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Abstract: -- Graph fitness optimization is a difficult problem in data fitness. Genetic algorithms(GAs), which 
can yield accurate results if they start with suitable parameters, have been used to solve difficult problems with 
objective functions which usually are multi-modal, discontinuous, and nondifferentiable. In this paper, we 
design a genetic algorithm (GA) to optimize effect on self-affine fractal interpolation function (AFIF) and give 
result. The software was tested on realistic graphs. The validation and effectiveness of the method to be able to 
find the optimal fractal function are presented and demonstrated. 
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1 Introduction 
Graph fitness is one of the most interesting, 
important, and successful applications of data 
fitness. For example, fingerprint recognition, image 
retrieval, stock analysis, and so on. It is a 
challenging problem to find the optimization on 
graph fitness. 

There are certain optimization problems that 
become unmanageable using combinatorial methods 
as the number of objects becomes large. A typical 
example is the traveling salesman problem, which 
belongs to the NP-complete class of problems. For 
these problems, There are lots of algorithms, such as 
simulated annealing (SA), tuba search (TS), 
artificial neural networks, greedy algorithm and 
genetic algorithm (GA), etc, can be used to solve 
that problem. But each algorithm has advantage and 
disadvantage.  

There is a very effective practical algorithm 
called simulated annealing (thus named because it 
mimics the process undergone by misplaced atoms 
in a metal when its heated and then slowly cooled). 
While this technique is unlikely to find the optimum 
solution, it can often find a very good solution, even 
in the presence of noisy data [1]. TS is easy to 
realized, and suitable for solving standard 
combination optimization problem. But it isn’t 
suitable for solving binary array problem [2]. 
Artificial neural networks are able to be adaptive, 
teach itself and parallel process, but are difficulty to 
be realized by programs [3]. Greedy algorithms are 

simple and straightforward, but usually can’t find 
optimization [4]. GA may be more effective in and 
easier to be realized by programs.  

GA can yield accurate results providing that they 
are fed with suitable parameters to start with. The 
GA has been used to solve difficult problems with 
objective functions, which usually are multi-modal, 
discontinuous, and nondifferentiable[5]. These 
algorithms maintain and manipulate a family, or 
population, of solutions and implement a "survival 
of the fittest" strategy in their search for better 
solutions. This provides an implicit as well as 
explicit parallelism that allows for the exploitation 
of several promising areas of the solution space at 
the same time [6,7].  

Fractal is a tool in data fitness and interpolation. 
It’s better to fit rough curves and vibrating data, 
such as mountain range outlines, electrical-
diagrams ...etc. AFIF is able to create complex 
graph by setting several parameters.  

Given points  in the plane, we 
suppose 
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where  and  for any  with 

.  By (3) and (4), we notice that  is 

determined by  and. We always call 
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Definition 1. Suppose  is a continuous 
function on the interval . Let 
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be the graph of . We say that  is an 
affine fractal interpolation function(AFIF), if  

)(xf )(xf

)(1 Γ=Γ = i
N
i ωU .                               (4) 

For AFIF defined by formulas (1)-(4), the 
dimension of the graph Γ satisfies the 
following dimension formula ([1]): 
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Remark: Formula (5) holds when the 
interpolation points do not lie in a line 

simultaneous_ ly and . Any connected 

part of the graph Γ of AFIF has the same 
dimension . 
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From the concept of AFIF, if we have several 

interpolation points from original graph and suitable 
vertical factors, we can create graph, which 
approximate to the original graph. 

As for the more information of AFIF, please 
refer to [8-9]. From the concept of AFIF, if we have 
several interpolation points from original graph and 
suitable vertical factors, we can create graph, which 
approximate to the original graph. 

To fit a presented graph, it is not rectify 
parameters enough. It is a challenging problem to 
find the optimization of solution space. 

Section 1 presents the basic GA, and in Section 2 
the step of optimization of affine fractal 
interpolation function for graph fitness using a GA 
is described. Section 3 briefly describes the code, 
presents the list of parameters of the GA 
implementation and experiment results. Finally, 
some problems that deserve to be noted in 
implementing this method and their mend are given 
in section 4. 
 
 
2 The GA’s Introduction 
The GA searches the solution space of a function 
through the use of simulated evolution, i.e., the 
survival of the fittest strategy. In general, the fittest 
individuals of any population tend to reproduce and 
survive to the next generation, thus improving 
successive generations. However, inferior 
individuals can, by chance, survive and also 
reproduce. The GA has been shown to solve linear 
and nonlinear problems by exploring all regions of 
the state space and exponentially exploiting 
promising areas through mutation, crossover, and 
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selection operations applied to individuals in the 
population. A more complete discussion of genetic 
algorithms including extensions and related topics 
can be found in the books [10-13], and the 
Academic journals  [14-23].  
 
 
2.1 Characteristics of the GA 
The GA is a search technique, based on the 
principles of natural evolution. The important terms 
and principles as follow: 

(1) Codes on solution have evolution. 
The codes of optimal problem solution are called 

chromosomes. Since the solution is coded, the 
research on optimization of function is based on 
codes. The one important topic of a GA is encoding 
and decoding. 

 (2) Law of natural selection decides which 
chromosomes have more offspring than others.  

In the GA, fitness function is created by 
objective function, which will be optimized. The 
fitness functions ensure that the more chromosomes 
are fitting, the more offspring is generated. 

 (3) New chromosomes retain characteristics of 
parent chromosomes.  

Crossover takes two chromosomes and produces 
two new chromosomes. The two new chromosomes 
retain characteristics of parent chromosomes from 
parent chromosomes gene. 

(4) New chromosomes is different from parent 
chromosomes 

Randomly mutant made the difference.  
 
 
2.2 A Common Algorithm 
The way in which our GA program operates is 
shown as a schematic flow diagram in Fig. 1. A 
basic procedure of GA is as follow. 

It is a eight parameters function BGA. 
BGA=(C,E,P0,M,So,Co,Mo,T) 
In function, C -Individual coding method; 
E-Evaluate fitness function; 
P0-Initial population; 
M- Initial population size; 
So-Select operation;  
Co-Crossover operation; 
Mo-Mutation operation; 
T- Termination conditions.  
Procedure BGA 
begin 
 Initialize P(0); 
 t=0; 
 while (t≤T) do 

  for I=1 to M do 
   Evaluate fitness of P(t); 
  End for 
  for I=1 to M do 
   Select operation to P(t); 
  End for 
  for I=1 to M/2 do 
   Crossover operation to P(t); 
  End for 
  for I=1 to M do 
   Mutation operation to P(t); 
  End for 
  for I=1 to M do 
   P(t+1)= P(t); 
  End for 
  t=t+1; 
 end while 
end 
The GA procedure is summarized as follow. 
Step(1) Supply an initial population P(0) of N 

individuals and respective codes of function 
solutions, t: =0; (like step 1 of Fig.1) 

Step (2) Calculate each of chromosomes Pi(t), 
which is in population P(t), fitness function 

fi =fitness(Pi(t)); 
Step (3) Calculate each of chromosome selection 

on probability 

∑
=

= N

j
j

i
i

f

fp

1

, i=1,2,…，M，         (6) 

By pi, a new population is generated from P(t)  
newpop(t+1)={ Pj(t)|j=1,2,…，N}; 
Remark: A chromosome in population P(t) may 

be repeatedly selected. 
Step (4) Generate a population crosspop (t+1) by 

crossing consecutive pairs chromosomes from 
newpop(t+1). Crossing probability is Pc.  

Step (5) Mutate a gene of a chromosome by 
small probability p. Generate a population 
mutpop(t+1), t:=t+1, a new population P(t)= 
mutpop(t) . 

Step (6) Repeat step (3) until termination 
Step (7) Print out best solution found 
 
 

2.3 Fundamental Issues 
The use of a genetic algorithm requires the 
determination of six fundamental issues: the 
creation of the initial population, chromosomes 
representation, the selection method of the newpop 
population, the genetic operators making up the 
crossover function, the mutant method, and 
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termination criteria. The rest of this section 
describes each of these issues. 

Issue1. Initial population. 
The GA must be provided an initial population as 

indicated in step (1). The most common method is 
to randomly generate solutions for the initial 
population. However, since GAs can iteratively 
improve existing solutions (i.e., solutions from other 
heuristics and/or current practices), the beginning 
population can be seeded with potentially good 
solutions, with the remainder of the population 
being randomly generated solutions. 

Issue2. Chromosomes representation 
For any GA, a chromosome representation is 

needed to describe each individual in the population 
of interest. The representation scheme determines 
how the problem is structured in the GA and also 
determines the genetic operators that are used. Each 
individual or chromosome is made up of a sequence 
of genes from a certain alphabet. An alphabet could 
consist of binary digits (0 and 1), floating point 
numbers, integers, symbols (i.e., A, B, C, D), 
matrices, etc. One useful representation of an 
individual or chromosome for function optimization 
involves genes or variables from an alphabet of 
floating point numbers with values within the 
variables upper and lower bounds. 

Issue3. The selection method of the newpop 
population 

A common selection approach assigns a 
probability of selection, Pi, to each individual, i 
based on its fitness value as indicated in step(2)(3). 
The chromosome, which has larger fitness function 
value, has more chance to be selected in new 
population. This selection method is call roulette 
wheel selection. 

Issue4. The genetic operators making up the 
crossover function 

Crossover (or mating) is the way in which 
"genetic" information from two parent 
chromosomes is combined to generate "offspring". 
In step(4), the parent chromosomes and crossing 
size are randomization. 

Issue5. The mutant method 
While the crossover operation leads to a mixing 

of genetic material in the offspring, no new genetic 
material is introduced, which can lead to lack of 
population diversity and eventually "stagnation"-- 
where the population converges on the same, 
nonoptimal solution. The GA mutation operator 
helps to increase population diversity by introducing 

new genetic material. The common method is select 
one genetic to mutate by minimal probability. 

Issue6. Termination criteria 
The GA moves from generation to generation 

selecting and reproducing parents until a termination 
criterion is met. The most frequently used stopping 
criterion is a specified maximum number of 
generations. Another termination strategy involves 
population convergence criteria. In general, GAs 
will force much of the entire population to converge 
to a single solution. When the sum of the deviations 
among individuals becomes smaller than some 
specified threshold, the algorithm can be terminated. 

 
 

3 Steps for a GA’s Application and 
Analysis  
Steps for a GA’s application on AFIF for graph 
fitness are as follow: 

Step1. Select a graph as a original graph. 
Compress axis of abscissas in the interval [0,1]. 
Remain aspect ratio. 

Step2. Bisect axis of abscissas into EXN 
intervals. Let Terminal of every interval is 
interpolation points EXPi, i=0,1,2……EXN. Select 
suitable vertical factor Exd0(exi),exi=1,2,……EXN. 
Encode the vertical factors in EXL bits binary code. 
We use iteration method of AFIF to draw fractal 
graph. Select EXM sample point in every interval. 
Calculate sample variance EXS0. 

In this step, binary code for vertical factors of 
each intervals is genes, which is respective codes of 
function solutions. Geneses are joined as 
chromosome.  

Step3. Repeat step 2 for EXNc times. Select 
randomly vertical factors Exdexj(exi)(exj is repeat 
times) in every times. Calculate sample variance 
EXSj. 

In this step, we have EXNc pieces of 
chromosomes. Those chromosomes created initial 
population. 

Step4. The initial population has EXNc 
chromosomes. Every chromosome is described by 
vertical factors codes. Length of a chromosome is 
EXN*EXL. The fitness function of the chromosome 
No j is EXFj=1/ EXSj. From Section 2, we can 
evaluate fitness of the initial population. From select 
operation, which is based on evaluate fitness, we 
can create new population for evolution, than the 
population use crossover operation and mutation 
operation to create next population. Those 
operations will be repeated until terminal. 
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In this step, the smaller sample variance of 
chromosome is, the more selection on probability of 
chromosome is. The smaller sample variance is, the 
more fitness created graph and original graph is. 
The terminal conditions are very flexibility. Setting 
terminal condition decided for the time complexity 
of algorithms is important. Usually, we can set 
mutation times as terminal condition.  

Step5. From suitable vertical factors and AFIF 
Interpolation points, we can create optimization 
fitness graph for original graph. 

 
 

4 Experiments and Result 
In this experiment, we use VB.NET to realize those 
steps. 
 
 
4.1 Initial Population 
Let intervals number EXN=8, length of vertical 
factors code EXL=4, sample point in every interval 
EXM=16, chromosomes of population number 
EXNc=20.Here we give the original graph A as fig.2, 
which has been compressed. to obtain EXN 
interpolation points, EXPi, i=0,2…EXN. By step2, 
their axes are as table 1. 

 
Fig.2 Original graph A 

Table 1 The axes of interpolation points 
EXP0=(0,0.1) EXP1=(0.125,0.3) 

EXP2=(0.25,0.56) EXP3=(0.375,0.34)

EXP4=(0.625,0.64) EXP5=(0.5,0.55) 

EXP6=(0.75,0.42) EXP7=(0.875,0.33)

EXP8=(1,0.1)  
     From randomization algorithm, we get vertical 
factors Exd0(exi)(exi=1,2,……EXN) for each inter- 
val. For example as table 2,     
 

Table 2 The vertical factors 
Exd0(1)=0.559 Exd0(2)=0.677 Exd0(3)=-0.573

Exd0(4)=-0.574 Exd0(5)=0.18 Exd0(6)=0.803 

Exd0(7)=-0.448 Exd0(8)=0.18  

      Vertical factors must satisfy   in formula (2). 
By function x’=(x+1)/2 (  ), we can 
translate vertical factors in the interval [0,1]. 
Translate decimal to binary. We make up 
vertical factors code by four binary digital after 
decimal point. For example, Exd

]1,1-[∈x

0(1)=0.559, the 
code is 1100. A chrom- osome of population is 
made up by orderly jointing Exdexj(1) to 
Exdexj(8). For example, orderly jointing Exd0(1) 
to Exd0(8) is 110011010011001110011110 
01001001, which is a chromosome code. The 
function Dtob is to translate decimal to binary 
as follow. 

Function Dtob(ByVal x As Double) As String 
Dim temp As Double, i As Integer 
temp = (x + 1) / 2 
Dtob = "" 
For i = 1 To 4 
Dtob = Dtob & Fix(temp * 2) 
temp = temp * 2 - Fix(temp * 2) 
Next 
End Function 
In this function, Parameter x is source decimal 

value. Binary value is string. 
From AFIF and factors, which are described 

here_ inbefore, we can generate fractal graph. 
Calculate sample variance. The sub Bfit_Click is to 
create fitness graph by AFIF and draw it as follow. 

Private Sub Bfit_Click(ByVal sender As 
System.Object, ByVal e As System.EventArgs) 
Handles Bfit.Click 

        Dim i As Integer, k As Integer, x As Double, 
y As Double 

        Dim j As Integer, s As Integer 
        Dim pen As New Pen(Color.FromArgb(255, 

255, 255, 255)) 
        Dim g As System.Drawing.Graphics, g2 As 

System.Drawing.Graphics 
        Dim x1 As Integer, x2 As Integer, y1 As 

Integer, y2 As Integer 
        rst(rsts) = "" 
        For i = 1 To 8 
            rst(rsts) = rst(rsts) & ds(i) 
        Next 
        k = 0 
        p(0).x = inx(0) 
        p(0).y = iny(0) 
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        For i = 1 To 8 
            For j = 1 To 8 
                k = k + 1 
                x = k / 64  
                y = fny(i, inx(j), iny(j)) 
                p(k).x = x 
                p(k).y = y 
            Next 
        Next 
        For i = 0 To 63 
            x1 = Int(p(i).x) 
            y1 = n - Int(p(i).y) 
            x2 = Int(p(i + 1).x) 
            y2 = n - Int(p(i + 1).y) 
            g = Pic1.CreateGraphics 
            g.DrawLine(pen, x1, y1, x2, y2) 
            g2 = Pic3.CreateGraphics 
            g2.DrawLine(pen, x1, y1, x2, y2) 
        Next 
        dis(rsts) = 0 
        For i = 1 To 64 
            dis(rsts) = dis(rsts) + (p(i).y - pr(i).y) ^ 2 
        Next 
        dis(rsts) = dis(rsts) / 64 
        rsts = (rsts Mod 20) + 1 
End Sub 
In this sub, function fny is as follow. 
Function fny(ByVal n As Integer, ByVal x As 

Double, ByVal y As Double) As Double 
        c(n) = (iny(n) - iny(n - 1) - d(n) * (iny(8) - 

iny(0))) / (inx(8) - inx(0)) 
        h(n) = iny(n) - c(n) * inx(8) - d(n) * iny(8) 
        fny = c(n) * x + d(n) * y + h(n) 
End Function 
The initial population we selected as table 3. The 

initial population size is 20. 
For operating easliy, we array the initial 

population from little value to large value by fitness, 
which countdown to sample variance EXS. 

For i = 1 To 19 
    l = i 
    temp = fitness(i) 
    For j = i + 1 To 20 
    If temp > fitness(j) Then 
         temp = fitness(j) 
         l = j 
     End If 
     Next 
     If l <> i Then 
         fitness(l) = fitness(i) 
         fitness(i) = temp 
         temps = rst(l) 

         rst(l) = rst(i) 
                rst(i) = temps 
                temp = dis(l) 
                dis(l) = dis(i) 
                dis(i) = temp 
                temp = gl(l) 
                gl(l) = gl(i) 
                gl(i) = temp 
            End If 
        Next 

Table 3 The initial population 
No Chromosome EXS 
1 01001001110100100011010100101110 0.0568
2 01000001100001111101000101110101 0.0544
3 10101100011101001010110100000000 0.0682
4 11010010110001111010111010000110 0.0626
5 01001101101101000111110000100010 0.0706
6 01000101011010010010100001100111 0.0784
7 10001010101111000011100100001101 0.0825
8 11010110101010010000011010001001 0.0526
9 10011010110001110001000100001011 0.0471
10 11010001001010100010001010000011 0.0784
11 00111100000101111110000000011101 0.0905
12 10101101100111010110100010101101 0.0783
13 01111001000100001010110011101001 0.0925
14 11000101000011000111100101110101 0.0879
15 11011101101010100000010110100001 0.0672
16 00010011000011010001011000110111 0.1422
17 00101010101000101011001101111100 0.0476
18 01110110100111101000000000011000 0.0624
19 10101011111000101001000110011110 0.0265
20 00010111110111100110110100101010 0.1238

 
 
4.2 Population Evolution 

By using evaluate fitness of initial population 
and select operation to initial population we can 
create new population.  

Let crossing probability Pc=1, mutant probability 
p=0.05. Population evaluates 40 generations. The 
procedure of crossover operation to new population 
is as follow. 

k = 1 
For i = 1 To 10  
   Randomize() 
   wz = Int(Rnd() * 18 + 2) 
   xh = Int(Rnd() * 19 + 1) 
   Do While newpop(xh) = "" 
                xh = Int(Rnd() * 19 + 1) 
    Loop 
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     crosspop(k) = newpop(xh) 
     newpop(xh) = "" 
     temps = Mid(crosspop(k), wz) 
     crosspop(k) = Mid(crosspop(k), 1, wz - 1) 
     k = k + 1 
     xh = Int(Rnd() * 19 + 1) 
     Do While newpop(xh) = "" 
                xh = Int(Rnd() * 19 + 1) 
     Loop 
     crosspop(k) = newpop(xh) 
     newpop(xh) = "" 
     crosspop(k - 1) = crosspop(k - 1) & 

Mid(crosspop(k), wz) 
     crosspop(k) = Mid(crosspop(k), 1, wz - 1) 
     crosspop(k) = crosspop(k) & temps 
     k = k + 1 
Next 
In this basic procedure, we use random 

function to select chromosomes, which is used to 
crossover. But we found if we only use random 
function to operate crossover operation to twenty 
pieces of chromosomes is inefficient. We use 
procedure to operate crossover operation as follow. 

k = 1 
For i = 1 To 9  
    Randomize() 
    wz = Int(Rnd() * 18 + 2) 
    xh = Int(Rnd() * 19 + 1) 
    Do While newpop(xh) = "" 
xh = Int(Rnd() * 19 + 1) 
    Loop 
    crosspop(k) = newpop(xh) 
    newpop(xh) = "" 
    temps = Mid(crosspop(k), wz) 
    crosspop(k) = Mid(crosspop(k), 1, wz - 1) 
    k = k + 1 
    xh = Int(Rnd() * 19 + 1) 
    Do While newpop(xh) = "" 
xh = Int(Rnd() * 19 + 1) 
    Loop 
    crosspop(k) = newpop(xh) 
    newpop(xh) = "" 
    crosspop(k - 1) = crosspop(k - 1) & 

Mid(crosspop(k), wz) 
    crosspop(k) = Mid(crosspop(k), 1, wz - 1) 
    crosspop(k) = crosspop(k) & temps 
    k = k + 1 
 Next 
 For i = 1 To 20 
     If newpop(i) <> "" Then 
         crosspop(k) = newpop(i) 
         newpop(xh) = "" 

         k = k + 1 
      End If 
  Next 
      wz = Int(Rnd() * 18 + 2) 
      temps = Mid(crosspop(19), wz) 
      crosspop(19) = Mid(crosspop(19), 1, wz - 1) 
      crosspop(19) = crosspop(19) & 

Mid(crosspop(20), wz) 
      crosspop(20) = Mid(crosspop(20), 1, wz - 1) 
      crosspop(20) = crosspop(20) & temps 
In this procedure, we use random function to 

operate crossover operation to eighteen pieces of 
chromosomes. 

The procedure of mutation operation to crossover 
population is as follow. 

xh = Rnd() * 19 + 1  
wz = Rnd() * 19 + 1 
temps = Mid(crosspop(xh), wz, 1) 
If temps = "1" Then 
      temps = "0" 
Else 
     temps = "1" 
End If 
s1 = Mid(crosspop(xh), 1, wz - 1) 
s2 = Mid(crosspop(xh), wz + 1) 
crosspop(xh) = s1 & temps & s2 
In those procedures, 
xh-Number of chromosome in array; 
wz-Locaion of a gene in a piece of chromosome. 
Those two Variables are valued by random 

function. 
We translate each four binary digitals of binary 

code of new generation chromosomes to decimal, 
which can be translated into the interval [-1,1] from 
function x’ =2x -1( ]1,0[∈x  ). That is vertical 
factor for each interval. The function Btod is to 
translate binary to decimal as follow. 

Function Btod(ByVal x As String) As Single 
Dim temp(4) As Single, qz(4) As Single, i As 

Integer 
        Btod = 0 
        For i = 1 To 4 
            temp(i) = Val(Mid(x, i, 1)) 
            qz(i) = 1 / 2 ^ i 
            temp(i) = temp(i) * qz(i) 
            Btod = Btod + temp(i) 
        Next 
        Btod = 2 * Btod - 1 
End Function 
For example, x equal 1110 , the vertical factor is 

0.75. 
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The complete generation evolution procedure is 
as follow. 

Sub gene() 
Dim i As Integer, j As Integer, temp As Single, 

temps As String, l As Integer, total As Single, k As 
Integer 

Dim xh As Integer, wz As Integer, s1 As String, 
s2 As String 

        For i = 1 To 20 'Calculate fitness 
            fitness(i) = 1 / dis(i) 
            total = total + fitness(i) 
        Next 
        For i = 1 To 20 ' Calculate 
            gl(i) = fitness(i) / total 
            pgl(i) = 2 * i / 21 + 0.5 'For Rounding 

easily 
        Next 
        For i = 1 To 19 'Create array sequence 
            l = i 
            temp = fitness(i) 
            For j = i + 1 To 20 
                If temp > fitness(j) Then 
                    temp = fitness(j) 
                    l = j 
                End If 
            Next 
            If l <> i Then 
                fitness(l) = fitness(i) 
                fitness(i) = temp 
                temps = rst(l) 
                rst(l) = rst(i) 
                rst(i) = temps 
                temp = dis(l) 
                dis(l) = dis(i) 
                dis(i) = temp 
                temp = gl(l) 
                gl(l) = gl(i) 
                gl(i) = temp 
            End If 
        Next 
        k = 1 
        For i = 1 To 20 'Create new population 

newpop by evaluate fitness 
            If Int(pgl(i)) >= 1 Then 
                For j = 1 To Int(pgl(i)) 
                    newpop(k) = rst(i) 
                    k = k + 1 
                Next 
            End If 
        Next 
        k = 1 
        For i = 1 To 9  

            Randomize() 
            wz = Int(Rnd() * 18 + 2) 
            xh = Int(Rnd() * 19 + 1) 
            Do While newpop(xh) = "" 
                xh = Int(Rnd() * 19 + 1) 
            Loop 
            crosspop(k) = newpop(xh) 
            newpop(xh) = "" 
            temps = Mid(crosspop(k), wz) 
            crosspop(k) = Mid(crosspop(k), 1, wz - 1) 
            k = k + 1 
            xh = Int(Rnd() * 19 + 1) 
            Do While newpop(xh) = "" 
                xh = Int(Rnd() * 19 + 1) 
            Loop 
            crosspop(k) = newpop(xh) 
            newpop(xh) = "" 
            crosspop(k - 1) = crosspop(k - 1) & 

Mid(crosspop(k), wz) 
            crosspop(k) = Mid(crosspop(k), 1, wz - 1) 
            crosspop(k) = crosspop(k) & temps 
            k = k + 1 
        Next 
        For i = 1 To 20 
            If newpop(i) <> "" Then 
                crosspop(k) = newpop(i) 
                newpop(xh) = "" 
                k = k + 1 
            End If 
        Next 
        wz = Int(Rnd() * 18 + 2) 
        temps = Mid(crosspop(19), wz) 
        crosspop(19) = Mid(crosspop(19), 1, wz - 1) 
        crosspop(19) = crosspop(19) & 

Mid(crosspop(20), wz) 
        crosspop(20) = Mid(crosspop(20), 1, wz - 1) 
        crosspop(20) = crosspop(20) & temps 
        xh = Rnd() * 19 + 1 ' Let crossing 

probability Pc=1, mutant probability p=0.05.Change 
one gene of a piece of chromosome.  

        wz = Rnd() * 19 + 1 
        temps = Mid(crosspop(xh), wz, 1) 
        If temps = "1" Then 
            temps = "0" 
        Else 
            temps = "1" 
        End If 
        s1 = Mid(crosspop(xh), 1, wz - 1) 
        s2 = Mid(crosspop(xh), wz + 1) 
        crosspop(xh) = s1 & temps & s2 
        For i = 1 To 20 ' Next  population Evolution 
            rst(i) = crosspop(i) 
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        Next 
    End Sub 
By step4, we can generate the final population. 

The procedure is as follow. 
Private Sub Button3_Click(ByVal sender As 

System.Object, ByVal e As System.EventArgs) 
Handles Button3.Click 

Dim i As Integer, j As Integer, k As Integer, e1 
As System.EventArgs, obj1 As System.Object 

        For i = 1 To genm 
            For j = 1 To 20 
                For k = 1 To 8 
                    ds(k) = Mid(rst(j), (k - 1) * 4 + 1, 4) 
                    d(k) = Btod(ds(k)) 
                Next 
            Next 
            gene() 
        Next 
        ListBox2.Items.Clear() 
        For i = 1 To 20 
              ListBox2.Items.Add(rstl(i)) 
        Next 
End Sub 
In this procedure, element of array ds is vertical 

factors binary code, element of array d is vertical 
factors’ decimal value. We can see the final twenty 
pieces of chromosome of population in ListBox2. 

The result of evolution is as table 4.  
Table 4 The final population 

No Chromosome EXS 
1 11101001110000101000000101110101 0.0062
2 11101001110000101010000101110101 0.0049
3 11101001110000101010000101110101 0.0049
4 11101001110000101010000101110101 0.0049
5 11101001110000101010000101110101 0.0049
6 11101001110000101010000101110101 0.0049
7 11101001110000101010000101110101 0.0049
8 11101001110000101010000101110101 0.0049
9 11101001110000101010000101110101 0.0049
10 11101001110000101010000101110101 0.0049
11 11101001110000101010000101110101 0.0049
12 11101001110000101010000101110101 0.0049
13 11101001110000101010000101110101 0.0049
14 11101001110000101010000101110101 0.0049
15 11101001110000101010000101110101 0.0049
16 11101001110000101010000101110101 0.0049
17 11101001110000101010000101110101 0.0049
18 11101001110000101010000101110101 0.0049
19 11101001110000101010000101110101 0.0049
20 11101001110000101010000101110101 0.0049

From table 4, we can have the final optimization 
chromosome. Translate chromosome to eight 
vertical factors is as follow: 

Exdf(1)=1110=0.75; 
Exdf(2)=1001=0.125; 
Exdf(3)=1100=0.5; 
Exdf(4)=0010=-0.75; 
Exdf(5)=1010=0.25; 
Exdf(6)=0001=-0.875; 
Exdf(7)=0111=-0.125; 
Exdf(8)=0101=-0.375; 
Using Vertical factors and interpolation points as 

table 1, we can create the optimization 64 sample 
points. The procedure of drawing graph by 64 
sample points is as follow. 

For i = 0 To 63 
            x1 = Int(p(i).x) 
            y1 = n - Int(p(i).y) 
            x2 = Int(p(i + 1).x) 
            y2 = n - Int(p(i + 1).y) 
            g = Pic1.CreateGraphics 
            g.DrawLine(pen, x1, y1, x2, y2) 
            g2 = Pic3.CreateGraphics 
            g2.DrawLine(pen, x1, y1, x2, y2) 
Next 
The optimization graph is as fig.3. 

 
Fig.3 Optimization graph of AFIF a 

 
 
4.3 Experimental Result  
Comparing original graph A with optimization 
graph a as fig.4, we can find that coupling GA with 
AFIF yields optimization solution for graph fitness. 
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Fig.4 Original graph A and optimization graph a 

 
 

5 Conclusion 
The results obtained in this study show that GAs are 
powerful variable selection tools for graph fitness. 
Coupling GA with AFIF yields more precise 
predictions than other methods. Application of an 
AFIF, as a flexible nonlinear calibration, to the data 
selected by GA also improves the performance of 
the model considerably.  

It is expected that other methods can improve 
GA’s application. Some problems deserve to be 
noted in our experiment. The sample space size of 
the initial population must be appropriate. We 
should use schema theorem to generate the initial 
population. If selection method isn’t suitable, 
convergence will be quick. The result of GA may 
not be the best. Using simulated annealing algorithm 
may be useful. Termination criteria should be 
carefully studied. For example, we can use sample 
variance as the termination condition. Anyway, the 
great merits of our proposed methods are low 
costing, simple, and rapid. 
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