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Abstract: In dynamic environment, the performance is restricted by various components, so we can not 
determine the contribution to performanc using traditional method. In this paper, we propose a novel method for 
predicting the performance in Grid Computing environment. We use the concept of Reduct in Rough Set theory 
and history record collected during a period of time to predict the applications runtime that the traditional 
methods can't obtain. We use the novel method in Data Ming Grid. The approach is based on frequencies of 
attributes appeared in discernibility matrix. The theoretical foundation of rough sets provides an intuitive 
solution to the problem of application run time estimation on Data Ming Grid. The results of the experiment 
show that the use of Rough Set theory can process uncertain problem in distributed and dynamic environment, 
and obtain better result than traditional methods.  
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1   Introduction 
Knowledge Grid is a software architecture for 
geographically distributed PDKD (Parallel and 
Distributed Knowledge Discovery) systems [1]. This 
architecture is built on top of a computational Grid 
and Data Grid that provides dependable, consistent, 
and pervasive access to high-end computational 
resources[2][3]. The Knowledge Grid uses the basic 
Grid services and defines a set of additional layers to 
implement the services of distributed knowledge 
discovery on world wide connected computers where 
each node can be a sequential or a parallel machine. 
     Grid computing is employing the resources of 
many computer nodes in a network to a certain 
question, usually to a scientific, technical, and 
commerce problem that requires much computer 
process power or access to mass data. In concept, 
Grid computing is a subset of distributed computing; 
On the other hand, in function, Grid computing is 
expansion and continuity to distributed computing. 
Grid  emphasize coordination and cooperation 
between Grid resources[4][5]. 
     It becomes the encouraging trend, because of the 
following reasons: 
     (1) Grid computing can effectively make use of 
the existing resources. 

     (2) It can condense a large amount of computing 
capability to solve the problem which can not be 
solved before grid. 
     (3) It will build widely distributed computing 
platform to integrate all kinds of resource including 
computation power resource, data resource, network 
resource and so on. 
     The research of scientist now focus on the 
resource allcation and task schedulling in Grid 
computing. It is the key component in Grid sytem. In 
order to workout the above problem, scientist must 
estimate the performance of Grid. In this paper, we 
propose a novel method for predicting the 
performance in Grid Computing environment. We 
use the concept of Reduct in Rough Set theory and 
history record collected during a period of time to 
predict the applications runtime that the traditional 
methods can't obtain. We use the novel method in 
Data Ming Grid. The approach is based on 
frequencies of attributes appeared in discernibility 
matrix. The theoretical foundation of rough sets 
provides an intuitive solution to the problem of 
application run time estimation on Data Ming Grid. 
The results of the experiment show that the use of 
Rough Set theory can process uncertain problem in 
distributed and dynamic environment, and obtain 
better result than traditional methods. 
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     The rest of this paper is organized as followed: 
We introduce some related works and related Rough 
Set concept in section 2, 3; and then we propose a 
novel reduct algorithm in section 4; in section 5, we 
introduce the data mining framework, DMG. We 
conduct experiment to evaluate our approach in 
section 6. Finally in section 7, we conclude this 
paper. 
 
 
2   Related Works  
Early work in the parallel computing area proposed 
using similarity templates of application 
characteristics to identify similar tasks in a history. A 
similarity template is a set of attributes that we use to 
compare applications in order to determine if they are 
similar. Thus, for histories recorded from parallel 
computer workloads, one set of researchers selected 
the queue name as the characteristic to determine 
similarity [4]. They considered that applications 
assigned to the same queue were similar. In other 
work [5], researchers used several templates for the 
same history, including user, application name, 
number of nodes, and age. 
Manually selecting similarity templates had the 
following limitations: 

• Identifying the characteristics that best 
determine similarity isn't always possible. 

• It's not generic: although a particular set of 
characteristics might be appropriate for one 
domain, it's not always applicable to other 
domains. 

In [6][7], they proposed automated definition and 
search for templates and used genetic algorithms and 
greedy search techniques. They were able to obtain 
improved prediction accuracy using these techniques. 

     Recently, another effective approach to predict 
execution times on Grid is [8]. They investigate a use 
of sampling: in order to forecast the actual execution 
times of a given data mining algorithm on the whole 
dataset, they run the same algorithm on a small 
sample of the dataset. Many data mining algorithms 
demonstrate optimal scalability with respect to the 
size of the processed dataset, thus making the 
performance estimate possible and accurate enough. 
However, in order to derive an accurate performance 
model for a given algorithm, it should be important to 
perform an off-line training of the model, for different 
dataset characteristics and different parameter sets. 
In this paper, we develop a rough sets based 
technique to address the problem of automatically 
selecting characteristics that best define similarity. In 
contrast to [6], our method determines a reduct as 
template, instead of using greedy and genetic 
algorithms. Rough sets provide an intuitively 
appropriate theory for identifying templates. The 
entire process of identifying similarity templates and 
matching tasks to similar tasks is based on rough sets 
theory, thereby providing an appropriate solution 
with a strong mathematical underpinning. 
 
 
3   Related Concept on Rough Sets 
Theory 
The theory of rough sets was introduced by Zdislaw 
Pawlak [17, 20] to deal with classification and 
analysis of data tables.Rough sets are particularly 
suitable for handling uncertainty in data. Uncertainty 
may be caused by missing or noisy data or due to 
ambiguity in the semantics of data. When handling 
such data, rough sets produce an inexact or "rough" 
classification. The concept of approximation space 
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provides the boundaries for classifying objects. 
Rough sets use two concepts known as Upper 
Approximation Space and Lower Approximation 
Space as illustrated in figure 1. Its main idea is to 
maintain the ability of the same classification and 
derive classification rules through reducing 
knowledge. 
     The lower approximation of a concept (or class) 
consists of all objects that definitely belong to that 
concept and the upper approximation consists of all 
objects that possibly belong to the concept in 
question (i.e. objects beyond the upper 
approximation definitely do not belong to the class). 
The objects that fall between the upper and lower 
approximation spaces (which is also called the 
boundary region) are in the area of uncertainty or 
rough classification. Rough sets have been widely 
used in several application domains [17, 18, 19] for 
rule generation, attribute reduction and prediction. A 
distinctive feature of rough sets is that it operates 
using only the available data and does not require any 
additional assumptions such as grade of membership 
and prior probabilities. In this section we address the 
question of suitability of the theory of rough sets for 
identifying the characteristics that define similarity in 
application run-time estimation and develop a 
systematic method for applying the constructs of 
rough sets in this domain 
     Reduct is a very important aspect in rough sets 
theory. Reduct is an information system with 
minimal field sets, which remove the redundant data. 
The method for this idea is to search a certain fields 
that can represent original system wholly. So 
searching a reduct is to select some data with 
characteristic. Rough sets offers a set of method to 
find out all reduct. In this section, we introduce the 
principal concepts of rough sets theory related to our 
feature selection approach. The detail of the theory 
can be found in [9-13]. 
 
 
3.1 Information System 
An information system is an ordered pair S=(U, A∪
{d}), where U is a non-empty, finite set called the 
universe, A is a non-empty, finite set of conditional 
attributes, d is a decision attribute. A∩{d} =Φ. The 
elements of the universe are called objects or 
instances.  

Information system contains knowledge about a 
set of objects in term of a predefined set of attributes. 
The set of objects is called concept in rough set 
theory. In order to represent or approximate these 
concepts, an equivalence relation is defined. The 
equivalence classes of the equivalence relation, 

which are the minimal blocks of the information 
system, can be used to approximate these concepts. 
Concept can be constructed from these blocks are 
called definable sets. As to undefinable sets, two 
definable sets, upper-approximation set and 
lower-approximation set are constructed to 
approximate the concept. 
     A simple IS is shown in Figure 2. The information 
system, two-dimensional table, this information 
system is composed of six records and two fields. 
 
 
3.2 Indiscernibility Relation 
An information system presents all the knowledge in 
related area. This two-dimensional table may be 
unnecessarily large because it may be superfluous in 
the two dimensions. The same or indiscernible 
records may be described several times, or some of 
the attributes may be redundant. 
     Let P ⊆ A , xi, xj ∈ U .  
A binary relation IND called indiscernibility relation 
is defined as follow: 
     IND(P) = {(xi, xj)|(xi, xj) ∈ U × U, a ∈ P, f(xi, a) 
= f(xj, a)} 
     Let U/IND(P) denote the set of all equivalence 
classes of the relation IND(P). 
 

 
 
3.3 Lower Approximation 
Let R ⊆ C and X ⊆ U . The lower approximation of 
X with respect to R is defined as follow: 
     RX =_{Y ∈ U/R : Y ⊆ X} 
     RX is the set of all elements of U which can be 
with certain classified as elements of X, according to 
knowledge R. 
 
3.4 Indiscernibility Relation 
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Let S=(U,A∪{d}) be an information system, every 
subset B A defines an equivalence relation 
IND(B),called an indiscernibility relation,defined as 
IND(B)={(x,y)∈U×U:a(x)=a(y) for every a∈ B}.  

⊆

 
 
3.3 Positive Region 
Given an information system: 
     S= (U,A∪{d}) 
     let X U be a set of records and B A be a 
selected set of fields. The lower approximation of X 
with respect to B is: 

⊆ ⊆

     B*(X)={x∈U:[x]B⊆X}. 
     The upper approximation of X with respect to B is: 
     B*(X)={x∈U: [x]B∩X≠Φ}. 
     The positive region of decision d with respect to B 
is: 
     POSB(d)=∪{B*(X):X∈U/IND(d)} 
     The positive region of decision attribute with 
respect to B represents approximate quantity of B. 
Not all fields or records are necessary while 
describing approximate quantity of original IS, some 
are redundant. Reduct is the minimal set of fields 
describing approximate quantity. 
 
 
3.4 Reduct 
An attribute a is dispensable in B A if POSB(d)= 
POSB-{a}(d). A reduct of B is a set of attributes B’ B 
such that all attributes a∈B-B’ are dispensable, and 
POSB(d)= POSB’(d).  

⊆
⊆

     A reduct consists of the minimal set of condition 
attributes that have the same discerning ability as the 
original IS. In other words, the reduct includes the 
most significant attributes. All reducts of a dataset 
can be found by constructing a kind of discernibility 
function from the dataset and simplifying it. 
Unfortunately, it has been shown that finding 
minimal reduct or all reducts are both NP-hard 
problems. 
     There are usually many reducts in an information 
system. In fact, one can show that the number of 
reducts of an information system may be up to C|A|/2

|A|. 
In order to find reducts, discernibility matrix and 
discernibility function are introduced. 
 
 
3.5 Discernibility Matrix 
The discernibility matrix of an information system is 
a symmetric matrix: 
     |U|×|U| 
     with entries cij defined as: 
     {a∈A|a(xi)≠a(xj)} if d(xi)≠d(xj), Φ otherwise. 

     A discernibility function can be constructed from 
discernibility matrix by or-ing all attributes in cij and 
then and-ing all of them together. After simplifying 
the discernibility function using absorption rule, the 
set of all prime implicants decides the set of all 
reducts of the IS.  
 
 
4   A Novel Reduct Algrithm 
The heuristic comes from the fact that intersection of 
a reduct and every items of discernibility matrix can 
not be empty. If there are any empty intersections 
between some item cij with some reduct, object i and 
object j would be indiscernible to the reduct. And this 
contradicts the definition that reduct is the minimal 
attribute set discerning all objects (assuming the 
dataset is consistent). 
     A straightforward algorithm can be constructed 
based on the heuristic. Let candidate reduct set R=Φ. 
We examine every entry cij of discernibility matrix. If 
their intersection is empty, a random attribute from cij 
is picked and inserted in R; skip the entry otherwise. 
Repeat the procedure until all entries of discernibility 
matrix are examined. We get the reduct in R. 
     The algorithm is simple and straightforward. 
However, in most times what we get is not reduct 
itself but superset of reduct. For example, there are 
three entries in the matrix: {a1, a3}, {a2, a3}, {a3}. 
According the algorithm, we get the reduct {a1, a2, a3} 
although it is obvious {a3} is the only reduct. This is 
because that our heuristic is a necessary but not 
sufficient condition for a reduct. The reduct must be a 
minimal one. The above algorithm does not consider 
this. In order to find reduct, especially shorter reduct 
in most times, we need more heuristics. 
     A simple yet powerful method is sort the 
discernibility matrix according |cij|. As we know, if 
there is only one element in cij, it must be a member 
of reduct. We can image that attributes in shorter and 
frequent |cij| contribute more classification power to 
the reduct. After sorting, we can first pick up more 
powerful attributes, avoid situations like example 
mentioned above, and more likely get optimal or 
sub-optimal reduct. 
     The sort procedure is like this. First, all the same 
entries in discernibility matrix are merged and their 
frequency is recorded. Then the matrix is sorted 
according to the length of every entry. If two entries 
have the same length, more frequent entry takes 
precedence. 
     When generating the discernibility matrix, 
frequency of every individual attribute is also 
counted for later use. The frequencies is used in 
helping picking up attribute when it is need to pick up 
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one attribute from some entry to insert into reduct. 
The idea is that more frequent attribute is more likely 
the member of reduct. The counting process is 
weighted. Similarly, attributes appeared in shorter 
entry get higher weight. When a new entry c is 
computed, the frequency of corresponding attribute 
f(a) are updated as f(a)=f(a)+|A|/|c|, for every a∈c; 
where |A| is total attribute of information system. For 
example, let f (a1) =3, f (a3) =4, the system have 10 
attributes in total, and the new entry is {a1, a3}. Then 
frequencies after this entry can be computed: 
f(a1)=3+10/2=8; f(a3)=4+10/2=9.  
 
     Input: an information system (U, A∪ {d}), where 
A=∪ai, i=1,…,n. 
     Output: a reduct Red 

1. Red=Φ, count(ai)=0, for i=1,…n. 
2. Generate discernibility matrix M and count 

frequency of every attribute count(ai); 
3. Merge and sort discernibility matrix M; 
4. For every entry m in M do 
5. If (m∩Red = = Φ) 
6. select attribute a with maximal count(a) in m 
7. Red=Red∪{a} 
8. Endif 
9. EndFor  
10.Return Red 
 
Ficuture 3. A Heuristic Reduct Algorithm 

 
     Figure 3 is a heuristic reduct algorithm written in 
pseudo-code. In line 2, when a new entry c of M is 
computed, count(ai) is updated. 
count(ai):=count(ai)+n/|c| for every ai∈|c|. In line 3, 
Same entries are merged and M is sorted according 
the length and frequency of every entry. Line 4-9 
traverses M and generates the reduct. 
 
 
5 The Structure of the DMG 
The DMG, Data Mining Grid, is an dynamic and 
distributed environment where data mining 
application is running. Its core component is task 
scheduling and resource allocation. These key 
questions can be solved through Rough Set theory.  

Figure 4 describes the data ming system 
framework. It is mainly made up by following 
components: 
 
 
5.1 DMGrid Client Node 
In consideration of ease of use, the system adopts 
Browser/Server mode. Grid client exchanges 
information with Grid portal through Internet 

Explorer browser. Users submit the requirement of 
data mining and receive the final result at Grid client. 
 
 
5.2 DMGrid Portal Node 
It provides a single access way to distributed data 
mining application based grid. Users can make use of 
the whole grid resource transparently through the 
grid portal. This component is responsible for 
translating users' demand into the RSL language 
(Resource Specification Language) that can be 
recognized by grid, is used for grid resource 
discovery and grid resource allocation management. 
The final result is returned to grid portal first, and 
then returned to users by the portal. 
 
 
5.3 DMGrid Resource Broker Node and 
DMGrid Tasks Allocation Broker Node 
user’s data mining requirement has driven grid 
resource discovery. According to users' demand 
condition, DMGrid resource broker looks for the 
resources which meet the condition in a large number 
of grid resources, including algorithms, computing 
capability and data resource. It is an important job 
that finds appropriate resource [14] [15]. As to any 
application based on grid, it is first to find appropriate 
resource, then allocate tasks and management them. 
It can be predicted that there may be many nodes 
which meet a condition. Resource broker is used for 
finding available resource among MDS (Meta 
Directory Service); mapping between data resource 
and computing resource, i.e., the task allocation 
broker is responsible for dispatching a certain task on 
a certain node. 
 
 
5.4 Grid Node 
The Grid nodes are made up of personal computer, 
high performance computer and cluster. Each node is 
installed GLOBUS, as grid middleware. They are the 
data carrier and the computation implementation 
entity. 

The rationale of design and development the grid 
enabled data mining system is as follows: 
•  DMGrid adopts the standard, common and 
open grid service mode, follows OGSA norm, and 
offers unified support to the data mining applications. 
•  Based on Globus Toolkit and according to 
the existing networks system structure, DMGrid use 
the grid service to realize communication, operates 
each other and resource management. 
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•  DMGrid is open, supports various data 
mining tools and algorithms, the extensibility is 
good. 
•  DMGrid is able to realize the improvement 
of performance by increasing network node, high 
performance computing node and cluster, the 
scalability is strong. 
•  DMGrid can deal with distributed huge 
volumes of high dimensional dataset, support 
heterogeneity data source. 
•  The main purpose to design and develop the 

DMGrid system is to improve the performance. 
•  Users carry out the data mining tasks in a 
transparent way; the concrete system structure, 
operation and characteristic in the grid environment 
is to be hidden. 
•  In the field of data mining, the security of the 
data and personal secrets are a sensitive topic. Data 
Ming Grid supports the choice of place that the data 
mining execute. 
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6 Primary result of experiment      We compiled a history of data-mining tasks by 
running several data-mining algorithms and 
recording information about the tasks and 
environment. We executed several runs of 
data-mining jobs by varying the jobs' parameters 
such as the mining algorithm, the data sets and the 
sizes of the data sets. The algorithms we used were 
from the Weka package of data-mining algorithms[9].  
We generated several data sets of sizes varying from 
1 to 20 Mbytes. 

We contact the experiment in the Data Mining Grid, 
The simulated environment is composed of three 
machines which installed with GT3[16]. Each 
machine is interconnected by a switched fast Ethernet. 
Three distributed machines with different physical 
configurations and operating systems: a Pentium III 
running Windows 2000 with an 833-MHz processor 
and 512 Mbytes of memory; a Pentium 4 running 
Windows 2000 with a 2.0 GHz processor and 
1Gbytes of memory; and a Sun Sparc station running 
Sun OS 5.8 with a 444-Mhz processor and 256 
Mbytes of memory. For each data-mining job, we 
recorded the following information in the history: the 
algorithm, file name, file size, operating system, 
operating system version, IP address of the local host 
on which the job was run, processor speed, amount of 
memory, bandwidth, and start and end times. We 
used histories with 100 and 150 records, and as 
before, each experimental run consisted of 25 tests. 

     In our experiment, the mean error was 0.23 
minutes, and the mean error as a percentage of the 
actual runtimes was 7.6 percent. This shows that we 
accurately estimated the runtime for data-mining 
tasks on Grid. The reduct that our algorithm selected 
as a similarity template included the bandwidth, 
algorithm, file size, dimensionality, and available 
memory attribute. Figure 5 illustrates the actual and 
estimated runtimes from one of our experimental 
runs. Table 1 shows the condition attributes and 
corresponding reduct in each experiment. Figure 6 
shows the number of condition attributes Vs. 
prediction performance. Because rough sets operate 
entirely on the basis of the condition attributes 
available in the history and require no external 
additional information, thus the more abundant the 
information correlating with performance, the more 
accurate the prediction is. 

We differentiated the test case from the historical 
records by removing the runtime information. Thus, a 
test case consists of all the information specified 
except the recorded runtime. The runtime 
information recorded in the test case was the task's 
actual runtime. The idea was to determine an 
estimated runtime using our prediction technique and 
compare it with the task's actual runtime. 
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Table 1. Condition Attributes and Corresponding Reduct in Each Experiment 

 
Experiment 
Number 

Condition Attributes Reduct 

1 time, algorithm, parameter, disk cache, 
data size 

algorithm, parameter, 
data size 

2 operating system, time, algorithm, 
parameter, disk cache, data size, 
dimensionality, file name 

algorithm, parameter, 
data size, 
dimensionality 

3 CPU type, operating system, time, 
algorithm, parameter, disk cache, data 
size, dimensionality,  file name, 
operating system version, CPU speed 

algorithm, parameter, 
data size, 
dimensionality, CPU 
speed 

4 memory type, CPU type, operating 
system, time, algorithm, parameter, disk 
cache, data size, dimensionality, file 
name, operating system version, CPU 
speed, available memory, disk type 

algorithm, parameter, 
data size, 
dimensionality, CPU 
speed, available 
memory 

5 IP, memory type, CPU type, operating 
system, time, algorithm, parameter, disk 
cache, data size, dimensionality, file 
name, operating system version, CPU 
speed, available memory, disk type, 
bandwidth, mainboard bus 

algorithm, parameter, 
data size, 
dimensionality, CPU 
speed, available 
memory, bandwidth 
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Figure. 6. The Number of Condition Attributes Vs. Prediction Performance 
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7 Conclusions and Future Works 
We have presented a novel rough sets approach to 
estimating application run times. The approach is 
based on frequencies of attributes appeared in 
discernibility matrix. The theoretical foundation of 
rough sets provides an intuitive solution to the 
problem of application run time estimation on Data 
Mining Grid. Our hypothesis that rough sets are 
suitable for estimating application run time in Grid 
environment is validated by the experimental results, 
which demonstrate the good prediction accuracy of 
our approach. The estimation technique presented in 
this paper is generic and can be applied to others 
optimization problems. 
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