresponding points, and the sections after 
the cuts exchanged. However, many different 
crossover algorithms have been devised, often 
involving more than one cut point. DeJong 
investigated the effectiveness of multiple-point 
crossover, and concluded that 2-point crossover 
gives an improvement, but that adding further 
crossover points reduces the performance of the 
genetic algorithm. The problem with adding 
additional crossover points is that building blocks 
are more likely to be disrupted. However, an 
advantage of having more crossover points is that 
the problem space may be searched more 
thoroughly. 

During the calculation of the Hausdorff measure, 
we use the three crossover above. At the same time, 
we seek after a new crossover operation “and / or” 
crossover [42-44]. “And / or” crossover displays the 
more excellent capability. The detail realization is 
following. 

(1) Select two individuals F1 and F2. 
(2) Generate a new individual with “and” 

Boolean calculation on F1 and F2. 
(3) Generate a new individual with “or” Boolean 

calculation on F1 and F2. 
The detail programming code is the following. 
for (i=0;i<popsize-1;i=i+2) 
{ 
  p=rand()%1000/1000.0; 
  if (p<pc) 
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  for (j=0;j<chromlength;j++) 
{  
  pop[i][j]=pop[i][j] && pop[i+1][j]; 
pop[i+1][j]=pop[i][j] || pop[i+1][j]; 
} 
} 
 

3.5.2 Mutation 
Mutation is traditionally seen as a “background” 
operator, responsible for re-introducing 
inadvertently “lost” gene values (alleles), preventing 
genetic drift, and providing a small element of 
random search in the vicinity of the population 
when it has largely converged. It is generally held 
that crossover is the main force leading to a 
thorough search of the problem space. 

This operator randomly flips some bits in a 
chromosome. For example, the string 00000100 
might be mutated in its second position to yield 
01000100. Mutation can occur at each bit position 
in a string with some probability, usually very small 
(e.g., 0.001). 

The advantage of mutation operation is the 
following [45]. One is to improve the local search 
capability. The other is to maintain the diversity of 
population and to prevent pre-maturation. 

During the calculation of the Hausdorff measure, 
we mainly use gene mutation. 

 
 

4 Experimental Results and Analysis 
During the calculation of the Hausdorrf measure, the 
values of the key parameters are the following. The 
crossover probability pc=0.9, the mutation 
probability pm=0.001, the population size 
popsize=50, the generation number gen=100. 
According to above-mentioned ideas, we have 
developed the whole programming code. The result 
of the experiment is what Table 1 shows. 

Table 1: values of H (F) 

m H(F) computation times 
(unit: second) 

1 1.41421 1 
2 1.41421 1 
3 1.41421 1 
4 1.41421 3 
5 1.41421 120 
6 1.41421 21106 
7 1.41421 4200658 

From Table 1, we can conclude that the 
Hausdorff measure of the Sierpinski carpet with 
compression ratio 1/4 H (F) =1.41421. Obviously, 
the result is uniform with the result of the 30th 

reference [30]. At the same time, the experimental 
results have proved further that the exact Hausdorff 
measure of the Sierpinski carpet with compression 
ratio 1/4 is 1.41421. 

It can be seen easily that the Hausdorff measure 
can be obtained quickly when m≤6 from Table 1. 
But when m>6, the calculating time increases 
sharply. During the experiment, we found that much 
time is spent on calculating the fitness. Therefore, 
the future work is to improve the method of 
calculating the fitness further. 

 
 

5 Summary 
It is noticed that the search space expands rapidly 
with the increase of times of recursions due to the 
structure of fractals. So far it is hard to calculate the 
exact value of Hausdorff measure by computer. 
Therefore, it seems necessary to find an effective 
algorithm to calculate or estimate the Hausdorff 
measure. The major advantage of the genetic 
algorithm is the flexibility and robustness as a 
global search method. They can deal with highly 
nonlinear problems and non-differentiable functions 
as well as functions with multiple local optima. In 
fact, the above experiment has proved that genetic 
algorithm is a kind of effective method to calculate 
or estimate the Hausdorff measures at present. 
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