
Research and Implementation on Genetic Algorithms for Graph Fitness
Optimization

JIN MIN, WANG QIN, XI LIFENG

Computer Science and Information Technology College
Zhejiang Wanli University

Qianhu South Road 8, Ningbo
CHINA

http://www.zwu.edu.cn

Abstract: -- Graph fitness optimization is a difficult problem in data fitness. Genetic algorithms(GAs), which
can yield accurate results if they start with suitable parameters, have been used to solve difficult problems with
objective functions which usually are multi-modal, discontinuous, and nondifferentiable. In this paper, we
design a genetic algorithm (GA) to optimize effect on self-affine fractal interpolation function (AFIF) and give
result. The software was tested on realistic graphs. The validation and effectiveness of the method to be able to
find the optimal fractal function are presented and demonstrated.

Key-Words: - Graph Fitness; Optimization; Genetic Algorithm; Fractal; AFIF

1 Introduction
Graph fitness is one of the most interesting,
important, and successful applications of data
fitness. For example, fingerprint recognition, image
retrieval, stock analysis, and so on. It is a
challenging problem to find the optimization on
graph fitness.

There are certain optimization problems that
become unmanageable using combinatorial methods
as the number of objects becomes large. A typical
example is the traveling salesman problem, which
belongs to the NP-complete class of problems. For
these problems, There are lots of algorithms, such as
simulated annealing (SA), tuba search (TS),
artificial neural networks, greedy algorithm and
genetic algorithm (GA), etc, can be used to solve
that problem. But each algorithm has advantage and
disadvantage.

There is a very effective practical algorithm
called simulated annealing (thus named because it
mimics the process undergone by misplaced atoms
in a metal when its heated and then slowly cooled).
While this technique is unlikely to find the optimum
solution, it can often find a very good solution, even
in the presence of noisy data [1]. TS is easy to
realized, and suitable for solving standard
combination optimization problem. But it isn’t
suitable for solving binary array problem [2].
Artificial neural networks are able to be adaptive,
teach itself and parallel process, but are difficulty to
be realized by programs [3]. Greedy algorithms are

simple and straightforward, but usually can’t find
optimization [4]. GA may be more effective in and
easier to be realized by programs.

GA can yield accurate results providing that they
are fed with suitable parameters to start with. The
GA has been used to solve difficult problems with
objective functions, which usually are multi-modal,
discontinuous, and nondifferentiable[5]. These
algorithms maintain and manipulate a family, or
population, of solutions and implement a "survival
of the fittest" strategy in their search for better
solutions. This provides an implicit as well as
explicit parallelism that allows for the exploitation
of several promising areas of the solution space at
the same time [6,7].

Fractal is a tool in data fitness and interpolation.
It’s better to fit rough curves and vibrating data,
such as mountain range outlines, electrical-
diagrams ...etc. AFIF is able to create complex
graph by setting several parameters.

Given points in the plane, we
suppose

N
iii yx 0)},{(=

1 2{ , , , }Nω ω ωK is an iterated function
system satisfying

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

i

i

ii

i
i h

g
y
x

dc
a

y
x 0

ω , (1)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−

−

i

i

N

N
i

i

i
i y

x
y
x

y
x

y
x

ωω ,
1

1

0

0 , (2)

WSEAS TRANSACTIONS on SYSTEMS Jin Min, Wang Qin, Xi Lifeng

ISSN: 1109-2777
321

Issue 4, Volume 7, April 2008

where and for any with

. By (3) and (4), we notice that is

determined by and. We always call

 vertical factors and
interpolation points respectively.

1|| <id)1,0(∈ia i

Ni ≤≤1 N
ii 1}{ =ω

N
iii yx 0)},{(=

N
iid 1}{ =

N
iii yx 0)},{(=

Definition 1. Suppose is a continuous
function on the interval . Let

)(xf
],[0 Nxx

])},[:))(,{(0 Nxxxxfx ∈=Γ (3)
be the graph of . We say that is an
affine fractal interpolation function(AFIF), if

)(xf)(xf

)(1 Γ=Γ = i
N
i ωU . (4)

For AFIF defined by formulas (1)-(4), the
dimension of the graph Γ satisfies the
following dimension formula ([1]):

ΓBdim

∑
=

−Γ =⋅
N

i
ii

Bad
1

1dim 1|||| . (5)

Remark: Formula (5) holds when the
interpolation points do not lie in a line

simultaneous_ ly and . Any connected

part of the graph Γ of AFIF has the same
dimension .

1||
1

>∑ =

N

i id

ΓBdim
From the concept of AFIF, if we have several

interpolation points from original graph and suitable
vertical factors, we can create graph, which
approximate to the original graph.

As for the more information of AFIF, please
refer to [8-9]. From the concept of AFIF, if we have
several interpolation points from original graph and
suitable vertical factors, we can create graph, which
approximate to the original graph.

To fit a presented graph, it is not rectify
parameters enough. It is a challenging problem to
find the optimization of solution space.

Section 1 presents the basic GA, and in Section 2
the step of optimization of affine fractal
interpolation function for graph fitness using a GA
is described. Section 3 briefly describes the code,
presents the list of parameters of the GA
implementation and experiment results. Finally,
some problems that deserve to be noted in
implementing this method and their mend are given
in section 4.

2 The GA’s Introduction
The GA searches the solution space of a function
through the use of simulated evolution, i.e., the
survival of the fittest strategy. In general, the fittest
individuals of any population tend to reproduce and
survive to the next generation, thus improving
successive generations. However, inferior
individuals can, by chance, survive and also
reproduce. The GA has been shown to solve linear
and nonlinear problems by exploring all regions of
the state space and exponentially exploiting
promising areas through mutation, crossover, and

Population j

Roulette
Wheel
selection

1*2
2*1
5*1
1*5
1*2
2*1

Parent
Population

Crossover
Consecutive
Pairs

1
2
5
1
1
2

Offspring
Population

1*2
(2*1)’
5*1
(1*5)’
1*2
2*1

Perform
Search and
Sort

Generate Initial
Population

Mutant
Population

Mutate And Apply The
Corrector Operator

Shaded Area=Elite population Members

Step1 Step2 Step3

Step4 Step5

Fig.1 Schematic flow diagram for the GA program

1
2
3
4
5
6

WSEAS TRANSACTIONS on SYSTEMS Jin Min, Wang Qin, Xi Lifeng

ISSN: 1109-2777
322

Issue 4, Volume 7, April 2008

selection operations applied to individuals in the
population. A more complete discussion of genetic
algorithms including extensions and related topics
can be found in the books [10-13], and the
Academic journals [14-23].

2.1 Characteristics of the GA
The GA is a search technique, based on the
principles of natural evolution. The important terms
and principles as follow:

(1) Codes on solution have evolution.
The codes of optimal problem solution are called

chromosomes. Since the solution is coded, the
research on optimization of function is based on
codes. The one important topic of a GA is encoding
and decoding.

 (2) Law of natural selection decides which
chromosomes have more offspring than others.

In the GA, fitness function is created by
objective function, which will be optimized. The
fitness functions ensure that the more chromosomes
are fitting, the more offspring is generated.

 (3) New chromosomes retain characteristics of
parent chromosomes.

Crossover takes two chromosomes and produces
two new chromosomes. The two new chromosomes
retain characteristics of parent chromosomes from
parent chromosomes gene.

(4) New chromosomes is different from parent
chromosomes

Randomly mutant made the difference.

2.2 A Common Algorithm
The way in which our GA program operates is
shown as a schematic flow diagram in Fig. 1. A
basic procedure of GA is as follow.

It is a eight parameters function BGA.
BGA=(C,E,P0,M,So,Co,Mo,T)
In function, C -Individual coding method;
E-Evaluate fitness function;
P0-Initial population;
M- Initial population size;
So-Select operation;
Co-Crossover operation;
Mo-Mutation operation;
T- Termination conditions.
Procedure BGA
begin
 Initialize P(0);
 t=0;
 while (t≤T) do

 for I=1 to M do
 Evaluate fitness of P(t);
 End for
 for I=1 to M do
 Select operation to P(t);
 End for
 for I=1 to M/2 do
 Crossover operation to P(t);
 End for
 for I=1 to M do
 Mutation operation to P(t);
 End for
 for I=1 to M do
 P(t+1)= P(t);
 End for
 t=t+1;
 end while
end
The GA procedure is summarized as follow.
Step(1) Supply an initial population P(0) of N

individuals and respective codes of function
solutions, t: =0; (like step 1 of Fig.1)

Step (2) Calculate each of chromosomes Pi(t),
which is in population P(t), fitness function

fi =fitness(Pi(t));
Step (3) Calculate each of chromosome selection

on probability

∑
=

= N

j
j

i
i

f

fp

1

, i=1,2,…，M， (6)

By pi, a new population is generated from P(t)
newpop(t+1)={ Pj(t)|j=1,2,…，N};
Remark: A chromosome in population P(t) may

be repeatedly selected.
Step (4) Generate a population crosspop (t+1) by

crossing consecutive pairs chromosomes from
newpop(t+1). Crossing probability is Pc.

Step (5) Mutate a gene of a chromosome by
small probability p. Generate a population
mutpop(t+1), t:=t+1, a new population P(t)=
mutpop(t) .

Step (6) Repeat step (3) until termination
Step (7) Print out best solution found

2.3 Fundamental Issues
The use of a genetic algorithm requires the
determination of six fundamental issues: the
creation of the initial population, chromosomes
representation, the selection method of the newpop
population, the genetic operators making up the
crossover function, the mutant method, and

WSEAS TRANSACTIONS on SYSTEMS Jin Min, Wang Qin, Xi Lifeng

ISSN: 1109-2777
323

Issue 4, Volume 7, April 2008

termination criteria. The rest of this section
describes each of these issues.

Issue1. Initial population.
The GA must be provided an initial population as

indicated in step (1). The most common method is
to randomly generate solutions for the initial
population. However, since GAs can iteratively
improve existing solutions (i.e., solutions from other
heuristics and/or current practices), the beginning
population can be seeded with potentially good
solutions, with the remainder of the population
being randomly generated solutions.

Issue2. Chromosomes representation
For any GA, a chromosome representation is

needed to describe each individual in the population
of interest. The representation scheme determines
how the problem is structured in the GA and also
determines the genetic operators that are used. Each
individual or chromosome is made up of a sequence
of genes from a certain alphabet. An alphabet could
consist of binary digits (0 and 1), floating point
numbers, integers, symbols (i.e., A, B, C, D),
matrices, etc. One useful representation of an
individual or chromosome for function optimization
involves genes or variables from an alphabet of
floating point numbers with values within the
variables upper and lower bounds.

Issue3. The selection method of the newpop
population

A common selection approach assigns a
probability of selection, Pi, to each individual, i
based on its fitness value as indicated in step(2)(3).
The chromosome, which has larger fitness function
value, has more chance to be selected in new
population. This selection method is call roulette
wheel selection.

Issue4. The genetic operators making up the
crossover function

Crossover (or mating) is the way in which
"genetic" information from two parent
chromosomes is combined to generate "offspring".
In step(4), the parent chromosomes and crossing
size are randomization.

Issue5. The mutant method
While the crossover operation leads to a mixing

of genetic material in the offspring, no new genetic
material is introduced, which can lead to lack of
population diversity and eventually "stagnation"--
where the population converges on the same,
nonoptimal solution. The GA mutation operator
helps to increase population diversity by introducing

new genetic material. The common method is select
one genetic to mutate by minimal probability.

Issue6. Termination criteria
The GA moves from generation to generation

selecting and reproducing parents until a termination
criterion is met. The most frequently used stopping
criterion is a specified maximum number of
generations. Another termination strategy involves
population convergence criteria. In general, GAs
will force much of the entire population to converge
to a single solution. When the sum of the deviations
among individuals becomes smaller than some
specified threshold, the algorithm can be terminated.

3 Steps for a GA’s Application and
Analysis
Steps for a GA’s application on AFIF for graph
fitness are as follow:

Step1. Select a graph as a original graph.
Compress axis of abscissas in the interval [0,1].
Remain aspect ratio.

Step2. Bisect axis of abscissas into EXN
intervals. Let Terminal of every interval is
interpolation points EXPi, i=0,1,2……EXN. Select
suitable vertical factor Exd0(exi),exi=1,2,……EXN.
Encode the vertical factors in EXL bits binary code.
We use iteration method of AFIF to draw fractal
graph. Select EXM sample point in every interval.
Calculate sample variance EXS0.

In this step, binary code for vertical factors of
each intervals is genes, which is respective codes of
function solutions. Geneses are joined as
chromosome.

Step3. Repeat step 2 for EXNc times. Select
randomly vertical factors Exdexj(exi)(exj is repeat
times) in every times. Calculate sample variance
EXSj.

In this step, we have EXNc pieces of
chromosomes. Those chromosomes created initial
population.

Step4. The initial population has EXNc
chromosomes. Every chromosome is described by
vertical factors codes. Length of a chromosome is
EXN*EXL. The fitness function of the chromosome
No j is EXFj=1/ EXSj. From Section 2, we can
evaluate fitness of the initial population. From select
operation, which is based on evaluate fitness, we
can create new population for evolution, than the
population use crossover operation and mutation
operation to create next population. Those
operations will be repeated until terminal.

WSEAS TRANSACTIONS on SYSTEMS Jin Min, Wang Qin, Xi Lifeng

ISSN: 1109-2777
324

Issue 4, Volume 7, April 2008

In this step, the smaller sample variance of
chromosome is, the more selection on probability of
chromosome is. The smaller sample variance is, the
more fitness created graph and original graph is.
The terminal conditions are very flexibility. Setting
terminal condition decided for the time complexity
of algorithms is important. Usually, we can set
mutation times as terminal condition.

Step5. From suitable vertical factors and AFIF
Interpolation points, we can create optimization
fitness graph for original graph.

4 Experiments and Result
In this experiment, we use VB.NET to realize those
steps.

4.1 Initial Population
Let intervals number EXN=8, length of vertical
factors code EXL=4, sample point in every interval
EXM=16, chromosomes of population number
EXNc=20.Here we give the original graph A as fig.2,
which has been compressed. to obtain EXN
interpolation points, EXPi, i=0,2…EXN. By step2,
their axes are as table 1.

Fig.2 Original graph A

Table 1 The axes of interpolation points
EXP0=(0,0.1) EXP1=(0.125,0.3)

EXP2=(0.25,0.56) EXP3=(0.375,0.34)

EXP4=(0.625,0.64) EXP5=(0.5,0.55)

EXP6=(0.75,0.42) EXP7=(0.875,0.33)

EXP8=(1,0.1)
 From randomization algorithm, we get vertical
factors Exd0(exi)(exi=1,2,……EXN) for each inter-
val. For example as table 2,

Table 2 The vertical factors
Exd0(1)=0.559 Exd0(2)=0.677 Exd0(3)=-0.573

Exd0(4)=-0.574 Exd0(5)=0.18 Exd0(6)=0.803

Exd0(7)=-0.448 Exd0(8)=0.18

 Vertical factors must satisfy in formula (2).
By function x’=(x+1)/2 (), we can
translate vertical factors in the interval [0,1].
Translate decimal to binary. We make up
vertical factors code by four binary digital after
decimal point. For example, Exd

]1,1-[∈x

0(1)=0.559, the
code is 1100. A chrom- osome of population is
made up by orderly jointing Exdexj(1) to
Exdexj(8). For example, orderly jointing Exd0(1)
to Exd0(8) is 110011010011001110011110
01001001, which is a chromosome code. The
function Dtob is to translate decimal to binary
as follow.

Function Dtob(ByVal x As Double) As String
Dim temp As Double, i As Integer
temp = (x + 1) / 2
Dtob = ""
For i = 1 To 4
Dtob = Dtob & Fix(temp * 2)
temp = temp * 2 - Fix(temp * 2)
Next
End Function
In this function, Parameter x is source decimal

value. Binary value is string.
From AFIF and factors, which are described

here_ inbefore, we can generate fractal graph.
Calculate sample variance. The sub Bfit_Click is to
create fitness graph by AFIF and draw it as follow.

Private Sub Bfit_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs)
Handles Bfit.Click

 Dim i As Integer, k As Integer, x As Double,
y As Double

 Dim j As Integer, s As Integer
 Dim pen As New Pen(Color.FromArgb(255,

255, 255, 255))
 Dim g As System.Drawing.Graphics, g2 As

System.Drawing.Graphics
 Dim x1 As Integer, x2 As Integer, y1 As

Integer, y2 As Integer
 rst(rsts) = ""
 For i = 1 To 8
 rst(rsts) = rst(rsts) & ds(i)
 Next
 k = 0
 p(0).x = inx(0)
 p(0).y = iny(0)

WSEAS TRANSACTIONS on SYSTEMS Jin Min, Wang Qin, Xi Lifeng

ISSN: 1109-2777
325

Issue 4, Volume 7, April 2008

 For i = 1 To 8
 For j = 1 To 8
 k = k + 1
 x = k / 64
 y = fny(i, inx(j), iny(j))
 p(k).x = x
 p(k).y = y
 Next
 Next
 For i = 0 To 63
 x1 = Int(p(i).x)
 y1 = n - Int(p(i).y)
 x2 = Int(p(i + 1).x)
 y2 = n - Int(p(i + 1).y)
 g = Pic1.CreateGraphics
 g.DrawLine(pen, x1, y1, x2, y2)
 g2 = Pic3.CreateGraphics
 g2.DrawLine(pen, x1, y1, x2, y2)
 Next
 dis(rsts) = 0
 For i = 1 To 64
 dis(rsts) = dis(rsts) + (p(i).y - pr(i).y) ^ 2
 Next
 dis(rsts) = dis(rsts) / 64
 rsts = (rsts Mod 20) + 1
End Sub
In this sub, function fny is as follow.
Function fny(ByVal n As Integer, ByVal x As

Double, ByVal y As Double) As Double
 c(n) = (iny(n) - iny(n - 1) - d(n) * (iny(8) -

iny(0))) / (inx(8) - inx(0))
 h(n) = iny(n) - c(n) * inx(8) - d(n) * iny(8)
 fny = c(n) * x + d(n) * y + h(n)
End Function
The initial population we selected as table 3. The

initial population size is 20.
For operating easliy, we array the initial

population from little value to large value by fitness,
which countdown to sample variance EXS.

For i = 1 To 19
 l = i
 temp = fitness(i)
 For j = i + 1 To 20
 If temp > fitness(j) Then
 temp = fitness(j)
 l = j
 End If
 Next
 If l <> i Then
 fitness(l) = fitness(i)
 fitness(i) = temp
 temps = rst(l)

 rst(l) = rst(i)
 rst(i) = temps
 temp = dis(l)
 dis(l) = dis(i)
 dis(i) = temp
 temp = gl(l)
 gl(l) = gl(i)
 gl(i) = temp
 End If
 Next

Table 3 The initial population
No Chromosome EXS
1 01001001110100100011010100101110 0.0568
2 01000001100001111101000101110101 0.0544
3 10101100011101001010110100000000 0.0682
4 11010010110001111010111010000110 0.0626
5 01001101101101000111110000100010 0.0706
6 01000101011010010010100001100111 0.0784
7 10001010101111000011100100001101 0.0825
8 11010110101010010000011010001001 0.0526
9 10011010110001110001000100001011 0.0471
10 11010001001010100010001010000011 0.0784
11 00111100000101111110000000011101 0.0905
12 10101101100111010110100010101101 0.0783
13 01111001000100001010110011101001 0.0925
14 11000101000011000111100101110101 0.0879
15 11011101101010100000010110100001 0.0672
16 00010011000011010001011000110111 0.1422
17 00101010101000101011001101111100 0.0476
18 01110110100111101000000000011000 0.0624
19 10101011111000101001000110011110 0.0265
20 00010111110111100110110100101010 0.1238

4.2 Population Evolution

By using evaluate fitness of initial population
and select operation to initial population we can
create new population.

Let crossing probability Pc=1, mutant probability
p=0.05. Population evaluates 40 generations. The
procedure of crossover operation to new population
is as follow.

k = 1
For i = 1 To 10
 Randomize()
 wz = Int(Rnd() * 18 + 2)
 xh = Int(Rnd() * 19 + 1)
 Do While newpop(xh) = ""
 xh = Int(Rnd() * 19 + 1)
 Loop

WSEAS TRANSACTIONS on SYSTEMS Jin Min, Wang Qin, Xi Lifeng

ISSN: 1109-2777
326

Issue 4, Volume 7, April 2008

 crosspop(k) = newpop(xh)
 newpop(xh) = ""
 temps = Mid(crosspop(k), wz)
 crosspop(k) = Mid(crosspop(k), 1, wz - 1)
 k = k + 1
 xh = Int(Rnd() * 19 + 1)
 Do While newpop(xh) = ""
 xh = Int(Rnd() * 19 + 1)
 Loop
 crosspop(k) = newpop(xh)
 newpop(xh) = ""
 crosspop(k - 1) = crosspop(k - 1) &

Mid(crosspop(k), wz)
 crosspop(k) = Mid(crosspop(k), 1, wz - 1)
 crosspop(k) = crosspop(k) & temps
 k = k + 1
Next
In this basic procedure, we use random

function to select chromosomes, which is used to
crossover. But we found if we only use random
function to operate crossover operation to twenty
pieces of chromosomes is inefficient. We use
procedure to operate crossover operation as follow.

k = 1
For i = 1 To 9
 Randomize()
 wz = Int(Rnd() * 18 + 2)
 xh = Int(Rnd() * 19 + 1)
 Do While newpop(xh) = ""
xh = Int(Rnd() * 19 + 1)
 Loop
 crosspop(k) = newpop(xh)
 newpop(xh) = ""
 temps = Mid(crosspop(k), wz)
 crosspop(k) = Mid(crosspop(k), 1, wz - 1)
 k = k + 1
 xh = Int(Rnd() * 19 + 1)
 Do While newpop(xh) = ""
xh = Int(Rnd() * 19 + 1)
 Loop
 crosspop(k) = newpop(xh)
 newpop(xh) = ""
 crosspop(k - 1) = crosspop(k - 1) &

Mid(crosspop(k), wz)
 crosspop(k) = Mid(crosspop(k), 1, wz - 1)
 crosspop(k) = crosspop(k) & temps
 k = k + 1
 Next
 For i = 1 To 20
 If newpop(i) <> "" Then
 crosspop(k) = newpop(i)
 newpop(xh) = ""

 k = k + 1
 End If
 Next
 wz = Int(Rnd() * 18 + 2)
 temps = Mid(crosspop(19), wz)
 crosspop(19) = Mid(crosspop(19), 1, wz - 1)
 crosspop(19) = crosspop(19) &

Mid(crosspop(20), wz)
 crosspop(20) = Mid(crosspop(20), 1, wz - 1)
 crosspop(20) = crosspop(20) & temps
In this procedure, we use random function to

operate crossover operation to eighteen pieces of
chromosomes.

The procedure of mutation operation to crossover
population is as follow.

xh = Rnd() * 19 + 1
wz = Rnd() * 19 + 1
temps = Mid(crosspop(xh), wz, 1)
If temps = "1" Then
 temps = "0"
Else
 temps = "1"
End If
s1 = Mid(crosspop(xh), 1, wz - 1)
s2 = Mid(crosspop(xh), wz + 1)
crosspop(xh) = s1 & temps & s2
In those procedures,
xh-Number of chromosome in array;
wz-Locaion of a gene in a piece of chromosome.
Those two Variables are valued by random

function.
We translate each four binary digitals of binary

code of new generation chromosomes to decimal,
which can be translated into the interval [-1,1] from
function x’ =2x -1(]1,0[∈x). That is vertical
factor for each interval. The function Btod is to
translate binary to decimal as follow.

Function Btod(ByVal x As String) As Single
Dim temp(4) As Single, qz(4) As Single, i As

Integer
 Btod = 0
 For i = 1 To 4
 temp(i) = Val(Mid(x, i, 1))
 qz(i) = 1 / 2 ^ i
 temp(i) = temp(i) * qz(i)
 Btod = Btod + temp(i)
 Next
 Btod = 2 * Btod - 1
End Function
For example, x equal 1110 , the vertical factor is

0.75.

WSEAS TRANSACTIONS on SYSTEMS Jin Min, Wang Qin, Xi Lifeng

ISSN: 1109-2777
327

Issue 4, Volume 7, April 2008

The complete generation evolution procedure is
as follow.

Sub gene()
Dim i As Integer, j As Integer, temp As Single,

temps As String, l As Integer, total As Single, k As
Integer

Dim xh As Integer, wz As Integer, s1 As String,
s2 As String

 For i = 1 To 20 'Calculate fitness
 fitness(i) = 1 / dis(i)
 total = total + fitness(i)
 Next
 For i = 1 To 20 ' Calculate
 gl(i) = fitness(i) / total
 pgl(i) = 2 * i / 21 + 0.5 'For Rounding

easily
 Next
 For i = 1 To 19 'Create array sequence
 l = i
 temp = fitness(i)
 For j = i + 1 To 20
 If temp > fitness(j) Then
 temp = fitness(j)
 l = j
 End If
 Next
 If l <> i Then
 fitness(l) = fitness(i)
 fitness(i) = temp
 temps = rst(l)
 rst(l) = rst(i)
 rst(i) = temps
 temp = dis(l)
 dis(l) = dis(i)
 dis(i) = temp
 temp = gl(l)
 gl(l) = gl(i)
 gl(i) = temp
 End If
 Next
 k = 1
 For i = 1 To 20 'Create new population

newpop by evaluate fitness
 If Int(pgl(i)) >= 1 Then
 For j = 1 To Int(pgl(i))
 newpop(k) = rst(i)
 k = k + 1
 Next
 End If
 Next
 k = 1
 For i = 1 To 9

 Randomize()
 wz = Int(Rnd() * 18 + 2)
 xh = Int(Rnd() * 19 + 1)
 Do While newpop(xh) = ""
 xh = Int(Rnd() * 19 + 1)
 Loop
 crosspop(k) = newpop(xh)
 newpop(xh) = ""
 temps = Mid(crosspop(k), wz)
 crosspop(k) = Mid(crosspop(k), 1, wz - 1)
 k = k + 1
 xh = Int(Rnd() * 19 + 1)
 Do While newpop(xh) = ""
 xh = Int(Rnd() * 19 + 1)
 Loop
 crosspop(k) = newpop(xh)
 newpop(xh) = ""
 crosspop(k - 1) = crosspop(k - 1) &

Mid(crosspop(k), wz)
 crosspop(k) = Mid(crosspop(k), 1, wz - 1)
 crosspop(k) = crosspop(k) & temps
 k = k + 1
 Next
 For i = 1 To 20
 If newpop(i) <> "" Then
 crosspop(k) = newpop(i)
 newpop(xh) = ""
 k = k + 1
 End If
 Next
 wz = Int(Rnd() * 18 + 2)
 temps = Mid(crosspop(19), wz)
 crosspop(19) = Mid(crosspop(19), 1, wz - 1)
 crosspop(19) = crosspop(19) &

Mid(crosspop(20), wz)
 crosspop(20) = Mid(crosspop(20), 1, wz - 1)
 crosspop(20) = crosspop(20) & temps
 xh = Rnd() * 19 + 1 ' Let crossing

probability Pc=1, mutant probability p=0.05.Change
one gene of a piece of chromosome.

 wz = Rnd() * 19 + 1
 temps = Mid(crosspop(xh), wz, 1)
 If temps = "1" Then
 temps = "0"
 Else
 temps = "1"
 End If
 s1 = Mid(crosspop(xh), 1, wz - 1)
 s2 = Mid(crosspop(xh), wz + 1)
 crosspop(xh) = s1 & temps & s2
 For i = 1 To 20 ' Next population Evolution
 rst(i) = crosspop(i)

WSEAS TRANSACTIONS on SYSTEMS Jin Min, Wang Qin, Xi Lifeng

ISSN: 1109-2777
328

Issue 4, Volume 7, April 2008

 Next
 End Sub
By step4, we can generate the final population.

The procedure is as follow.
Private Sub Button3_Click(ByVal sender As

System.Object, ByVal e As System.EventArgs)
Handles Button3.Click

Dim i As Integer, j As Integer, k As Integer, e1
As System.EventArgs, obj1 As System.Object

 For i = 1 To genm
 For j = 1 To 20
 For k = 1 To 8
 ds(k) = Mid(rst(j), (k - 1) * 4 + 1, 4)
 d(k) = Btod(ds(k))
 Next
 Next
 gene()
 Next
 ListBox2.Items.Clear()
 For i = 1 To 20
 ListBox2.Items.Add(rstl(i))
 Next
End Sub
In this procedure, element of array ds is vertical

factors binary code, element of array d is vertical
factors’ decimal value. We can see the final twenty
pieces of chromosome of population in ListBox2.

The result of evolution is as table 4.
Table 4 The final population

No Chromosome EXS
1 11101001110000101000000101110101 0.0062
2 11101001110000101010000101110101 0.0049
3 11101001110000101010000101110101 0.0049
4 11101001110000101010000101110101 0.0049
5 11101001110000101010000101110101 0.0049
6 11101001110000101010000101110101 0.0049
7 11101001110000101010000101110101 0.0049
8 11101001110000101010000101110101 0.0049
9 11101001110000101010000101110101 0.0049
10 11101001110000101010000101110101 0.0049
11 11101001110000101010000101110101 0.0049
12 11101001110000101010000101110101 0.0049
13 11101001110000101010000101110101 0.0049
14 11101001110000101010000101110101 0.0049
15 11101001110000101010000101110101 0.0049
16 11101001110000101010000101110101 0.0049
17 11101001110000101010000101110101 0.0049
18 11101001110000101010000101110101 0.0049
19 11101001110000101010000101110101 0.0049
20 11101001110000101010000101110101 0.0049

From table 4, we can have the final optimization
chromosome. Translate chromosome to eight
vertical factors is as follow:

Exdf(1)=1110=0.75;
Exdf(2)=1001=0.125;
Exdf(3)=1100=0.5;
Exdf(4)=0010=-0.75;
Exdf(5)=1010=0.25;
Exdf(6)=0001=-0.875;
Exdf(7)=0111=-0.125;
Exdf(8)=0101=-0.375;
Using Vertical factors and interpolation points as

table 1, we can create the optimization 64 sample
points. The procedure of drawing graph by 64
sample points is as follow.

For i = 0 To 63
 x1 = Int(p(i).x)
 y1 = n - Int(p(i).y)
 x2 = Int(p(i + 1).x)
 y2 = n - Int(p(i + 1).y)
 g = Pic1.CreateGraphics
 g.DrawLine(pen, x1, y1, x2, y2)
 g2 = Pic3.CreateGraphics
 g2.DrawLine(pen, x1, y1, x2, y2)
Next
The optimization graph is as fig.3.

Fig.3 Optimization graph of AFIF a

4.3 Experimental Result
Comparing original graph A with optimization
graph a as fig.4, we can find that coupling GA with
AFIF yields optimization solution for graph fitness.

WSEAS TRANSACTIONS on SYSTEMS Jin Min, Wang Qin, Xi Lifeng

ISSN: 1109-2777
329

Issue 4, Volume 7, April 2008

Fig.4 Original graph A and optimization graph a

5 Conclusion
The results obtained in this study show that GAs are
powerful variable selection tools for graph fitness.
Coupling GA with AFIF yields more precise
predictions than other methods. Application of an
AFIF, as a flexible nonlinear calibration, to the data
selected by GA also improves the performance of
the model considerably.

It is expected that other methods can improve
GA’s application. Some problems deserve to be
noted in our experiment. The sample space size of
the initial population must be appropriate. We
should use schema theorem to generate the initial
population. If selection method isn’t suitable,
convergence will be quick. The result of GA may
not be the best. Using simulated annealing algorithm
may be useful. Termination criteria should be
carefully studied. For example, we can use sample
variance as the termination condition. Anyway, the
great merits of our proposed methods are low
costing, simple, and rapid.

References:
[1] Lai K K, Chan J W M, Developing a simulated

annealing algorithm for the cutting stock
problem, Computers Ind, 1996.

[2] Glover f, Tabu search : part II, ORSA Journal
on Computing, Vol.2, 1990, pp.4–32.

[3] Xinjun Yang, Junli Zheng, Artificial neural
networks, Higher Education Press, 1992.

[4] Wenxun Xin, Jinxing Xie, Modern Computing
method for Optimization, Tsinghua University
Press, 1999.

[5] Horm J,et, A Niched Pareto Genetic Algorithm
for Multiobjective Optimization, Proc of 1st

IEEE Conf on Evolutionary Computation,1993,
pp.82–87.

[6] Brindle A, Genetic Algorithms for Function
Optimizations, University of Alberta, 1981.

[7] Fogel D B, An Introduction to Sumulated
Evolutionary Optimization, IEEE Trans. On
Neural Networks, Vol.5, No.1, 1994, pp.3–14.

[8] Barnsley, M F, Fractal functions and Interpol-
ation, Constr, Approx, No. 2, 1986, pp. 303–
329.

[9] Dalla L, Drakopoulos V, On the parameter
identification problem in the plane and the
polar fractal interpolation functions, Approx.
Theory, Vol.101, 1999, pp.289–202.

[10] Davis L,The Handbook of Genetic Algorithms,
Van Nostrand Reingold, 1991.

[11] Migdalas A, Pardalos P M, Varbrand P.
Multilevel Optimization: Algorithms and
Applications, Dordrecht: Kluwer Academic
Publishers, 1998.

[12] Sheng Zhaohan, Hierarchical Decision System:
Stackelberg Problem, Science Press, 1998.

[13] Golberg D E, Genetic Algorithms in Search,
Optimization and Machine Learning, Reading,
MA: Addison-Westey, 1989.

[14] Bard J F, Moore J T, A Branch-and-Bound
Algorithm for the Bilevel Programming
Problem , SIAM Journal on Scientific and
Statistical Computing, Vol.11, 1990, pp.281-
292.

[15] Savard G, Gauvin J, The Steepest Descent
Direction for the Nonlinear Bilevel
Programming Problem, Operations Research
Letters, Vol.15, 1994, pp.265-272.

[16] Vicente L, Savarg G, Judice J, Descent
Approaches for Quadratic Bilevel
Programming, Journal of Optimization Theory
and Applications, Vol.81, 1994, pp.379-399.

[17] Bard J F, Convex Two-level Optimization,
Mathematical Programming, Vol.40, 1988,
pp.15-27.

[18] Hejazi S R, Memariani A, Jahanshanloo G, et
al. Linear Bilevel Programming Solution by
Genetic Algorithm, Computers & Operations
Research, Vol.29, 2002, pp.1913-1925.

[19] Edmunds T, Bard J F, Algorithms for
Nonlinear Bilevel Mathematical Programming,
IEEE Transactions on Systems, Man, and
Cybernetics, Vol.21, 1991, pp.83-89.

[20] Muu L D, Quy N V, A Global Optimization
Method for Solving Convex Quadratic Bilevel
Programming Problems, Journal of Global
Optimization, Vol.26, 2003, pp.199-219.

[21] Mastorakis, Nikos E, The Singular Value
Decomposition (SVD) in tensors

WSEAS TRANSACTIONS on SYSTEMS Jin Min, Wang Qin, Xi Lifeng

ISSN: 1109-2777
330

Issue 4, Volume 7, April 2008

(multidimensional arrays) as an optimization
problem. Solution via Genetic Algorithms and
method of Nelder-Mead, WSEAS Transactions
on Systems, Vol.6, No.1, 2007, pp. 17-23.

[22] Dubey Manisha, Sharma Avdhesh, Agnihotri
Gayatri, Gupta Pankaj, Optimal tuning of
parameters of fuzzy logic power system
stabilizer using genetic algorithm, WSEAS
Transactions on Systems, Vol.4, No.3, 2005, pp.
225-232.

[23] Karnavas Yannis L, On the optimal control of
interconnected electric power systems in a re-
structured environment using genetic
algorithms, WSEAS Transactions on Systems,
Vol.4, No.8, 2007, pp. 1248-1258.

WSEAS TRANSACTIONS on SYSTEMS Jin Min, Wang Qin, Xi Lifeng

ISSN: 1109-2777
331

Issue 4, Volume 7, April 2008

	

