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Abstract: - Importance sampling methods of wavelet products can deal with some direct rendering applications 
with only two functions. For multiple functions sampling that are more useful in global rendering, we present a 
wavelet-based factor method to simplify multiple function integral into triple function product issues. Then an 
optimal wavelet product representation is introduced. Major algorithms with pseudo code are in detail to reduce 
computation by a strategy for hierarchically sampling a wavelet tree. 
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1 Introduction 
Many interesting developments have occurred in the 
field of realistic rendering. Many researchers have 
worked to develop realistic rendering algorithms 
that can run efficiently in arbitrarily complex scenes 
[1][2]. The use of a good sampling strategy for 
illumination is critical when integrating image-
based lighting, such as environment maps, into a 
rendering system [3]. The problem of efficient 
sampling of the illumination is compounded when 
the scene contains materials with high frequency 
BRDFs [4][5]. High fidelity images based on a 
whole range of reflection phenomena described by 
the rendering equation often take hours or days to 
compute [6].  

The performance can be improved if we 
incorporate knowledge about the function being 
integrated into the sampling process. The idea is to 
concentrate samples to parts of the function where it 
is likely to be large. This technique is called 
importance sampling, and can vastly reduce the 
variance in Monte Carlo techniques [7]. 

Several researchers have recently worked on this 
problem, by either combining samples drawn 
independently according to the importance of the 
illumination and the BRDF [8][9], or more recently, 
by drawing samples from the product distribution of 
the illumination and the BRDF [10]. These 
approaches produce high quality images with a 
small number of samples in unoccluded regions.  

Light source sampling and BRDF sampling. 
Many importance sampling techniques for direct 
lighting concentrate on either sampling the light 
source or the BRDF. For example, Burke [11] 
described two methods to distribute samples 

according to the brightness of an environment map, 
based on cdf inversion and the alias method. Other 
research has tackled direct lighting from 
environment maps by approximating the 
illumination with a set of point lights (sampling 
directions) [12] [13]. More recently, Debevec  
presented a simple technique to generate point lights 
to approximate environment lighting using a 
summed area table of the environment map [14]. 
Our algorithm also uses a summed area table, but 
we are able to approximate the product distribution, 
not just the incident light term.  

Methods that generate samples based solely on 
illumination do not work well for highly specula  
surfaces. In many situations it is more efficient to 
sample according to the BRDF function rather than 
the incident illumination. Some analytical BRDFs 
can be directly importance sampled, including the 
Blinn model [1], the Ward model [15], the 
Lafortune model [16], and the Ashikhmin model 
[17]. Besides analytical BRDFs, importance 
sampling can be employed with sampled BRDFs. 
Lawrence, Rusinkiewicz and Ramamoorthi [18] 
described a factored, tabular representation for 
BRDFs that is both compact and amenable to 
importance sampling. Other new intelligent way 
also developed in sampling way by Teh, C. S. [19]. 

Sampling a product distribution. Sampling 
according to one of the terms of the lighting 
equation can reduce variance, but it is more 
advantageous to generate samples based on all of 
the terms, rather than just one. Multiple importance 
sampling (MIS) can sample the BRDF and lighting 
simultaneously, but the resulting distribution is 
more akin to the average of the terms rather than the 
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product [20]. Ideally, an importance sampling 
algorithm should be able to generate samples 
according to the product distribution. 

Burke, Ghosh and Heidrich [5] described a 
technique called bidirectional importance sampling 
(BIS) that can sample the product of an environment 
map and the BRDF, based on rejection sampling. 
The rejection sampling can be costly, however, and 
requires an unknown number of tries to produce 
samples from the product distribution. A second 
form of BIS that can produce samples in a 
deterministic amount of time replaces rejection 
sampling with re-sampling, but the resulting 
samples are only approximately distributed 
according to the product. Talbot, Cline and Egbert 
[21] generalized this second form of BIS, placing it 
into the more general category of resampled 
importance sampling (RIS). Resampling methods 
can also be costly, however, since they rely on 
taking a large number of tentative samples, most of 
which will be discarded. 

Direct rendering applications with wavelet 
sampling. Recently, Clarberg et al. [22] presented 
an algorithm called Wavelet Importance Sampling 
(WaIS) that samples products of wavelet functions. 
Their algorithm uses a property of wavelets that 
allows a wavelet product to be evaluated in a top-
down fashion. However, WaIS addressed only 
aspects of direct illumination and static ones.  
Prayoth K. and Kitti A.[23] studied the 
comparative performance of multiwavelet-
based image watermaking schemes. 

Sun, W. [24] designed an interactive lighting 
design system, providing real-time feedback with 
realistic all-frequency shadows for dynamic glossy 
objects. Their system supports interactive 
manipulation of objects (such as cloning, translating 
and scaling) with all-frequency shadows. The 
systemalso allows the designer to adjust 
environment lighting and change view conditions. 
The system captures all-frequency view-dependent 
lighting effects, such as intricate cast shadows from 
neighboring objects and specular highlights. Their 
approach is based on the pre-computed information 
of individual scene entities, and is not limited to the  
pre-animated models. The approach is flexible.  

Discussion. Among these techniques, wavelets 
sampling exhibit most of the required features. 
Indeed, an interesting property is the compact 
support of most wavelets, leading to a fast local 
reconstruction (logarithmic time according to the 
number of samples). The discrete wavelet transform 
produces the same number of coefficients as 
samples in the original dataset, but many of them 
are close to zero. Flexible lossy compression is 

obtained by zeroing those that are below a certain 
threshold. At last, wavelets can handle all-frequency 
lighting and shadowing effects. For these reasons 
we propose a optimized way for wavelet production 
sampling for and implement the reconstruction and 
filtering stages on the fragment processor of GPU, 
hence providing BRDF-based local illumination 
with both high-quality and real-time rendering. We 
also profit from the multi-resolution (reconstruction 
at different levels of accuracy) . 

Our contribution. In this paper, we represented 
an improvement of WaIS for real-time rendering 
with dynamic objects under global illumination 
(situation as figure 1c). We explicitly incorporate 
dynamic occlusions into the shading integral to 
account for cast shadows from neighboring objects. 
At each vertex, shading is formulated as the product 
integral of multiple functions, involving the lighting, 
BRDF, local visibility and global occlusions. We 
show that multi-function product integral in the 
primal corresponds to the summation of the product 
of integral coefficients and basis coefficients. The 
major contribution of our work is efficiently 
integrating the product of n functions (n > 3). In the 
paper, we employee a novel generalized Haar 
integral coefficient theorem to evaluate arbitrary 
Haar integral coefficients, which work together with 
the wavelet importance sampling to render dynamic 
global objects efficiently. 

 
 

2 Product importance sampling for 
direct rendering 
 
 
2.1 Global illumination rendering equation 
As Kajiya described [6], high fidelity images based 
on a whole range of reflection phenomena described 
by the rendering equation as:  

iiiioiroeoo dxLxfxLxL ωθωωωωω
rrrrrr )cos(),(),,(),(),( ∫

Ω

+= (1) 

The equation can be split into several 
components:  

),(),(),(),( oeoeoeoo xLxLxLxL ωωωω
rrrr

++=    (2) 
where Ldir is the direct illumination, Lind is the 

indirect illumination, and Le is the self-emitted 
radiance. 

 
 

2.2 Monte Carlo integration and sampling 
A common approach to evaluate the global lighting 
equation (1) is to use Monte Carlo integration, 
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which replaces the continuous integral with the 
average of N Monte Carlo samples. 

Monte Carlo integration is a probabilistic method 
for integrating difficult functions. It is commonly 
used in Global Illumination, in preference to more 
standard integration techniques like numerical 
quadrature, due to its generality, ease of use, and 
robustness in high dimensions and to discontinuous 
functions. 

Monte Carlo integration is based on the fact that 
the integral of f can be approximated with the 
following estimator: 

 ∑∫
=Ω

≈
N

i i

i

xq
xf

N
df

1 )(
)(1)( ωω                         (3) 

where the samples {x1, ..., xN} are drawn from 
the sampling distribution with pdf (probability 
density function) q [7]. Note that q must be 
normalized. This estimator provides an unbiased 
estimate of the integral. Also, the estimator works 
for general, non-continuous, high dimensional 
integrals. It only requires that f be evaluated. This 
generality makes Monte Carlo integration ideal for 
Global Illumination where the integrands are seldom 
well-behaved and are almost always high-
dimensional. 

The variance of the Monte Carlo integration 
estimator is  
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we see that the variance of the Monte Carlo 

integration estimator is dependent on the variance of 
the ratio )()( ωω qf .  

If the variance of this ratio can be decreased, the 
overall variance can be reduced without increasing 
the number of samples. 

Importance sampling refers to the technique of 
choosing the sampling distribution q to minimize 
the variance of the ratio. Ideally, if , then the 
ratio is a constant for all w. In this case, the variance 
is zero and there is no error in the estimate. 
Unfortunately, finding such a q is typically 
impractical, since it requires integrating f, which is 
the very problem we are trying to solve. Instead, we 
try to find a sampling distribution that mimics f. We 
are greatly limited in our choices of distributions 
since the distribution must be normalized and it 
must be easy to generate samples from the 
distribution. 

fq ∝

Although importance sampling can achieve 
remarkable results, it suffers from a major 
shortcoming: the sampling density, q, must be 
chosen specifically for each f. This means that, 

according to our definition, importance sampling is 
not robust enough. 

 
 

2.3 Direct illumination and BRDF  
Here, the direct illumination is given by the integral: 

∫
Ω

= iiiioir

odir
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xL

ωθωωωω

ω
rrrrr

r
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(5) 
where the incident radiance, ),( ixL ω

r
, is 

provided by light sources in the scene, and ), i(v x ω
r

 
is the visibility of a light source in direction iω

r
. In 

order to apply realistic lighting to a virtual scene, it 
is common to capture real lighting in a high-
dynamic range environment map [25], and use that 
for L during rendering. 

Fig. 1: The bidirectional reflectance distribution 
function (BRDF) describes the ratio of outgoing 
radiance to incident radiance (irradiance).  

In order to deal with the direct illumination items 
in equation (1), the BRDF (bidirectional reflectance 
distribution function) was first formally defined by 
Nicodemus et al. [34]. The  BRDF characterizes the 
reflection of light on a surface. In radiometric terms, 
the BRDF is the surface radiance divided by the 
surface irradiance, i.e., the incident light flux per 
unit illuminated surface area: 
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Where x  is the surface position, iω
r is 

theincident direction, oω
r

 is the outgoing (viewing) 
direction, ), ix(iL ω

r
 is outgoing radiance, and 

),( oo xL ω
r  is incident radiance (irradiance). See 

Fig.1 for an illustration.  
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Theoretically, the BRDF ),,( oir xf ωω
rr

(i

 also 
depends on other variables such as wavelength and 
polarization of the light, but we are usually 
considering only unpolarized light of one specific 
wavelength at the time. Therefore, the BRDF can be 
written as a four-dimensional function. The function 
is typically parameterized over the spherical 
coordinates for the incident direction ), ii ϕθω =

r

)o

 
and outgoing direction ,( oo ϕθω =

r
. 

 
 

2.4 Product importance sampling estimator 
Many importance sampling techniques for direct 
lighting concentrate on either sampling the light 
source or the BRDF. BRDF importance sampling is 
better suited for specular materials, while 
environment map importance sampling is better for 
diffuser BRDFs. 

To address this problem, Veach and Guibas [3] 
presented a novel technique for combining 
estimators in Monte Carlo methods using multiple 
importance sampling, which is a powerful method 
for the case where either the lighting or the BRDF is 
complex, as it will pick the best of the available 
sampling techniques. However, when both the 
lighting and the BRDF are complicated, their 
technique provides a smaller advantage. Burke et al. 
[5] introduced a technique for rendering objects 
with complex materials illuminated by an 
environment map. 

In their work, the aim is to perform importance 
sampling using the product of the incident light 
distribution and the BRDF as the importance 
function: 

∫
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Observe that the normalization term in the 
denominator is the direct illumination integral with 
the visibility term )( iv ω

r
 omitted. In other words, 

this term is the exitant radiance in the absence of 
shadows. Burke et al. refer to it as Lns : radiance, no 
shadows.: 
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If sample directions are drawn according to 
the product distribution in Equation 8, then Equation 
7 can be used to estimat 
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)(, opNL ω
r

 is referred to as the bidirectional 
estimator for the direct illumination integral.  

 
Fig.2: Dragon model in an indoor HDR EM. Left: 

Importance sampling from BDRF, 200 
samples/pixel. Right: Bidirectional importance 
sampling. 

As showed in Fig.2, note that the variance of the 
bidirectional estimator for the reflected radiance is 
proportional to the variance in the visibility 
function, Njp i

j
i ,...,1),()( =∝ ωω

rr
. This is an 

improvement over sampling techniques that only 
consider either the illumination or the BRDF in the 
sampling process. This is because the variance of 
these techniques depends in addition on the variance 
in the function that they do not sample from, BRDF 
or illumination respectively. 

 
 

3 Factoring of multifunction product 
integral for dynamic rendering 
Although the previous works on above 
described techniques improved the static 
rendering a lot, it is more practical to deal with 
dynamic rendering situations such as much 
more objects in the environment, various lights , 
even just positional changes of the same object 
in the same scene.  

 
 

3.1 Multi-function product integral  
Consider equation 5 as the situation with only on 
static object, then given n distinct objects in a 
dynamic scene, the exitant radiance B at a surface 
point x along view direction θ due to distant 
environment lighting L is the product integral over 
all incident directions sampled at a surrounding 
cubemap [24]: 

WSEAS TRANSACTIONS on SYSTEMS Zhongwei Chen, Kun Gao and
 Guowei Huang

ISSN: 1109-2777 540 Issue 5, Volume 7, May 2008



∫ ∏

∫ ∏

Ω =

Ω =

=

⋅=

ioir

n

j
ijii

iioir

n

j
ijii

o

dxfxvxvL

dNxfxvxvL

xB

ωωωωωω

ωωωωωωω

ω

rrrrrr

rrrrrrrr

r

),,(),(~),(~)(

))(,,(),(),()(

),(

2
1

2
1        (10) 

Where iω
r

 is the incident direction, N is the 
normal at x, fr is the BRDF, v1 is the local visibility 
at x due to self-occlusion. vi(2≤j≤n) is the dynamic 
occlusion at x occluded by the j

th 
neighboring object 

in the scene. In order to eliminate the dependance of 
the BRDF on the normal, the cosine term 

r

(N )iω
rr

⋅  

is combined with the self visibility v1 as 1
~v  as: 
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For a fixed vertex x and view direction oω
r

, 
equation (10) can be simplified as: 
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It is exactly the product integral of (n+2) 
functions : 
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where )( ijL ω
r  is described in equation 5. 

 
 

3.2 Factoring for dynamic radiance transfer 
For dynamic radiance transferring, an effective 
approach to accelerating the evaluation of equation 
(12) is stated as follows: 
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where the radiance transfer vector T is the 
product of n+1 functions as: 
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If L1, L2, · · ·, Ln+1 are fixed, in other words, only 
Ln+2 varies (i.e., dynamic instead of static), radiance 
transfer vector T needs to be computed only once. 
Therefore, shading integral reduces to a simple 
double function product integral of T and Ln+2, 
which can be approximated by the wavelet 
importance sampling method. Here we assume that 
only one function in the shading integral varies. 
This assumption is reasonable for lighting design 

systems, where normally the designer adjusts only 
one variable at a time, and real-time feedback is 
highly appreciated. For example, the designer may 
experiment with different lighting effects by fixing 
view conditions and objects. The designer may also 
render the scene from different view conditions by 
fixing the lighting and the objects. Another popular 
operation is to fix the lighting and view conditions, 
and relocate a single object in the scene. As long as 
there is only one (note that it can be any one) 
varying parameter, this approach can be used to 
generate all-frequency shadows in real-time. 

In equation (4), the product of n+2 functions is 
factored into the product of two sets, one with n+1 
functions, and the other with only one function. 
More generally, this factorization has the following 
form: 
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As a result, the product of n+2 functions reduces 
to the double function product integral of two 
radiance transfer vectors. 

Once factoring possible, we can use all previous 
works on importance sampling of double functions 
integral to dynamic rendering. This is our first 
contribution. 

In our work, the wavelet ways are selected and 
improved to supply the efficient computing of real 
dynamic rendering. And that is the second 
contribution described in next section. 

 
 

4 Optimal product importance 
sampling with wavelet 
We focus on the efficient computation of the multi-
function product integral and the product of multiple 
functions now. For this purpose, we choose Haar 
bases as the basis set B. 

Compared with the pixel domain representation, 
wavelets allow us to approximate signals at low 
distortion with a small number of significant 
coefficients. Haar bases have an interesting property 
that simplifies the computation as many of the 
integral coefficients are zero [26].  

 
 

4.1 2D Haar bases 
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Nonstandard Haar wavelet transform decomposes a 
2n×2n image into a 2D signal with 2n×2n coefficients. 
In each region <j, k, l>, four normalized 2D Haar 
basis functions are defined: 

j
tt 21 ,φ  as normalized Haar scaling basis function: 

)2,2(2),( 21
0

, 21
tytxyx jjjj

tt −−= φφ  

where  is the mother scaling function. 0φ
j

t1 ,t2
ψ  as normalized Haar wavelet basis function. 

There are three types of wavelets defined in the 
region <j, k, l>: 

3,2,1),2,2(2),( 21
0

,, 21
=−−= mtytxyx jj

m
jj

ttm ψψ

     where 3,2,1,0 =mmψ , are three different mother 
wavelets, denoting the horizontal, vertical and 
diagonal differences [27]. 

0φ =    0
1ψ =     0

2ψ =     0
3ψ =  

Fig.3: The mother scaling function and the three 
mother wavelet functions.  

A two-dimensional image can be further 
expressed as a sum of the first scaling function plus 
the wavelet functions as: 

∑∑∑ ∑
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0
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m
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m
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Here, set vector t= (t1, t2), F is a two-dimensional 
image with 2l × 2l pixels. 

 
 

4.2 General 2D wavelet product  
Given two functions expressed in an orthonormal 
basis, it is possible to multiply them together and get 
the product expanded in the same basis Ng et al. [28] 

Let  and be the two 
images represented in the Haar basis. The wavelet 
product, , of G and H is then given by: 

∑= jjGG ψ

∑= iiFF ψ

∑= kkHH ψ

∑∑∑ ⋅=⇔⋅= kkjjii HGFHGF ψψψ    (18) 
By integrating against the ith basis function, we 

can directly obtain the ith coefficient for the wavelet 
representation of the product F as follows: 
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∫∫= dxxxxC kjiijk )()()( ψψψ                      (20) 

Note that these equations are valid for any 
domain and suitable orthonormal basis, only the 
tripling coefficients will differ. Due to the compact 
support of the Haar basis functions, most of the 
tripling coefficients will be zero. The non-zero 
coefficients are given by the Haar tripling 
coefficient theorem by Ng R. [29].  

Generalized Haar Integral Coefficient 
Theorem. The nth-order Haar integral coefficient Cn 
has a non-zero value, if and only if the numbers of 
the three kinds of wavelets 1ψ , 2ψ  and 3ψ  at the 
finest scale have the same parity. In this case, the 

integral coefficient is ∑± − 02 jj2 , where ∑ j  is the 
sum of the scales of all operand basis functions, and 
j0 is the scale of the finest basis function. The sign 
of the integral coefficient is the multiplication of the 
signs of the subregions of all parent basis functions 
that the child basis function falls into[29]. 

According to the above theorem, the integral of 
three 2D Haar basis functions is non-zero if and 
only if one of the following three cases holds: 

1. All three are the scaling function. In this case, 
Cijk = 1. 

2. All three functions occupy the same wavelet 
square, and all are of different wavelet types. Cijk = 
2l, where the square is at level l. 

3. Two are identical wavelets, and the third is 
either the scaling function or a wavelet that overlaps 
at a strictly coarser level. Cijk = ±2l, where the third 
function exists at level l. 

The tripling coefficient theorem is written in 
general terms, and describes the cases where the 
tripling coefficients are non-zero. In this application, 
where we are looking at a specific basis function, 

iψ , the theorem can be rewritten to make the 
different cases more clear: 

1. iψ  is the mother scaling function: 
(a) jψ  and kψ  are also the mother scaling 

function. Cijk = 1. 
(b) jψ  and kψ  are identical wavelets (at any 

level). Cijk = 1. 
2. iψ  is a wavelet function at level l: 

(a) All three functions occupy the same 
wavelet square and all are of different wavelet 
types. Cijk = 2l. 

(b) jψ and kψ are identical wavelets under the 

support of  iψ  and exist at a strictly finer level. 
Cijk = ±2l. 

(c) One of the wavelets is identical to iψ , and 
the other is either the mother scaling function or a 
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wavelet that overlaps at a strictly coarser level. 
Cijk = ±2l’ , where the coarser function exists at 
level l’. 
 
 

4.3 Wavelet importance sampling 
For simplicity, the image F(x) is defined to cover 
the unit square. Consider a wavelet square s = (l, t) 
at level l and translation t. The square has an area of 
A(s) = 2−l×2−l = 2−2l. The average function value  
F(s) over the square, can be found by integrating the 
function over s [22]. However, due to the constant 
and disjoint scaling functions, the average function 
value is given by the scaling coefficient for the 
square as follows: 

0
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Thus, the probability density of the square s, is 
given by: 
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The probability of placing a sample at a 
coordinate x within the square s, should be equal to: 
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For recursive algorithms, it is useful to know the 
conditional probabilities for each child square, given 
that the parent square is sampled. Let s be the parent 
square at level l, and let si, i = 1 . . . 4, be the four 
child squares at level l+1. The conditional 
probability for each of the four children can be 
expressed in the function values for the parent and 
child squares as:  
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and similarly expressed in scaling coefficients as: 
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4.4 Improved wavelet products sampling 
For a simple case, the importance function f(x) is a 
product of only two faunctions, f(x) =g(x)h(x). We 
store approximations of g(x) and h(x) as images, G 
and H respectively, expressed as Haar wavelets. 
Then coefficients for the product F = G·H of the two 
wavelets can be computed using theory in 4.2.  

In practice, as stated in last section, it is 
unnecessary to compute detail coefficients for the 
wavelet product, as only the scaling coefficients at 

each level are needed for sampling. So the general 
product in 4.2 could be simplified by direct product 
of only scaling coefficients. While replacing iψ with 
the specific scaling function tl ,φ , the scaling 
coefficient for the product is then given by: 
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where  are modified tripling coefficients, 
defined as: 

'
ijkC

∫∫= dxxxxC kjtlijk )()()(,
' ψψφ                       (28) 

It turns out that the  for a scaling function at 
level l are non-zero if and only if one of the 
following two cases holds: 

'
ijkC

1.  jψ  and kψ are either the mother scaling 
function or wavelets at strictly coarser levels, lj and 
lk.   . lk −ll jC +2'

ijk = ±

2.  jψ  and kψ are identical wavelets under the 

support of tl ,φ , and exist at the same or finer levels.  

 . l2ijkC ' =
The first case corresponds to a multiplication of 

the scaling coefficients for G and H at level l that 
overlap tl ,φ , scaled by 2l, i.e., a multiplication of the 

scaling coefficients  and . Hence, scaling 
coefficients for the product as: 
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where the summation is over all wavelet 
coefficients that are under the support of tl ,φ . the 

scaling coefficients  and  can easily be 
computed separately for the two functions, using 
standard wavelet reconstruction from their 
respective wavelet coefficients. 

0
,tlG 0

,tlH

This simplified way is much more efficient than 
the general one. Once the product F can be 
computed, the importance sampling probability 
computing is as same as above equations for single 
function case described in 4.3. 

 
 

4.5 Algorithms of wavelet products sampling 
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In the following algorithms, we often need to refer 
to the sign of a particular 2D Haar basis function 
over one of its four quadrants. Therefore, we 
introduce a function, sign(m, qx, qy), that returns the 
sign of a wavelet function 3,2,1,0 =mmψ  in the 
quadrant .  }1,0{),( ∈yx qq

First, a helper function of parent sum (PSUM) is 
introduced, which was used by Ng et al. [10] in their 
computation of wavelet triple products. The parent 
sum of a square s= (l, x, y) in a wavelet 
representation F, is the reconstructed function value 
over the square, which we call F(s). The 
reconstructed value is found by taking the sum of 
the coefficients of basis functions overlapping the 
square, scaled by the value of the corresponding 
basis functions over the square we are considering.  

Table 1  Pseudo-code of PSUM  
function PSUM(wavelet F, square s) 
if s ∈ psum_table then 
return psum_table(s) 
else 
if s = (0, 0, 0) then 
value =  0

0,0F
else 
s’ = (l’, x’, y’) = (l-1, , ) ⎣ ⎦2/x ⎣ ⎦2/y
(qx, qy) = (x−2x’, y − 2y’) 
value = PSUM(F, s’) +  
∑ =

3

1 ,,
),,(.2 '''

'

m yx
m

yxl
l qqmsignF  

psum_table−>insert(s, value) 
return value 

Second, another helper function is defined, 
which we call children sum (CSUM). The children 
sum of two wavelet representations, G and H, at a 
square s, is the sum of the product of the 
coefficients of identical basis functions that overlap 
the square at the same or finer levels. We start by 
computing all the non-zero children sums and 
storing them in a hash table using CsumHash 
function. The children sums are very sparse, since 
both coefficients for an identical basis function need 
to be non-zero for the result to be non-zero. Later, 
the children sums are accessed through a function 
CSUM(s) that simply returns the value stored in the 
hash map, or zero if there is no value associated 
with the square s. 

Table 2  Pseudo-code of CsumHash 
function CsumHash(wavelet G, wavelet H) 
for  do 0, ,,,, ≠∈ m

yxl
m

yxl GGG

if  then 0,, ≠m
yxlH

       m
yxl

m
yxl HGc ,,,, .=

      s = (l ,x, y)    
while do 0' ≥l
csum_table(s) = csum_table(s) +c 
s=( l’-1, ⎣ ⎦2/x , ⎣ ⎦2/y )  

Now, with the necessary support functions, 
PSUM and CSUM, it is straightforward to 
implement the wavelet product. We implement the 
wavelet multiplication as a function that takes two 
wavelets as input, and returns a specific wavelet 
coefficient for the product. The following function 
returns the wavelet coefficient of type m at a square 
s, for the product of two wavelets, F = G.H. We 
also need the first scaling coefficient for the product, 
which is given by the simple expression: 

 . )(0
0,0

0
0,0

0
0,0 sCSUMHGF +=

Table 3  Pseudo-code of PRODUCT 
function PRODUCT(square s=(l,x,y), int m) 
// All at the same square but of different type 
m1 = ((m + 1) mod 4) + 1 
m2 = ((m + 2) mod 4) + 1 

1
,,

2
,,

2
,,

1
,,(21 m

yxl
m

yxl
m

yxl
m

yxl
l HGHGc +=  

// The product at strictly finer levels 
c2 = 2l sign(m, 0, 0).CSUM(l+1, 2x, 2y) 
+ 2l sign(m, 1, 0).CSUM (l+1, 2x+1, 2y) 
+ 2l sign(m, 0, 1).CSUM (l+1, 2x, 2y+1) 
+ 2l sign(m, 1, 1).CSUM (l+1, 2x+1, 2y+1) 
// One identical and the rest at coarser levels 

),(.),(.3 ,,,, sGPSUMHsHPSUMGc m
yxl

m
yxl +=

// Return sum of the contributions 
return  (c1 + c2 + c3) 
This function can be used in the general case for 

computing coefficients of the product of two 
wavelet representations. For importance sampling, 
we are only interested in computing scaling 
coefficients for the product.  

Using the theory in Section 4.4, we arrive at the 
function described as following algorithm. This 
function directly returns the reconstructed average 
function value for a wavelet square s in the product 
of two wavelet represented functions, that is, the 
returned value is the scaling coefficient in s for the 
product, scaled by 2l. 

Table 4  Pseudo-code of optimized PRODUCT  
function OPPRODUCT(square s=(l,x,y) ) 
// Both are scaling functions 
c1 = PSUM(H, s) . PSUM(G, s) 
// The product of wavelets at finer levels 
c2 = 4l · CSUM(s) 
// Return sum of the contributions 
return c1 + c2 
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5 Implement and results 
 
 
5.1 Re-parameterization for 4D BRDF 
In our application, the BRDF is given in local 
coordinates with respect to the reflection vector, 
while an environment map is commonly expressed 
in global coordinates. By rewriting the environment 
map as a four-dimensional function ),( rL ωω

rr
, 

where the direction ω
r

 is given with respect to rω
r

, 
the environment map is in the same local space as 
the BRDF.  

By a change of variables, the BRDF can be 
transformed into a function that is more compact. 
There are many ways for such re-parameterizations. 
In our application, we need a parameterization that 
is suitable for both the BRDF and for the 
environment map. The BRDF is centered about the 
reflection vector ),( rrr ϕθω =

r

N
, instead of around 

the surface normal 
r

. 
The environment map image can be preprocessed 

and evaluated by practical ways as Gribkov I.V. 
used in their works [30]. 

 
 

5.2 Wavelet transform and compression 
As noted earlier, we use normalized Haar wavelets 
and the non-standard decomposition. Starting with 
an image with n × n pixels, where n is a power of 
two, the one-dimensional wavelet transform is 
applied first on rows and then on columns. The 
wavelet transform is done using the lifting scheme 
[31], which is a fast linear-time operation that does 
not require any additional temporary storage. Each 
pass splits the data into a set of scaling coefficients 
and a set of detail coefficients. The transform is 
applied recursively on the scaling coefficients, until 
only a single scaling coefficient remains. 

After our data has been wavelet transformed, we 
apply lossy compression by thresholdning the 
wavelet coefficients. There are many ways to do 
that not only in wavelet ones but also combined 
with some fractacl ones as described by Radu D. et 
al [32].  

 
Fig.4: 2D Wavelet transform applied on each 

hemisphere of the original BRDF data. 

A non-standard approach of wavelet transform 
for fr is employed here (shown in Fig.4). 

In practice, both the BRDF and the environment 
map are tabulated as a sparse 2D set of 2D wavelet 
compressed images[31]. The maps are stored at the 
resolution 64×64 or 128×128. 

 
 

5.3 BRDF data and environment map data 
In our renderings, we use isotropic BRDFs acquired 
from real materials. The BRDF data sets we use 
consist of dense reflectance measurements in color 
for over 50 different materials. The measurements 
were done for 90 × 90 × 180 discrete directions with 
a denser sampling around the specular highlight. A 
few of the BRDFs and source-code for loading them 
can be downloaded from  website1 . We resample 
the measured reflectance data into our BRDF 
representation. Each two-dimensional reflectance 
map is first created at a high resolution (256 × 256), 
and then sub-sampled to the desired resolution to 
avoid aliasing [33]. 

We use high-dynamic range environment maps , 
so called light probes, for rendering scenes under 
realistic illumination. Paul Debevec’s Light Probe 
Gallery 2  has a selection of environment maps 
available for download.  The light probes are stored 
in Ward’s RGBE format. The maps represent the 
full sphere and use a simple angular 
parameterization. The light probes are re-sampled so 
that for each tabulated two-dimensional 
environment map, we loop over its pixels and 
sample the light probe in the corresponding 
direction. To avoid aliasing, the re-sampling is done 
at a higher resolution than the final result, usually 
512×512 or 1024×1024, and the image is down-
sampled to the desired resolution using a box filter. 
Each two-dimensional environment map is then 
wavelet compressed, and only the non-zero 
coefficients are stored. 

 
 

5.4 Ray tracing rendering 
A simple Monte Carlo ray tracer was implemented 
in order to evaluate how well wavelet importance 
sampling of products performs compared to other 
methods.  

At the rendering time, the number of texture 
accesses for each fragment depends on the 
resolution chosen on-the-fly for the BRDF 

                                                 
1 http://graphics.csail.mit.edu/_wojciech/BRDF/ 
2 http://www.debevec.org/Probes/ 
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reconstruction. If the surface is far away from the 
viewpoint, fewer levels are required to estimate the 
BRDF and the performance is enhanced.  

A ray tracing rendering result is implemented 
and showed as fig.5.  

 

 
Fig. 5: Top: Structured sampling results; Bottom: 

Wavelet sampling rendering results 
These results are achieved with GPU built-in 

hardware filtering (see fig.6) and by using the 
linearity and the multi-resolution of the wavelet 
encoding. 

 
Fig.6: the GPU enhanced rendering pipeline. 
 
 

6 Conclusions and future work 
Wavelet product importance sampling is an efficient 
way for static direct illumination with complex 
environment mapping. According to the feature of 
its product sampling of two functions, the factoring 
scheme we developed makes shading integral 
reduce to a simple double function product integral. 
Such way is suitable for dynamic global lighting 
situations with multiple objects where normally only 
one variable is adjusted at a time, and real-time 
feedback is highly appreciated.  

A GPU enabled pipeline is also used to 
accelerate the real-time rendering and worked well 
in practice. 

Wavelet representations of BRDF and EM 
provide novel approaches for complex rendering. 
The way we proposed here can be used in other 
domains where the efficient computation and real-

time generation are critical such as game, animation, 
and simulation.  

More complicated scenes should be tested in 
future and much more efficient ways will be used. 
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