
Predicting performance of Grid based on Rough Set

Kun Gao1, Zhongwei Chen1, Meiqun Liu2

Computer Science and Information Technology College
Zhejiang Wanli University

No. 8, South Qian Hu Road, 315100, Ningbo, Zhejiang
P. R. China

Culture and Communication College
Zhejiang Wanli University

No. 8, South Qian Hu Road, 315100, Ningbo, Zhejiang
P. R. China

Abstract: In dynamic environment, the performance is restricted by various components, so we can not
determine the contribution to performanc using traditional method. In this paper, we propose a novel method for
predicting the performance in Grid Computing environment. We use the concept of Reduct in Rough Set theory
and history record collected during a period of time to predict the applications runtime that the traditional
methods can't obtain. We use the novel method in Data Ming Grid. The approach is based on frequencies of
attributes appeared in discernibility matrix. The theoretical foundation of rough sets provides an intuitive
solution to the problem of application run time estimation on Data Ming Grid. The results of the experiment
show that the use of Rough Set theory can process uncertain problem in distributed and dynamic environment,
and obtain better result than traditional methods.

Key-Words: Performance Evaluation, Distributed computing, soft computing

1 Introduction
Knowledge Grid is a software architecture for
geographically distributed PDKD (Parallel and
Distributed Knowledge Discovery) systems [1]. This
architecture is built on top of a computational Grid
and Data Grid that provides dependable, consistent,
and pervasive access to high-end computational
resources[2][3]. The Knowledge Grid uses the basic
Grid services and defines a set of additional layers to
implement the services of distributed knowledge
discovery on world wide connected computers where
each node can be a sequential or a parallel machine.
 Grid computing is employing the resources of
many computer nodes in a network to a certain
question, usually to a scientific, technical, and
commerce problem that requires much computer
process power or access to mass data. In concept,
Grid computing is a subset of distributed computing;
On the other hand, in function, Grid computing is
expansion and continuity to distributed computing.
Grid emphasize coordination and cooperation
between Grid resources[4][5].
 It becomes the encouraging trend, because of the
following reasons:
 (1) Grid computing can effectively make use of
the existing resources.

 (2) It can condense a large amount of computing
capability to solve the problem which can not be
solved before grid.
 (3) It will build widely distributed computing
platform to integrate all kinds of resource including
computation power resource, data resource, network
resource and so on.
 The research of scientist now focus on the
resource allcation and task schedulling in Grid
computing. It is the key component in Grid sytem. In
order to workout the above problem, scientist must
estimate the performance of Grid. In this paper, we
propose a novel method for predicting the
performance in Grid Computing environment. We
use the concept of Reduct in Rough Set theory and
history record collected during a period of time to
predict the applications runtime that the traditional
methods can't obtain. We use the novel method in
Data Ming Grid. The approach is based on
frequencies of attributes appeared in discernibility
matrix. The theoretical foundation of rough sets
provides an intuitive solution to the problem of
application run time estimation on Data Ming Grid.
The results of the experiment show that the use of
Rough Set theory can process uncertain problem in
distributed and dynamic environment, and obtain
better result than traditional methods.

WSEAS TRANSACTIONS on SYSTEMS Kun Gao, Zhongwei Chen, Meiqun Liu

ISSN: 1109-2777
288

Issue 3, Volume 7, March 2008

 The rest of this paper is organized as followed:
We introduce some related works and related Rough
Set concept in section 2, 3; and then we propose a
novel reduct algorithm in section 4; in section 5, we
introduce the data mining framework, DMG. We
conduct experiment to evaluate our approach in
section 6. Finally in section 7, we conclude this
paper.

2 Related Works
Early work in the parallel computing area proposed
using similarity templates of application
characteristics to identify similar tasks in a history. A
similarity template is a set of attributes that we use to
compare applications in order to determine if they are
similar. Thus, for histories recorded from parallel
computer workloads, one set of researchers selected
the queue name as the characteristic to determine
similarity [4]. They considered that applications
assigned to the same queue were similar. In other
work [5], researchers used several templates for the
same history, including user, application name,
number of nodes, and age.
Manually selecting similarity templates had the
following limitations:

• Identifying the characteristics that best
determine similarity isn't always possible.

• It's not generic: although a particular set of
characteristics might be appropriate for one
domain, it's not always applicable to other
domains.

In [6][7], they proposed automated definition and
search for templates and used genetic algorithms and
greedy search techniques. They were able to obtain
improved prediction accuracy using these techniques.

 Recently, another effective approach to predict
execution times on Grid is [8]. They investigate a use
of sampling: in order to forecast the actual execution
times of a given data mining algorithm on the whole
dataset, they run the same algorithm on a small
sample of the dataset. Many data mining algorithms
demonstrate optimal scalability with respect to the
size of the processed dataset, thus making the
performance estimate possible and accurate enough.
However, in order to derive an accurate performance
model for a given algorithm, it should be important to
perform an off-line training of the model, for different
dataset characteristics and different parameter sets.
In this paper, we develop a rough sets based
technique to address the problem of automatically
selecting characteristics that best define similarity. In
contrast to [6], our method determines a reduct as
template, instead of using greedy and genetic
algorithms. Rough sets provide an intuitively
appropriate theory for identifying templates. The
entire process of identifying similarity templates and
matching tasks to similar tasks is based on rough sets
theory, thereby providing an appropriate solution
with a strong mathematical underpinning.

3 Related Concept on Rough Sets
Theory
The theory of rough sets was introduced by Zdislaw
Pawlak [17, 20] to deal with classification and
analysis of data tables.Rough sets are particularly
suitable for handling uncertainty in data. Uncertainty
may be caused by missing or noisy data or due to
ambiguity in the semantics of data. When handling
such data, rough sets produce an inexact or "rough"
classification. The concept of approximation space

WSEAS TRANSACTIONS on SYSTEMS Kun Gao, Zhongwei Chen, Meiqun Liu

ISSN: 1109-2777
289

Issue 3, Volume 7, March 2008

provides the boundaries for classifying objects.
Rough sets use two concepts known as Upper
Approximation Space and Lower Approximation
Space as illustrated in figure 1. Its main idea is to
maintain the ability of the same classification and
derive classification rules through reducing
knowledge.
 The lower approximation of a concept (or class)
consists of all objects that definitely belong to that
concept and the upper approximation consists of all
objects that possibly belong to the concept in
question (i.e. objects beyond the upper
approximation definitely do not belong to the class).
The objects that fall between the upper and lower
approximation spaces (which is also called the
boundary region) are in the area of uncertainty or
rough classification. Rough sets have been widely
used in several application domains [17, 18, 19] for
rule generation, attribute reduction and prediction. A
distinctive feature of rough sets is that it operates
using only the available data and does not require any
additional assumptions such as grade of membership
and prior probabilities. In this section we address the
question of suitability of the theory of rough sets for
identifying the characteristics that define similarity in
application run-time estimation and develop a
systematic method for applying the constructs of
rough sets in this domain
 Reduct is a very important aspect in rough sets
theory. Reduct is an information system with
minimal field sets, which remove the redundant data.
The method for this idea is to search a certain fields
that can represent original system wholly. So
searching a reduct is to select some data with
characteristic. Rough sets offers a set of method to
find out all reduct. In this section, we introduce the
principal concepts of rough sets theory related to our
feature selection approach. The detail of the theory
can be found in [9-13].

3.1 Information System
An information system is an ordered pair S=(U, A∪
{d}), where U is a non-empty, finite set called the
universe, A is a non-empty, finite set of conditional
attributes, d is a decision attribute. A∩{d} =Φ. The
elements of the universe are called objects or
instances.

Information system contains knowledge about a
set of objects in term of a predefined set of attributes.
The set of objects is called concept in rough set
theory. In order to represent or approximate these
concepts, an equivalence relation is defined. The
equivalence classes of the equivalence relation,

which are the minimal blocks of the information
system, can be used to approximate these concepts.
Concept can be constructed from these blocks are
called definable sets. As to undefinable sets, two
definable sets, upper-approximation set and
lower-approximation set are constructed to
approximate the concept.
 A simple IS is shown in Figure 2. The information
system, two-dimensional table, this information
system is composed of six records and two fields.

3.2 Indiscernibility Relation
An information system presents all the knowledge in
related area. This two-dimensional table may be
unnecessarily large because it may be superfluous in
the two dimensions. The same or indiscernible
records may be described several times, or some of
the attributes may be redundant.
 Let P ⊆ A , xi, xj ∈ U .
A binary relation IND called indiscernibility relation
is defined as follow:
 IND(P) = {(xi, xj)|(xi, xj) ∈ U × U, a ∈ P, f(xi, a)
= f(xj, a)}
 Let U/IND(P) denote the set of all equivalence
classes of the relation IND(P).

3.3 Lower Approximation
Let R ⊆ C and X ⊆ U . The lower approximation of
X with respect to R is defined as follow:
 RX =_{Y ∈ U/R : Y ⊆ X}
 RX is the set of all elements of U which can be
with certain classified as elements of X, according to
knowledge R.

3.4 Indiscernibility Relation

WSEAS TRANSACTIONS on SYSTEMS Kun Gao, Zhongwei Chen, Meiqun Liu

ISSN: 1109-2777
290

Issue 3, Volume 7, March 2008

Let S=(U,A∪{d}) be an information system, every
subset B A defines an equivalence relation
IND(B),called an indiscernibility relation,defined as
IND(B)={(x,y)∈U×U:a(x)=a(y) for every a∈ B}.

⊆

3.3 Positive Region
Given an information system:
 S= (U,A∪{d})
 let X U be a set of records and B A be a
selected set of fields. The lower approximation of X
with respect to B is:

⊆ ⊆

 B*(X)={x∈U:[x]B⊆X}.
 The upper approximation of X with respect to B is:
 B*(X)={x∈U: [x]B∩X≠Φ}.
 The positive region of decision d with respect to B
is:
 POSB(d)=∪{B*(X):X∈U/IND(d)}
 The positive region of decision attribute with
respect to B represents approximate quantity of B.
Not all fields or records are necessary while
describing approximate quantity of original IS, some
are redundant. Reduct is the minimal set of fields
describing approximate quantity.

3.4 Reduct
An attribute a is dispensable in B A if POSB(d)=
POSB-{a}(d). A reduct of B is a set of attributes B’ B
such that all attributes a∈B-B’ are dispensable, and
POSB(d)= POSB’(d).

⊆
⊆

 A reduct consists of the minimal set of condition
attributes that have the same discerning ability as the
original IS. In other words, the reduct includes the
most significant attributes. All reducts of a dataset
can be found by constructing a kind of discernibility
function from the dataset and simplifying it.
Unfortunately, it has been shown that finding
minimal reduct or all reducts are both NP-hard
problems.
 There are usually many reducts in an information
system. In fact, one can show that the number of
reducts of an information system may be up to C|A|/2

|A|.
In order to find reducts, discernibility matrix and
discernibility function are introduced.

3.5 Discernibility Matrix
The discernibility matrix of an information system is
a symmetric matrix:
 |U|×|U|
 with entries cij defined as:
 {a∈A|a(xi)≠a(xj)} if d(xi)≠d(xj), Φ otherwise.

 A discernibility function can be constructed from
discernibility matrix by or-ing all attributes in cij and
then and-ing all of them together. After simplifying
the discernibility function using absorption rule, the
set of all prime implicants decides the set of all
reducts of the IS.

4 A Novel Reduct Algrithm
The heuristic comes from the fact that intersection of
a reduct and every items of discernibility matrix can
not be empty. If there are any empty intersections
between some item cij with some reduct, object i and
object j would be indiscernible to the reduct. And this
contradicts the definition that reduct is the minimal
attribute set discerning all objects (assuming the
dataset is consistent).
 A straightforward algorithm can be constructed
based on the heuristic. Let candidate reduct set R=Φ.
We examine every entry cij of discernibility matrix. If
their intersection is empty, a random attribute from cij
is picked and inserted in R; skip the entry otherwise.
Repeat the procedure until all entries of discernibility
matrix are examined. We get the reduct in R.
 The algorithm is simple and straightforward.
However, in most times what we get is not reduct
itself but superset of reduct. For example, there are
three entries in the matrix: {a1, a3}, {a2, a3}, {a3}.
According the algorithm, we get the reduct {a1, a2, a3}
although it is obvious {a3} is the only reduct. This is
because that our heuristic is a necessary but not
sufficient condition for a reduct. The reduct must be a
minimal one. The above algorithm does not consider
this. In order to find reduct, especially shorter reduct
in most times, we need more heuristics.
 A simple yet powerful method is sort the
discernibility matrix according |cij|. As we know, if
there is only one element in cij, it must be a member
of reduct. We can image that attributes in shorter and
frequent |cij| contribute more classification power to
the reduct. After sorting, we can first pick up more
powerful attributes, avoid situations like example
mentioned above, and more likely get optimal or
sub-optimal reduct.
 The sort procedure is like this. First, all the same
entries in discernibility matrix are merged and their
frequency is recorded. Then the matrix is sorted
according to the length of every entry. If two entries
have the same length, more frequent entry takes
precedence.
 When generating the discernibility matrix,
frequency of every individual attribute is also
counted for later use. The frequencies is used in
helping picking up attribute when it is need to pick up

WSEAS TRANSACTIONS on SYSTEMS Kun Gao, Zhongwei Chen, Meiqun Liu

ISSN: 1109-2777
291

Issue 3, Volume 7, March 2008

one attribute from some entry to insert into reduct.
The idea is that more frequent attribute is more likely
the member of reduct. The counting process is
weighted. Similarly, attributes appeared in shorter
entry get higher weight. When a new entry c is
computed, the frequency of corresponding attribute
f(a) are updated as f(a)=f(a)+|A|/|c|, for every a∈c;
where |A| is total attribute of information system. For
example, let f (a1) =3, f (a3) =4, the system have 10
attributes in total, and the new entry is {a1, a3}. Then
frequencies after this entry can be computed:
f(a1)=3+10/2=8; f(a3)=4+10/2=9.

 Input: an information system (U, A∪ {d}), where
A=∪ai, i=1,…,n.
 Output: a reduct Red

1. Red=Φ, count(ai)=0, for i=1,…n.
2. Generate discernibility matrix M and count

frequency of every attribute count(ai);
3. Merge and sort discernibility matrix M;
4. For every entry m in M do
5. If (m∩Red = = Φ)
6. select attribute a with maximal count(a) in m
7. Red=Red∪{a}
8. Endif
9. EndFor
10.Return Red

Ficuture 3. A Heuristic Reduct Algorithm

 Figure 3 is a heuristic reduct algorithm written in
pseudo-code. In line 2, when a new entry c of M is
computed, count(ai) is updated.
count(ai):=count(ai)+n/|c| for every ai∈|c|. In line 3,
Same entries are merged and M is sorted according
the length and frequency of every entry. Line 4-9
traverses M and generates the reduct.

5 The Structure of the DMG
The DMG, Data Mining Grid, is an dynamic and
distributed environment where data mining
application is running. Its core component is task
scheduling and resource allocation. These key
questions can be solved through Rough Set theory.

Figure 4 describes the data ming system
framework. It is mainly made up by following
components:

5.1 DMGrid Client Node
In consideration of ease of use, the system adopts
Browser/Server mode. Grid client exchanges
information with Grid portal through Internet

Explorer browser. Users submit the requirement of
data mining and receive the final result at Grid client.

5.2 DMGrid Portal Node
It provides a single access way to distributed data
mining application based grid. Users can make use of
the whole grid resource transparently through the
grid portal. This component is responsible for
translating users' demand into the RSL language
(Resource Specification Language) that can be
recognized by grid, is used for grid resource
discovery and grid resource allocation management.
The final result is returned to grid portal first, and
then returned to users by the portal.

5.3 DMGrid Resource Broker Node and
DMGrid Tasks Allocation Broker Node
user’s data mining requirement has driven grid
resource discovery. According to users' demand
condition, DMGrid resource broker looks for the
resources which meet the condition in a large number
of grid resources, including algorithms, computing
capability and data resource. It is an important job
that finds appropriate resource [14] [15]. As to any
application based on grid, it is first to find appropriate
resource, then allocate tasks and management them.
It can be predicted that there may be many nodes
which meet a condition. Resource broker is used for
finding available resource among MDS (Meta
Directory Service); mapping between data resource
and computing resource, i.e., the task allocation
broker is responsible for dispatching a certain task on
a certain node.

5.4 Grid Node
The Grid nodes are made up of personal computer,
high performance computer and cluster. Each node is
installed GLOBUS, as grid middleware. They are the
data carrier and the computation implementation
entity.

The rationale of design and development the grid
enabled data mining system is as follows:
• DMGrid adopts the standard, common and
open grid service mode, follows OGSA norm, and
offers unified support to the data mining applications.
• Based on Globus Toolkit and according to
the existing networks system structure, DMGrid use
the grid service to realize communication, operates
each other and resource management.

WSEAS TRANSACTIONS on SYSTEMS Kun Gao, Zhongwei Chen, Meiqun Liu

ISSN: 1109-2777
292

Issue 3, Volume 7, March 2008

• DMGrid is open, supports various data
mining tools and algorithms, the extensibility is
good.
• DMGrid is able to realize the improvement
of performance by increasing network node, high
performance computing node and cluster, the
scalability is strong.
• DMGrid can deal with distributed huge
volumes of high dimensional dataset, support
heterogeneity data source.
• The main purpose to design and develop the

DMGrid system is to improve the performance.
• Users carry out the data mining tasks in a
transparent way; the concrete system structure,
operation and characteristic in the grid environment
is to be hidden.
• In the field of data mining, the security of the
data and personal secrets are a sensitive topic. Data
Ming Grid supports the choice of place that the data
mining execute.

Data Mining
Task

Protal User Interface

Parse

Resource Broker
MDS

Task Allocation

Task Requirement

GIIS

GRIS

Grid Node

GRAM
Scheduler

DAI
…

Grid Node

GRAM
Scheduler

DAI
…

D
M

G
rid Tasks A

llocation B
roker

DMGrid Tasks
Allocation

Broker Node

Grid Node

Data Service
Catalogue

Computation
Service

Catalogue

Network
Information

Servvice

…

Grid Node

GRAM
Scheduler

DAI
…

Executie Plane

G
rid N

ode
C

lient N
ode

DMGrid
Client Node

DMGrid
Resource

Broker Node
Grid

Information
Service

Data

Parameter

Algorithm

Data
Resource

...

Computation
Resource

DMGrid
Resource
Broker

DMGrid
Protal Node

D
M

G
rid Portal

Figure 4. The framework of distributed data mining on grid

WSEAS TRANSACTIONS on SYSTEMS Kun Gao, Zhongwei Chen, Meiqun Liu

ISSN: 1109-2777
293

Issue 3, Volume 7, March 2008

0
1
2
3
4
5
6
7
8
9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Figure 5 Experiments

R
un

 T
im

e(
M

in
ut

es
)

Estimate
Actual

6 Primary result of experiment We compiled a history of data-mining tasks by
running several data-mining algorithms and
recording information about the tasks and
environment. We executed several runs of
data-mining jobs by varying the jobs' parameters
such as the mining algorithm, the data sets and the
sizes of the data sets. The algorithms we used were
from the Weka package of data-mining algorithms[9].
We generated several data sets of sizes varying from
1 to 20 Mbytes.

We contact the experiment in the Data Mining Grid,
The simulated environment is composed of three
machines which installed with GT3[16]. Each
machine is interconnected by a switched fast Ethernet.
Three distributed machines with different physical
configurations and operating systems: a Pentium III
running Windows 2000 with an 833-MHz processor
and 512 Mbytes of memory; a Pentium 4 running
Windows 2000 with a 2.0 GHz processor and
1Gbytes of memory; and a Sun Sparc station running
Sun OS 5.8 with a 444-Mhz processor and 256
Mbytes of memory. For each data-mining job, we
recorded the following information in the history: the
algorithm, file name, file size, operating system,
operating system version, IP address of the local host
on which the job was run, processor speed, amount of
memory, bandwidth, and start and end times. We
used histories with 100 and 150 records, and as
before, each experimental run consisted of 25 tests.

 In our experiment, the mean error was 0.23
minutes, and the mean error as a percentage of the
actual runtimes was 7.6 percent. This shows that we
accurately estimated the runtime for data-mining
tasks on Grid. The reduct that our algorithm selected
as a similarity template included the bandwidth,
algorithm, file size, dimensionality, and available
memory attribute. Figure 5 illustrates the actual and
estimated runtimes from one of our experimental
runs. Table 1 shows the condition attributes and
corresponding reduct in each experiment. Figure 6
shows the number of condition attributes Vs.
prediction performance. Because rough sets operate
entirely on the basis of the condition attributes
available in the history and require no external
additional information, thus the more abundant the
information correlating with performance, the more
accurate the prediction is.

We differentiated the test case from the historical
records by removing the runtime information. Thus, a
test case consists of all the information specified
except the recorded runtime. The runtime
information recorded in the test case was the task's
actual runtime. The idea was to determine an
estimated runtime using our prediction technique and
compare it with the task's actual runtime.

WSEAS TRANSACTIONS on SYSTEMS Kun Gao, Zhongwei Chen, Meiqun Liu

ISSN: 1109-2777
294

Issue 3, Volume 7, March 2008

Table 1. Condition Attributes and Corresponding Reduct in Each Experiment

Experiment
Number

Condition Attributes Reduct

1 time, algorithm, parameter, disk cache,
data size

algorithm, parameter,
data size

2 operating system, time, algorithm,
parameter, disk cache, data size,
dimensionality, file name

algorithm, parameter,
data size,
dimensionality

3 CPU type, operating system, time,
algorithm, parameter, disk cache, data
size, dimensionality, file name,
operating system version, CPU speed

algorithm, parameter,
data size,
dimensionality, CPU
speed

4 memory type, CPU type, operating
system, time, algorithm, parameter, disk
cache, data size, dimensionality, file
name, operating system version, CPU
speed, available memory, disk type

algorithm, parameter,
data size,
dimensionality, CPU
speed, available
memory

5 IP, memory type, CPU type, operating
system, time, algorithm, parameter, disk
cache, data size, dimensionality, file
name, operating system version, CPU
speed, available memory, disk type,
bandwidth, mainboard bus

algorithm, parameter,
data size,
dimensionality, CPU
speed, available
memory, bandwidth

Impact of Varying Condition Attributes on Prediction
Performance

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5

Experiment Number

M
ea

n
Er

ro
r/M

ea
n

R
un

Ti
m

es
(%

)

Figure. 6. The Number of Condition Attributes Vs. Prediction Performance

WSEAS TRANSACTIONS on SYSTEMS Kun Gao, Zhongwei Chen, Meiqun Liu

ISSN: 1109-2777
295

Issue 3, Volume 7, March 2008

7 Conclusions and Future Works
We have presented a novel rough sets approach to
estimating application run times. The approach is
based on frequencies of attributes appeared in
discernibility matrix. The theoretical foundation of
rough sets provides an intuitive solution to the
problem of application run time estimation on Data
Mining Grid. Our hypothesis that rough sets are
suitable for estimating application run time in Grid
environment is validated by the experimental results,
which demonstrate the good prediction accuracy of
our approach. The estimation technique presented in
this paper is generic and can be applied to others
optimization problems.

References:
[1] M. Cannataro, D. Talia, P. Trunfio,

KNOWLEDGE GRID: High Performance
Knowledge Discovery Services on the Grid. Proc.
GRID 2001, LNCS, Springer-Verlag, 2001.

[2] Foster I. and Kesselman C. (eds.) The Grid:
Blueprint for a Future Computing Inf., Morgan
Kaufmann Publishers, 1999.

[3] A. Chervenak, I. Foster, C. Kesselman, C.
Salisbury, and S. Tuecke. The Data Grid: towards
an architecture for the distributed management
and analysis of large scientific datasets. J. of
Network and Comp. Appl, 2001.

[4] A.B. Downey , "Predicting Queue Times on
Space-Sharing Parallel Computers,"Proc. 11th
Int'l ParallelProcessing Symp. (IPPS 97), IEEE
CS Press, 1997

[5] R. Gibbons , "A Historical Application Profiler
for Use by Parallel Schedulers,"Job Scheduling
Strategies for Parallel Processing , LNCS 1291,
Springer-Verlag, 1997

[6] W. Smith , I. Foster, and V. Taylor , Predicting
Application Runtimes Using Historical
Information, Job Scheduling Strategies for
Parallel Processing: IPPS/SPDP'98 Workshop,
LNCS 1459, Springer-Verlag, pp.122-142,1998.

[7] W. Smith , V. Taylor, and I. Foster, Using
Runtime Predictions to Estimate Queue Wait
Times and Improve Scheduler Performance, Job
Scheduling Strategies for Parallel Processing ,

LNCS 1659, D.G. Feitelson and L.Rudolph, eds.,
Springer-Verlag, pp. 202-229,1999.

[8] S. Orlando, P. Palmerini, R. Perego, and F.
Silvestri, Scheduling high performance data
mining tasks on a data grid environment. In
Proceedings of Europar, 2002.

[9] X.Hu, Knowledge discovery in databases: An
attribute-oriented rough set approach, Ph.D thesis,
Regina university, 1995.

[10] J.Starzyk, D.E.Nelson, K.Sturtz, Reduct
generation in information systems, Bulletin of
international rough set society, volume 3, 1998.

[11] S.K.Pal, A.Skowron, Rough Fuzzy
Hybridization-A new trend in decision-making,
Springer, 1999.

[12] Witten,I,H., and Eibe,F., “Data Mining:
Practical Machine Learning Tools and
Techniques with Java Implementations”, Morgan
Kauffman, 1999.

[13] Keyun Hu, lili Diao and Chunyi Shi: A Heuristic
Optimal Reduct algorithm. 22nd Intl. Sym. on
Intelligent Data Engineering and Automated
Learning (IDEAL2000), Hong Kong, (2002)

[14] G. Allen, W. Benger, T. Goodale, H. Hege, G.
Lanfermann, A. Merzky, T. Radke, E. Seidel, J.
Shalf, The Cactus Code: A Problem Solving
Environment for the Grid, Proceedings of the
Ninth International Symposium on High
Performance Distributed Computing (HPDC),
Pittsburgh, USA, IEEE Press.

[15] K.Marzullo, M. Ogg, A. Ricciardi, A. Amoroso,
F. Calkins, E. Rothfus, NILE: Wide-Area
Computing for High Energy Physics, Proceedings
of 7th ACM SIGOPS European Workshop,
Connemara, Ireland, 2-4 Sept. 1996, ACM Press.

[16] Globus Toolkit,
http://www.globus.org/ogsa/releases/alpha/

[17] Pawlak, Z., (1992), “Rough sets: Theoretical
Aspects of Reasoning about Data”, Kluwer
Academic Publishers, London, UK.

[18] Slowinski, R., (1992), “Intelligent Decision
Support - Handbook of Applications and
Advances of the Rough Sets Theory”, (Eds.) R.
Slowinski, Kluwer Academic Publishers.

WSEAS TRANSACTIONS on SYSTEMS Kun Gao, Zhongwei Chen, Meiqun Liu

ISSN: 1109-2777
296

Issue 3, Volume 7, March 2008

http://www.globus.org/ogsa/releases/alpha/

[19] Slowinski, R., Stefanowski, J., (1993), “Special
Issue on Rough Sets State of the Art and
Perspectives”, Foundations of Computing and
Decision Sciences, Vol. 18, No. 3-4.

[20] Pawlak, Z., (1982), “Rough Sets”, International
Journal of Computer and Information Sciences,
Issue. 11, pp. 413-433.

WSEAS TRANSACTIONS on SYSTEMS Kun Gao, Zhongwei Chen, Meiqun Liu

ISSN: 1109-2777
297

Issue 3, Volume 7, March 2008

