
Grid Resource Discovery Based on Semantic

YUEFENG FANG1, KUN GAO1, XIAOYONG WANG2
1 Culture and Communication College

Zhejiang Wanli University
No. 8, South Qian Hu Road, 315100, Ningbo, Zhejiang

P. R. China
http://www.zwu.edu.cn

2 Department of Computer and information
Zhejiang Wanli University

No. 8, South Qian Hu Road, 315100, Ningbo, Zhejiang
P. R. China

http://www.zwu.edu.cn

Abstract: An important aspect of Grid computing is publication resource service and discovery resource service.
Grid computing is based on this kind of mechanism. A Grid service is an extended Web service that conforms to
the Open Grid Service Infrastructure (OGSI) specification. The shortcoming of current Web service technology
only provides syntactic description. In this paper, we analyze the limitations for current Web Service standards
and point out that semantic description is the basis for automatic service discovery. We propose a novel
semantics based Grid Service framework which support publishing and discovery of Grid Service very well. The
experimental result demonstrates that the framework has good performance.

Key-Words: Grid Services, Web Service, Semantic Web, Grid Computation

1 Introduction
Grid is an emerging technology for enabling resource
sharing and coordinated problem solving in dynamic
multi-institutional virtual organizations. In the Grid
environment, shared resources and users typically
span different organizations. The resource
publication and discovery problem in this
environment involves assigning resources to tasks in
order to satisfy task requirements and resource
policies. These requirements and policies are often
expressed in disjoint application and resource models,
forcing a resource selector to perform semantic
matching between the two.

Grids are used to join various geographically
distributed computational and data resources, and
deliver these resources to heterogeneous user
communities. These resources may belong to
different institutions, have different usage policies
and pose different requirements on acceptable
requests. Grid applications, at the same time, may
have different constraints that can only be satisfied
by certain types of resources with specific
capabilities. Before resources can be allocated to run
an application, a user or agent must select resources
appropriate to the requirements of the application. In
a dynamic Grid environment, where resources may
come and go, it is desirable and sometimes necessary

to automate the resource matching to robustly meet
application requirements.

Existing resource description and resource
selection in the Grid is highly constrained.
Traditional resource matching, as exemplified by the
Condor Matchmaker, is done based on symmetric,
attribute-based matching. In these systems, the
values of attributes advertised by resources are
compared with those required by jobs. For the
comparison to be meaningful and effective, the
resource providers and consumers have to agree upon
attribute names and values. The exact matching and
coordination between providers and consumers make
such systems inflexible and difficult to extend to new
characteristics or concepts. Moreover, in a
heterogeneous multi-institutional environment such
as the Grid, it is difficult to enforce the syntax and
semantics of resource descriptions.

In the ontology-based matchmaker, we can
employ a flexible and extensible approach for
performing Grid resource selection, which, unlike the
traditional Grid resource selectors, uses separate
ontologies to declaratively describe resources and job
requests. Instead of exact syntax matching, the
ontology-based matchmaker performs semantic
matching using terms defined in ontologies. The
loose coupling between resource and request
descriptions removes the tight coordination
requirement between resource providers and

WSEAS TRANSACTIONS on SYSTEMS Yuefeng Fang, Kun Gao, Xiaoyong Wang

ISSN: 1109-2777
277

Issue 4, Volume 7, April 2008

consumers. In addition, the matchmaker can be easily
extended, by adding vocabularies and inference rules,
to include new concepts about resources and
applications and adapted the resource selection to
changing policies.

Web service paradigm has emerged as an
important mechanism for Web service discovery and
publication in the dynamic environment. In typical
Web service architecture, a public registry is used to
store information about Web services description
produced by the service providers and can be queried
by the service requesters for specific application.
However, the potential of a large scale growth of
private and semiprivate registries is creating the need
for an infrastructure which can support discovery and
publication over a group of autonomous registries.
Emerging PEER TO PEER solutions particularly suit
for the increasingly decentralized application. They
make it possible for different participants
(organizations, individuals, or departments within an
organization) to exchange information in a more
flexible and scalable way. Recently a new generation
of PEER TO PEER systems, offering distributed
hash table functionality, has been proposed. These
systems greatly improve the scalability and exact
match accuracy of PEER TO PEER systems, but
offer only the exact match query facility. Their
applications are extremely limited. Semantic Web
technologies have been shown to support all these
missing types of functionality [1]. Thus the
combination of concepts provided by Semantic Web
and PEER TO PEER seems to be a good basis for the
future of Web service discovery and publication.

Recently, the technology of Web service is
widely used by researcher. In [20], the authors
develop and evaluate parallel and distributed
simulation using the web services technology for
efficient simulation execution. A prototype
framework is implemented using web services for a
simple shop floor simulation, where the authors focus
on web service based simulation optimization
through the distribution of simulation replications
across different servers. As an optimization
algorithm, the ranking and selection procedure and
the extended Optimal Computing Budget Allocation
(OCBA) are employed. The development of parallel
and distributed simulation using web services will
help to solve large-scale problems efficiently and
guarantee interoperability among heterogeneous
networked systems.

Web searching is such an activity that its
importance can just not be ignored in the current
scenario. A number of public search engines are
available for this purpose. Every day, hundreds of
millions of requests are handled by a single search

engine. Due to this reason, new and efficient but
complex search systems are being expected in future.
But, the problem of evaluating the quality of search
results always remains there. In [21], the architecture
of a comprehensive web search evaluation system is
being proposed. The authors use a number of
objective evaluation techniques to supplement the
subjective evaluation based on user feedback. The
user feedback is obtained implicitly by watching the
actions of user on search results in response to his
query. These techniques are combined using
Modified Shimura technique of Rank aggregation.
The aggregated ranking is then compared with the
original ranking given by the search engine. The
correlation coefficient thus obtained is averaged for a
set of queries. The averaged correlation coefficient is
thus a measure of web search quality of the search
engine. The search engines then can be evaluated on
the basis of the search quality by comparing the
correlation coefficients.

At this moment web development is directed to
Social Web which promotes collaborative tasks that
needs to be considered for learning. Activities
developed trough e-learning systems needs to be
supported by some learning theories in order to
promote their quality. The type of information to
manage for e-learning is a topic that has led to the
emergence of new concepts for resource
development like Learning Object (LO) concept. [22]
is an awareness of the elements that should be
considered for quality e-activities taking into account
LOs instructional design for e-learning systems in
Social Web. According to this, the authors analyze
the most important ideas from learning theories that
needs to be rescued for quality e-activities and Social
Web characteristics for its development. On this
basis, authors propose a model to develop quality
e-activities for e-learning systems in Social Web.

In our work, we use domain ontology for
semantic Web service annotation. A DHT based
catalog is used to store the semantic indexes for direct
and flexible service publication and discovery. With
a large number of electronic commerce application,
each only focuses on publication or discovery of Web
services with interest to their respective Virtual
Organizations (VO). They are reluctant to partake
irrelevant information of catalog services. Also,
searching for a particular Web service would be very
difficult and inefficient in an environment consisting
of thousands of service providers from different
Virtual Organizations. In our work, we organize
domains into category ontology for partnership
federation. This ontology maps each service to a
specific domain thereby grouping them based on
domains. In this way Web services publication and

WSEAS TRANSACTIONS on SYSTEMS Yuefeng Fang, Kun Gao, Xiaoyong Wang

ISSN: 1109-2777
278

Issue 4, Volume 7, April 2008

discovery could be limited to only the services in that
specific Virtual Organizations.

The rest of this paper is structured as follows.
Section 2 briefly lists the related works. Section 3
presents an ontology based Web service annotation
method. The detailed explanation for distributed Web
service organization model is discussed. In section 4,
we have proposed the improved Web service
organization model, which supports domain specific
service publication and discovery. Section 5 presents
an initial implementation. Section 6 gives a
conclusion and some future work.

2 Related work
Currents approaches for Web service organization
can be broadly classified as centralized or
decentralized. The typical centralized approach
includes UDDI [2], where central registry is used to
store Web service descriptions. Three major
operators, namely IBM, Microsoft, and ARIBA
provide public UDDI service. The current UDDI
attempts to alleviate the disadvantages of the
centralized approach by replicating the entire
information and putting them on different sites.
Replication, however, may temporarily improve the
performance if the number of UDDI users is limited.
But, the more the replication sites, the less consistent
the replicated data will be.

Having realized that replicating the UDDI data is
not a scalable approach, several decentralized
approaches have been proposed. [3] has proposed
moving from a central design to a distributed
approach by connecting private registries with PEER
TO PEER technology, but it does not consider
partner federations in a specific domain. [4]
organizes peers into a hypercube. But maintaining
the hypercube with large amount of peers is
inefficient. It does not support domain specific
service federation either. [5] uses a dimension
reducing indexing scheme to map the
multidimensional information space to physical peers,
which supports complex queries containing partial
keywords and wild-cards. But it does not utilize the
semantics description. PEER TO PEER based Web
service discovery is also discussed in [6, 7]. None of
these works consider domain specific service
publication and discovery. Our work is different as
we use category ontology to categorize Web service
on the basis of business domains. We also use
domain ontology to capture domain knowledge and
index the ontology information, store the index at
peers in the PEER TO PEER system using a DHT
approach.

3 DHTs Facilitated Decentralized Web
Service Organization
Without a central services registry, a naïve way to
discover a service in distributed system is to send the
query to each of the participant, i.e. service provider.
While this approach would work for a small number
of service providers, it certainly does not scale to a
large distributed system. Hence, when a system
incorporates thousands of nodes, a facility is needed
that allows the selection of the subset of nodes that
will produce results, leaving out nodes that will
definitely not produce results. Such a facility implies
the deployment of catalog-like functionality.

Recently, a new generation of PEER TO PEER
systems offering DHT functionality has been
proposed. These systems greatly improve the
scalability and exact-match accuracy of PEER TO
PEER systems. This DHT functionality has proved to
be a useful substrate for distributed systems. A DHT
based catalog service can be used to determine which
nodes should receive queries based on query content.
Ideally, the PEER TO PEER service network will
allow for issuing a query to be sent to exactly those
peers that can potentially answer the query.

In this section, we will discuss DHT based
decentralized Web services organization model. The
DHT background and Chord protocol are first
introduced. Based on this, we propose the system
model for semantics indexing catalog service. Then
the service discovery procedure is illustrated. At the
end of this section, we have discussed the
maintenance of system evolution.

3.1 DHT Background and Chord
PEER TO PEER is the decentralization from
traditional central model to the decentralized
service-to-service model. In this model no central
index is required to span the network. Particular
attention has been paid into making these systems
scalable to large numbers of nodes, avoiding
shortcomings of the early PEER TO PEER pioneers
such as file sharing systems like Gnutella [8] and
Napster [9]. Representatives of scalable location and
routing protocols are CAN [10], Pastry [11], Chord
[12] and Tapestry [13], henceforth referred to as
Distributed Hash Tables (DHTs). Given a key, the
corresponding data item can be efficiently located
using only O(logn) network messages where n is the
total number of nodes in the system [12]. Moreover,
the distributed system evolves gracefully and can
scale to very large numbers of nodes. Our work
leverages this functionality to provide a scalable fully
distributed catalog service. [14] show that Chord’s

WSEAS TRANSACTIONS on SYSTEMS Yuefeng Fang, Kun Gao, Xiaoyong Wang

ISSN: 1109-2777
279

Issue 4, Volume 7, April 2008

maintenance bandwidth to handle concurrent node
arrivals and departures is near optimal. Thus we
choose Chord as our DHT protocol.
Chord is a famous DHT protocol. Chord identifiers
are structured in an identifier circle, which is called
Chord ring. There is one basic operation in the Chord
systems, lookup (key), which returns the identity of
the node storing the corresponding data item with
that key. This operation allows nodes to publish and
query information based on their keys. The keys are
strings of digits of some length. Nodes have
identifiers, taken from the same space as the keys (i.e.,
same number of digits). Chord uses hashing to map
both keys and node identifiers (such as IP address)
onto the identifier ring (Fig. 1). Each key is assigned
to its successor node, which is the nearest node
traveling the ring clockwise. Depending on the
application this node is responsible for associating
the key with the corresponding data item. Thus it
allows data request to be sent obliviously of where
the corresponding items are stored. Nodes and keys
may be added or removed at any time, while Chord
maintains efficient lookups using just O(logn) state
on each node in the system. For a detailed description
of Chord and its algorithms, refer to [12]. Chord
protocol is publicly available and has been
successfully used in other projects such as CFS [15].
Nevertheless, our design does not depend on the
specific DHT implementation and can work with any
DHT protocols.

3.2 Web service Semantic Annotation Based
on Domain Ontology
Adding semantics to Web service descriptions can be
achieved by using ontologies that support shared
vocabularies and domain models for use in the
service description [16]. We refer to related concepts
in ontologies as annotation. While searching for Web
services, relevant domain specific ontologies can be
referred to, thus enabling semantic matching of
services.

An ontology is a shared formalization of a
conceptualization of a domain [17]. In our approach,
we identify two aspects of semantics for Web service
description elicited from object-oriented model. We
also model concept from both attributes and
behaviors aspects. As shown in Fig. 2, the concept
Itinerary has attributes as start-Place, arrivalPlace
and startTime etc. It is also associated with behaviors
as search, book, cancel etc. The concept describes
what functionality a Web service aims at. The
behaviors aspect can be used to describe operations
of a Web service. The attributes aspects can be used
to describe the I/O interface of operations.

WSDL (Web Services Description Language) is
the current standard of the description of Web service
[18]. The syntax of WSDL is defined in XML
Schema. From the left part of Fig. 2, we can see the
simplified WSDL structure. We attempt to use
minimum information to give Web service
comprehensive annotations. Large distributed system
can’t afford much detailed information although
ontology can capture much information of real world
knowledge and domain theory. This kind of
information can be incorporate into WSDL or UDDI.
By this method, Web service is semantically
annotated in different granularity, which facilitates
different service level discovery (see Fig.2). The
following code exemplifies Web service annotation
method.

N2

N1

N2 is Successor of N1

Nodes

Keys

<types>
 <xsd:element name="StartCity"
OntCocept="Itinerary:startPlace"
minOccurs="1" maxOccurs="1"
type="xsd:string"
 <xsd:element name="ArrivalCity"
OntConcept="Itinerary:arrivalPlace"
minOccurs="1" maxOc-curs="1"
type="xsd:string"
 <xsd:element name=" time"
OntConcept="Itinerary:startTime"
minOccurs="1" maxOccurs="1"
type="xsd:string"

Fig. 1. The Chord identifier ring

 ……
</types>……

WSEAS TRANSACTIONS on SYSTEMS Yuefeng Fang, Kun Gao, Xiaoyong Wang

ISSN: 1109-2777
280

Issue 4, Volume 7, April 2008

<portType>
 <operation name="SearchItineary"
OntConcept="Itinerary:search">
 ……
 </operation>
</portType> ……
<service name="ItineraryService"
OntCocept="AirTravel:Itinerary"
 ……
</service>

We add semantics to Web services by mapping

service, operation, input and output in their
descriptions to concepts in the domain specific
ontologies. As the above WSDL code shows, the
Web service is annotated in three aspects: service
Itinerary-Service is annotated by AirTravel:Itinerary,
operation SearchItineary is annotated by
Itinerary:search and i/o element StartCity is
annotated by Itinerary:startPlace etc.

3.3 DHT Based Web Services Publication and
Discovery
Let {Ni} denote the n providers (a provider is a node
in the identifier ring), each of which publishes a set Ci

of Web services. When a node Ni wants to publish
Web services, it creates catalog information, which is
the set Ci = {(kj, Sij) | Sij is a summary of kj on node
Ni}. In Sect. 3.2, we have discussed the semantic
annotation of Web services. Thus the concept should
be the key, i.e. kj, as mapped by Chord protocol and
Behavior(Attributes Set) should be the corresponding
data item associated with the key, i.e. Sij, the
summary of kj. As a Web service consists of several
operations, there are sets of data summaries Sij, and
not just single data summary.

For a service discovery, the requestor should first
choose appropriate concept to which the preferred
service may refer. Then he (or she) decides the
interested behaviors and attributes he would like to
provide as input for the preferred Web service. As an
example, a service requestor wants to inquire about
the itinerary information from Shanghai to Beijing on
1 October 2004. Considering the ontology in Fig. 2,
the requestor may choose Itinerary as the domain
concept, search as behavior and startPlace,
arrivalPlace, startTime as attributes. This is the first
step for service discovery.

Fig.2 The left part illustrates the simplified WSDL structure. The right part is an ontology
example. The arrow indicates semantic Web services annotation. The bottom part illustrates
example of category ontology, which will be introduced in following sections.

WSEAS TRANSACTIONS on SYSTEMS Yuefeng Fang, Kun Gao, Xiaoyong Wang

ISSN: 1109-2777
281

Issue 4, Volume 7, April 2008

N1

N3 N2

Request: Q
Q,Itinerary

DHT
Protocol

{N1}

Detail Information

Service
Requestor

DHT Protocol Peer With
Catalog Index

Concept in Domain Ontology as Key

Node for Category storage

Request with Domain Ontology Information

Operation Set that Satisfy the Query

Fig. 3 The above part illustrates Web Service Discovery Procedure. The below part illustrates interaction of
DHT facilitated Web services discovery process

An example illustrates services discovery
procedure. We assume that there are four services
providers: N1, N2, N3 and N4. The service request is
submitted on N3. Itinerary serves as the DHT lookup
key and the hash algorithm returns that the summary
of Itinerary lies in N2, which stores part of the
catalog that contains Itinerary information. Then the
request with domain ontology information is sent to
N2. This is the second step (see Fig. 3). On N2, the
behaviors and attributes of the query is matched
against Si, Itinerary, (1<i<3). N2 replies to N3 with
the node set {N1}. Here we assume that only S1,
Itinerary matches the given query and so N1 is the
only node that satisfies the request. This is the third
step. Finally, N3 contacts N1 for detail information,
e.g. WSDL. Fig. 3 illustrates the procedure of Web
services discovery and the interaction of DHT
facili-tated Web services discovery process.

3.4 System Evolution
When a node joins/leaves the system, the affected
data structure on some existing nodes must be
updated accordingly to reflect the change. This
section describes how the distributed catalog service
evolves when nodes join, leave and update their data,
and how objects, which are the sets of data
summaries, are stored and accessed.

3.4.1 Nodes Joining
Each new node Nn (service provider) that joins the
system creates the Service set Cn, which should be
queryable by the nodes already in the system. First Nn
contacts any node Nc in the system (Step 1, Fig. 4).
Node and key have the same string space. Nn gets a
position in the identifier ring by the same hash
algorithm. Chord finds Nn’s successor Ns in the
identifier ring. The new node Nn, now part of the

WSEAS TRANSACTIONS on SYSTEMS Yuefeng Fang, Kun Gao, Xiaoyong Wang

ISSN: 1109-2777
282

Issue 4, Volume 7, April 2008

identifier ring, injects each (kni, Sni)∈Cn into the
system and the Chord protocol decides which nodes
should receive the new catalog information (Step 2).
Additionally, Nn becomes part of the catalog
infrastructure and should share the load of the catalog
service by hosting parts of the summary sets already
in the network. The Chord protocol will assign to Nn
keys for which Nn should be the successor in the
identifier ring. Therefore when Nn joins, k1, k2 and
their corresponding summaries should be reallocated
from Ns to Nn (Step 3), as shown in Fig. 4.

3.4.2U pdates and Departures
Catalog information stored in the system may need to
be updated as the provider makes changes to their
services. Update requests are handled in a similar
way as insertion of information during nodes joining
(Step 2, Fig. 4). Only the node that has created the
data summary (the owner) is allowed to change its
content. Nodes that store the data summaries are not
allowed to alter their content, although they may alter
the way they are stored. When a node N decides to
leave the system, it must hand over the catalog
information to its successor according to the Chord

Nc

Ns

K3

K2

K1

Nn Nn

Ns
K3

K2

K1

K1, K2, K3

(Kni,Sni)
NnNs K3

K2

K1

K3

K1, K2

1
2

3

Fig. 4. When a Service provider joining the system, three steps is needed for system evolution

Super Node
Regular Node

Category Chord Ring

Domain Chord Ring

Category
Ontology

AirTravel
Domain

Hotel Service
Domain

Travel
Domain

N1

S3

S4

S5
S6

S1

S2

N2

N3

Fig.5 Category ontology facilitated Web service organization for partnership federation

WSEAS TRANSACTIONS on SYSTEMS Yuefeng Fang, Kun Gao, Xiaoyong Wang

ISSN: 1109-2777
283

Issue 4, Volume 7, April 2008

protocol. Furthermore, it notifies the nodes that hold
N’s catalog data. To achieve this, N uses the keys it
inserted into the system to find the nodes that
currently hold N’s catalog information.

4 Category Ontology Facilitated Web
Service Organization for Partnership
Federation
DHT based Web service discovery realizes the
distributed service discovery. It doesn’t require a
public service registry. But with the large number of
services, every peer shares much catalog information
irrelevant to its interest. The challenge of dealing
with thousands of services during service publication
and discovery becomes critical. In this section, we
propose an improved architecture which allows peers
form federate partnership with common domain
interests.

4.1 Organizing Domain into Category
Ontology
If we could categorize all these distributed services
based on different business do-mains, finding the
right services would be easier. In our approach, we
create another kind of ontology: category ontology.
The category ontology is used to categorize Web
service based on domains and it maintains
relationship between domains. It maps each service
to a specific domain thereby grouping all the Web
services based on domains. This allows that domain
related services are assembled together. Thus finding
a specific Web service in a specific domain could be
limited to only those domain related services. As
shown in Fig. 2, the right part presents an example of
category ontology, and the middle part is the domain
ontology.

4.2 Improved Web Service Organization
Architecture
The improved decentralized Web service
organization architecture is shown in Fig. 5. There
are two kinds of Chord ring for peer node
organization. Domain Chord ring is used for
organization of specific domain services. The
category Chord ring links the separate domain
specific services in their respective domain Chord
ring together. The intention of this framework is to
promise a pure PEER TO PEER network suit for
distributed application. The node in category Chord
ring is called super node. Other nodes are called
regular nodes. The domain Chord ring functions the

same as in Sect. 3 for domain specific services
publication and discovery. The category Chord ring
differs from domain Chord ring in the information
being routed: the category Chord ring provides
category ontology catalog service for each domain
Chord ring. That is to say, the category Chord ring
routes category information to each super node in its
Chord ring. Thus the super node shoulders not only
the Web service information in its do-main but also
part of the category ontology information.

4.3 Web Services Publication and Discovery
When a service provider joins the infrastructure to
publish his service, he has to choose an appropriate
domain to which his business maps. A service
provider is also allowed to map to multiple domains.
If a new service provider wants to map to a do-main
that does not exist in the category ontology, he is
allowed to create a new do-main to map. Hence the
service provider can either associate to an existing
domain in the ontology or he can update the ontology
with an appropriate domain and associate to that new
domain.

AirTravel
Domain
Peers

N3 S3

Servic
e

Public
ation

S1

AirTravel

Peers in AirTravle domain

P1

Fig. 6. Web service publication procedure combing
domain ontology and category ontology

Considering the category ontology in Fig. 2, we
assume that the DHT protocol routes Travel to node
S2, AirTravel to S1 and Hotel Service to S3, as
shown in Fig.5. If a service provider P1 in AirTravel
domain wants to publish his service, we assume that
he first contacts with node N3 in Hotel service
Domain Chord ring. N3 contact the super node S3 in
its Chord ring and issues the AirTravel category
information to S3. Based on the DHT algorithm, S3
knows that S1 is the super node for AirTravel
Do-main. Then S1 returns the peers in AirTravel
domain Chord ring and P1 contacts with any peer in

WSEAS TRANSACTIONS on SYSTEMS Yuefeng Fang, Kun Gao, Xiaoyong Wang

ISSN: 1109-2777
284

Issue 4, Volume 7, April 2008

AirTravel domain for service publication. The left
service publication procedure acts as the same with in
Sect. 3. Fig. 6 illustrates service publication process.
Service discovery is similar to service publication.
Service requestor should first refer to a domain in
category ontology. The super node returns the
domain specific peers and the requestor discovers
appropriate services with the same procedure
dis-cussed in Sect. 3.3.

5 Implementation and Experiments
We have implemented an initial prototype to
illustrate the organization model we have proposed in
Sect. 3. The prototype is based on the Chord protocol
implementation found on the Chord project website
which is linked as a library. WordNet 2.0, an on-line
lexical database for the English language, is
embedded into the system through APIs to further
understand the semantics of Web services described
[19]. As the over-lay network configuration and
operations are based on Chord [12], its maintenance
costs are of the same order as in Chord. An evaluation
of the Web service discovery exactness and the
system scalability is presented below.

5.1 Web Service Discovery Exactness Evaluation

 Weather
Domain

Geographical
Domain

 Correct
Rate

Error
Rate

Correct
Rate

Error
Rate

(a) 20% 0 17% 0

(b) 88% 0 91% 0

Table 1. Web service discovery exactness evaluation
results: a collection of Web services in Weather and
Geographical domains are used as samples

To test service discovery exactness we first obtain a
corpus of Web services from SALCentral.org and
XMethods.com. We have limited our testing to two
domains, i.e. Weather and Geographical domains,
due to lack of relevant domain specific ontologies.
We compare the discovery results in two
circumstances: (a) Web service is not annotated with
ontology information. The service names are directly
used as the key hashed to catalog indexes. (b) The
Web services are manually annotated with domain
ontology. From the results in Table 1, we can
conclude that method (a) has low correct rate and
error rate. Comparatively, method (b) gets most of
the services satisfying the request.

5.2 System Scalability Evaluation
In this section, we will evaluate the system scalability
by constantly changing the number of nodes and
operations in Web service discovery.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

20

40

60

80

100

D
is

co
ve

ry
 ti

m
e

(m
s)

Nodes

(a)

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
0

20

40

60

80

100

D
is

co
ve

ry
 ti

m
e

(m
s)

Number of operations

(b)

Fig.7 System scalability evaluation results: we

evaluate system scalability by evaluating the
discovery time with number of nodes changes (a) and
number of operations changes (b)

From (a) in Fig. 7, we can see that the discovery

time changes steadily with peer nodes increase. This

WSEAS TRANSACTIONS on SYSTEMS Yuefeng Fang, Kun Gao, Xiaoyong Wang

ISSN: 1109-2777
285

Issue 4, Volume 7, April 2008

is because the discovery time mainly results from the
matching of query against the summary in the catalog
index. Thus it is not obviously irrelevant to the
number of nodes. On the other hand, with the
increasing of number of operations, the catalog index
becomes larger, which results in longer discovery
time as show in (b) of Fig. 7. Because the matching is
processed only in one node, the increase ration of
discovery time is not obvious. It inclines to
stabilization. Thus this is not a critical problem for
application in large distributed system. Also this can
be overcome by improving the matching algorithm.

6 Conclusions and Future Work
This paper presents flexible Web service
organization architecture for service publication and
discovery by combining semantic Web service with
PEER TO PEER networks. This system does not
need a central registry for Web service discovery. We
use an ontology-based approach to capture real world
knowledge for semantic service annotation. A DHT
based catalog service is used to store the semantic
indexes for direct and flexible service publication and
discovery. For partnership federation, we have made
improvements for this architecture. We use category
ontology to organize Web service into Virtual
Organizations. Service publication and discovery is
within a Virtual Organizations. Our initial
experiments have shown that the semantic annotation
approach suggested in this paper will significantly
improve Web services discovery exactness. With
Web services being as the enabling technology for
next generation network, we believe that this service
organization infrastructure will help Virtual
Organizations in carrying out their goals in a more
scalable environment.

Due to lack of relevant specific ontology, we
have not conducted experiments about category
organization. In the future work, we will put this Web
service organization architecture on the grid, which
will enable different organization and research
workshop to test it. This will give more comments for
us to improve this work.

References:
[1] R. Siebes: Peer-to-Peer solutions in the Semantic

Web context: an overview. EU-IST Project
IST-2001-34103 SWAP, Vrije Universiteit
Amsterdam (2002)

[2] UDDI. UDDI white papers.
http://www.uddi.org/whitepapers.html

[3] U. Thaden, W. Siberski, and W. Nejdl: A
Semantic Web based Peer-to-Peer Service
Registry Network. Technical Report, University
of Hanover, Germany (2003)

[4] M. Schlosser, M. Sintek, S. Decker and W. Nejdl:
A Scalable and Ontology-Based PEER TO PEER
Infrastructure for Semantic Web Services. PEER
TO PEER’02, Linkoping Sweden (2002)

[5] C. Schmidt, M. Parashar: A Peer to Peer
Approach to Web Service Discovery. World
Wide Web, Vol. 7, 2 (2003) 211–229

[6] M. Paolucci, K. Sycara, T. Nishimura, N.
Srinivasan: Using DAML-S for PEER TO PEER
Discovery. Proceedings of ICWS'03, Las Vegas
USA (2003) 203–207

[7] A. Maedche, S. Staab: Services on the Move -
Towards PEER TO PEER-Enabled Semantic
Web Ser-vices. Proceedings of the 10th
International Conference on Information
Technology and Travel & Tourism, Helsinki
Finland (2003)

[8] Gnutella Resources. http://gnutella.wego.com
[9] Napster. http://www.napster.com
[10] S. Ratnasamy, et al: A Scalable

Content-Addressable Network. Proceedings of
ACM SIGCOMM2001, San Diego CA USA
(2001)

[11] A. Rowstron, et al: Scalable, distributed object
location and routing for large-scale peer-to-peer
systems. IFIP/ACM International Conference on
Distributed Systems Platforms. Heidelberg
Germany (2001) 329–350

[12] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek,
H. Balakrishnan: Chord: A Scalable Peer-to-Peer
Lookup Protocol for Internet Applications.
IEEE/ACM Transactions on Networking. Vol. 11,
1 (2003) 17–32

[13] B. Y. Zhao, et al: Tapestry: An Infrastructure for
Fault-tolerant Wide-area Location and Routing.
U. C. Berkeley Technical Report
UCB/CSD-01-1141 (2001)

[14] D. Liben-nowell, H. Balakrishnan, D. Karger:
Observations on the Dynamic Evolution of
Peer-to-Peer Networks. Proceedings of IPTPS’02,
Cambridge MA (2002) 22–33

[15] F. Dabek, et al: Wide-area cooperative storage
with CFS. Proceedings of SOSP '01, Canada
(2001)

[16] R.Akkiraju, et al: A Method for Semantically
Enhancing the Service Discovery Capabilities of
UDDI. Proceedings of IIWeb’03, Acapulco
Mexico (2003)

[17] M. Uschold and M. Grüninger: Ontologies:
Principles, Methods and Applications.

WSEAS TRANSACTIONS on SYSTEMS Yuefeng Fang, Kun Gao, Xiaoyong Wang

ISSN: 1109-2777
286

Issue 4, Volume 7, April 2008

Knowl-edge Engineering Review, Vol. 11, 2
(1996)

[18] E. Christensen, et al: Web Services Description
Language (WSDL) Version 2.0 Part 1: Core
Language.
http://www.w3.org/TR/2004/WD-wsdl20-20040
326/ (2004)

[19] G. Miller: Special Issue, WordNet: An on-line
lexical database. International Journal of
Lexicography. Vol. 3, 4 (1990) 235–312

[20] Yoo, T., Cho, H., Yucesan, E.,Web service
based parallel and distributed simulation
experience, WSEAS Transactions on Systems,
Volume 5, Issue 5, May 2006, pages 973-980,
ISSN 1109-2777

[21] Ali, R., Beg, M.M.S., A framework for
evaluating web search systems, WSEAS
Transactions on Systems, Volume 6, Issue 2,
February 2007, pages 257-264, ISSN 1109-2777

[22] Garcia-Penalvo, F.J.; Morales, E.B., Angela,
Learning objects for e-activities in social web,
WSEAS Transactions on Systems, Volume 6,
Issue 2, March 2007, pages 257-264, ISSN
1109-2777

WSEAS TRANSACTIONS on SYSTEMS Yuefeng Fang, Kun Gao, Xiaoyong Wang

ISSN: 1109-2777
287

Issue 4, Volume 7, April 2008

