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Abstract: We explore the problem of noise-enhanced stability occurring in an asymmetric double well potential
when Brownian particles are driven by trichotomous noise and thermal noise in a dynamical regime where inertial
effects can safely be neglected. In the stationary state, we exactly calculate the spatial density profile of the
particles and the occupancy ratio between two potential wells. We show that, by conveniently choosing the system
parameters, the occupancy of a metastable state is a double peaked function of thermal noise intensity. Thus,
thermal noise may facilitate the occupation of the potential minima with an energy above the absolute minimum at
certain finite values of temperature. The effect is more pronounced in case the kurtosis of the trichotomous noise
tends to−2, i.e., in the case of dichotomous noise.
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1 Introduction

For a long time, noise was considered to be just a
source of disorder, a nuisance to be avoided [1], [2],
[3]. However, intensive investigation performed in
the last three decades, have revealed some positive as-
pects of noise.

The idea that noise, via interaction with the non-
linearity of the system, can give rise to some counter-
intuitive results, has led to many important discover-
ies: stochastic resonance [4], resonant activation [5],
nonequilibrium phase transitions and noise-induced
pattern formation [6], [7], [8], and stochastic ratchets
(Brownian motors) [9], [10], to name but a few. Ac-
tive analytical and numerical studies of various mod-
els in this field have been stimulated by their possi-
ble applications in chemical physics, molecular biol-
ogy, nanotechnology, and for separation techniques of
nanoobjects [9], [11].

The problem of noise-driven barrier crossing dy-
namics of a Brownian particle in a double-well poten-
tial coupled to a heath bath, represented by an additive
Gaussian noise with negligible correlation time (white
noise), was formulated and solved by Kramers [12]
more than half a century ago. Since then the model
and many of its variants have been addressed by a
large number of works at various levels of description.
Although, white noise as a model for studying thermal
activation is very useful for physical applications, at
practical physical systems treatment of colored noises
with finite correlation times is also popular enough.
Therefore, it seems important to investigate systems
driven by colored noises. The most frequently used
model of a colored noise is the Gaussian noise gen-
erated by the Ornstein-Uhlenbeck process. Unfortu-
nately, it is a rather limited class of noise-driven model
systems that admits exact solutions in the presence of
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Gaussian colored noise [13]. Other noises popular be-
cause of their tractability are dichotomous noise, also
called random telegraphic noise [14], and trichoto-
mous noise [15]. It is notable that, in the case of
dichotomous and trichotomous noises, exact formu-
las for the steady-state probability distributions can be
found for a rather broad class of dynamical models
[14], [15].

The recent years have witnessed an increasing
interest in the dependence of the mean exit time of
metastable and unstable systems on noise intensity
[16], [17]. Noise can modify the stability of a system
in a counterintuitive way such that the system remains
in a metastable state for a longer time than in the de-
terministic case [16]. Related investigations involv-
ing noise-induced stability [18] or noise-enhanced sta-
bility [19], [20] belong to a highly topical interdisci-
plinary realm of studies, ranging from condensed mat-
ter physics to molecular biology, or to cancer growth
dynamics [16], [21], [22].

Motivated by investigations into the effect of
a periodic electric field on cell membrane proteins
[23], [24] the author of [18] has considered the over-
damped motion of a Brownian particle in an asym-
metric bistable potential fluctuating according to a di-
chotomous noise. This biologically motivated model
clearly demonstrates the effect of noise-induced sta-
bility, as for intermediate fluctuation rates the mean
occupancy of minima with an energy above the abso-
lute minimum is enhanced.

In the present paper we consider a model similar
to the one presented in [18], except that the dichoto-
mous noise is replaced with a trichotomous noise.
Although both dichotomous and trichotomous noises
may be useful in modeling natural colored fluctua-
tions, the latter is more flexible, including all cases of
dichotomous noises [15]. Furthermore, it is remark-
able that for trichotomous noises the kurtosisϕ, un-
like the Gaussian colored noise, whereϕ = 0, and
symmetric dichotomous noise, whereϕ = −2, can be
anything from−2 to∞. This extra degree of freedom
can prove useful in modeling actual fluctuations.

The main contribution of this paper is as follows.
We provide an exact formula for the analytic treat-
ment of the dependence of the occupancy probabil-
ity of a metastable state on various system parame-
ters: viz. temperature, potential asymmetry, correla-
tion time, kurtosis, and noise amplitude. We estab-
lish a new thermal fluctuations-induced phenomenon,
namely, for certain values of the system parameters
there exist three ranges of temperature values where
the occupancy of the metastable state is enhanced.

We also show that such a behavior of the system
is quite robust, and the mentioned phenomenon occurs
within a broad range of trichotomous noise parameters

(kurtosis, correlation time).
It is remarkable that one of the temperature

regimes where the enhancement of stability occurs is
relevant for cell biology. Thus, in the case of living
cells, the result may reveal a possibility to control the
stability of metastable states by varying the tempera-
ture.

The structure of the paper is as follows. Section 2
presents the basic model investigated. A master equa-
tion description of the model is given and the formula
for the occupancy probability of the metastable state
is found. Section 3 analyzes the behavior of the oc-
cupancy probability. The phenomenon of double en-
hanced stability of the metastable state versus tem-
perature is established. Section 4 contains some brief
concluding remarks.

2 Model and the exact solution
As a model for systems with a metastable state, which
are strongly coupled with noisy environment, we con-
sider one-dimensional overdamped Brownian motion
in a fluctuating sawtooth-like asymmetric bistable po-
tential well with the widthL

Ũ(X̃, Z̃) = Ũ(X̃) + X̃ · Z̃(t̃), (1)

whereX̃(t̃) is the displacement of a Brownian par-
ticle at the timet̃. The archetypal examples, ex-
hibiting bistable (double-well) potentials are nonequi-
librium chemical reactions (e.g., the second Schlögl
model [25], [26]), nonequilibrium Ginzburg-Landau-
type bistable stochastic dynamics [25], and optical
bistability in laser devices [27], [28]. The variable
Z̃(t̃) in Eq. (1) is a Markovian trichotomous noise
[15], which consists of jumps between three values:
z̃1 = ã, z̃2 = 0, z̃3 = −ã, ã > 0. The jumps follow,
in time, the pattern of a Poisson process, the values
occurring with the stationary probabilitiesps(ã) =
ps(−ã) = q andps(0) = 1− 2q, where0 < q < 1/2.
In a stationary state the fluctuation process satisfies

〈Z̃(t̃)〉 = 0 ,

〈Z̃(t̃ + τ̃)Z̃(t̃)〉 = 2qã2 exp(−ν̃τ̃), (2)

where the switching ratẽν is the reciprocal of the
noise correlation timẽτc = 1/ν̃, i.e., Z̃(t̃) is a sym-
metric zero-mean exponentially correlated noise. The
probabilities Wn(t̃) that Z̃(t̃) is in the staten ∈
{1, 2, 3} at the timet̃ evolve according to the master
equation

d

dt̃
Wn(t̃) = ν̃

3
∑

m=1

SnmWm(t̃), (3)
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where

Snm =





q − 1 q q
1 − 2q −2q 1 − 2q

q q q − 1



 . (4)

The transition probabilitiesTij = p(z̃i, t̃ + τ̃ | z̃j, t̃)
between the states̃zn, n = 1, 2, 3, can be represented
by means of the transition matrix(Tij) of the trichoto-
mous process as follows

(Tij) = (δi,j) + (1 − e−ν̃τ̃ )Sij ,

whereδi,j is the Kronecker symbol.
The trichotomous process is a particular case of

the kangaroo process [29] with the kurtosis

ϕ =

〈

Z̃4(t̃)
〉

〈

Z̃2(t̃)
〉2 − 3 =

1

2q
− 3 . (5)

We describe the overdamped motion of Brownian
particles by the Langevin equation

κ

dX̃

dt̃
= h̃(X̃) − Z̃(t̃) + ξ̃(t̃),

h̃(x̃) = −dŨ(x̃)

dx̃
, (6)

whereκ is the friction coefficient. The thermal fluc-
tuationsξ̃(t̃) are modeled by the zero-mean Gaussian
white noise with the correlation function

〈ξ̃(t̃1) ξ̃(t̃2)〉 = 2κkBTδ(t̃1 − t̃2), (7)

wherekB is the Boltzmann constant andT is the tem-
perature.

By applying a scaling of the following form:

X =
X̃

L
, U(x) =

Ũ(x̃)

Ũ0

,

t =
t̃

t0
, ξ =

Lξ̃

Ũ0

, Z =
LZ̃

Ũ0

, (8)

where Ũ0 = Ũmax − Ũmin is the barrier height of
the left potential well (cf. Fig. 1), we obtain a di-
mensionless formulation of the dynamics. Choos-
ing t0 = κL2/Ũ0, the dimensionless friction coeffi-
cient turns to unity and the quantities determining the
rescaled noises are reduced to

ν =
κL2ν̃

Ũ0

, a =
ãL

Ũ0

, D =
kBT

Ũ0

, (9)

where2D is the strength of the rescaled zero-mean
Gaussian white noiseξ(t). For brevity, in what fol-
lows we shall callD temperature.

0.2 0.4 0.6 0.8 1
x

-3

-2

-1

0

1

2

V
n
Hx
L

z1=a

z2=0

z3=-a

Fig. 1. Representation of different states of the net
potentialsVn(x) = U(x) + znx with z1 = a, z2 = 0,
z3 = −a. The potentialU(x) is given by Eq. (11) at
the parameter valuesk = 0.24, a = 2, andε = 1. All
quantities are dimensionless.

As an example of overdamped dynamics (see Eq.
(6)), following Ref. [30], we consider kinesin, which
moves along microtubules inside cells. At the tem-
peratureT = 310 K the typical parameter values of
the system are:κ = 2 · 10−8 kg/s,L = 8 · 10−9 m,
m̃ = 6 · 10−22 kg, andŨ0 = 5kBT . From the scal-
ing (8) we obtain that the dimensionless mass of the
kinesin molecule ism = m̃Ũ0/(κ

2L2) ≈ 5 · 10−10.
Hence, the acceleration term is 10 orders smaller than
the dimensionless friction term. Thus, inertial effects
can be neglected.

The dimensionless dynamics is described by the
stochastic differential equation

dX

dt
= h(X) − Z(t) + ξ(t) ,

h(x) = −dU(x)

dx
. (10)

Thus we consider a model similar to the one pre-
sented in [18], except for some details of the poten-
tial profile and for the dichotomous noise being re-
placed with a trichotomous noise. As the results of
[18] show that the phenomenon of noise-induced sta-
bility is quite universal and manifests itself for ar-
bitrary bistable potential landscapes, we decided to
study overdamped motion of Brownian particles in an
asymmetric, bistable, piecewise linear potential sub-
jected to both a trichotomous noise and a thermal one.
The piecewise linear potential is important for at least
two reasons. First, it can be used as a first approxi-
mation of the shape of an arbitrary potential, and sec-
ond, it is sufficiently simple to allow an analytic treat-
ment of the relevant quantities, being at the same time
physically rich enough to provide most of the effects
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characteristic of two-well potentials. The asymmetric
bistable potential considered has the profile

U(x) =























1

k
x, x ∈ (0, k);

1 +
1 + ε

1 − k
(k − x), x ∈ (k, 1);

U(0) = U(1) = ∞.

(11)

A schematic representation of the three config-
urations assumed by the “net potentials”Vn(x) =
U(x) + znx, n = 1, 2, 3, associated with the right-
hand side of Eq. (10), is shown in Fig. 1. In this
work, we restrict ourselves to the system parameters
region where the net potentialsVn(x) for all states
n = 1, 2, 3 of the non-equilibrium noiseZ have two
minima. More precisely, we assume that

a <
1 + ε

1 − k
, a <

1

k
, 0 < k <

1

2
,

0 < ε < a(1 − 2k). (12)

The master equation corresponding to Eq. (10)
reads

∂

∂t
Pn(x, t)

= − ∂

∂x

{

[h(x) − zn]Pn(x, t) − D
∂

∂x
Pn(x, t)

}

+ ν

3
∑

m=1

SnmPm(x, t) ,

(13)

where Pn(x, t) is the joint probability density for
the position variablex(t) and the fluctuation variable
z(t); while Snm = q + (1 − 3q)δn,2 − δn,m. Here
δn,m is the Kronecker symbol. The stationary proba-
bility density in thex spaceP s(x) is then evaluated
via the stationary probability densitiesP s

n(x) for the
states(x, zn):

P s(x) =

3
∑

n=1

P s
n(x). (14)

As the “force” h(x) = −dU(x)/dx is piece-
wisely constant,

h(x) = h0 = −1

k
, x ∈ (0, k) ,

h(x) = h1 =
1 + ε

1 − k
, x ∈ (k, 1), (15)

Eq. (13) splits up into two linear differential equations
with constant coefficients for two vector functions of

P
s
i (x) = (P s

1i, P
s
2i, P

s
3i), i = 0, 1, defined on the in-

tervals (0, k) and (k, 1), respectively. The solution
reads

P s
ni(x) = p(zn)

5
∑

j=1

YijAnije
−λijx/D, (16)

where

p(zn) = (1 − 2q)δn,2 + q(δn,1 + δn,3),

Anij =
νD

νD − λij(hi − zn + λij)
,

Yij are constants of integration, and{λij , j =
1, . . . , 5} is the set of roots of the algebraic equation

(17)

λ5
i + 3λ4

i hi + λ3
i (3h

2
i − a2 − 2νD)

+ λ2
i hi(h

2
i − a2 − 4νD)

+ λiνD
[

νD + 2(qa2 − h2
i )
]

+ hiν
2D2 = 0 ,

i = 0, 1 .

Nine independent conditions for the ten constants of
integrationYij can be determined at the points of dis-
continuity, by requiring continuity for the quantities
P s

ni(x) and for the stationary current densities

jni(x) := (hi − zn)P s
ni(x) − D

d

dx
P s

ni(x) (18)

at the pointx = k and the vanishing of the current
densitiesjni(x) at the boundary pointsx = 0, 1, i.e.,

P s
n0(k) = P s

n1(k), jn0(k) = jn1(k), (19)

jn0(0) = jn1(1) = 0, n = 1, 2, 3.

It follows from Eq. (13) that the system of linear alge-
braic equations (19) contains only nine linearly inde-
pendent equations forYij. By including the normal-
ization condition

3
∑

n=1

∫ 1

0
P s

n(x)dx = 1 (20)

a complete set of conditions is obtained for ten con-
stants of integrationYij . Now, the constantsYij can
be expressed as quotients of two determinants of the
tenth degree:

Yij =
det[Blr(1 − δr,j+5i) + δl,10δr,j+5i]

det(Blr)
, (21)
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where the matrix(Blr), l, r = 1, . . . , 10 is defined as
follows:

B6 j+5 = B7 j+5 = B8 j = B9 j = 0,

Bn j+5i = (−1)iAnij exp

(

−kλij

D

)

,

Bm+3 j+5i = (hi − z2m−1 + λij)B2m−1 j+5i,

Bm+5+2i j+5i =

[

δ0,i exp

(

kλij

D

)

+ δ1,i exp

(

(k − 1)λij

D

)]

× Bm+3 j+5i,

B10 j+5i =
(−1)iD

λij

[

exp

(

−λijδ1,i

D

)

− exp

(

−kλij

D

)]

, (22)

with n = 1, 2, 3; m = 1, 2; j = 1, . . . , 5; i = 0, 1;
The stationary probability density in thex space

P s
i (x), with i = 0 for x ∈ (0, k) and i = 1 for

x ∈ (k, 1), and the occupancy probabilitiesW0 and
W1 = 1 − W0 of the left and right potential wells,
respectively, are given by

P s
i (x) =

5
∑

j=1

Yij exp

(

−λijx

D

)

, (23)

W0(x) =

∫ k

0
P s

0 (x)dx =
5
∑

j=1

B10 jY0j. (24)

The behavior ofW0 at different system parame-
ters regimes will be considered in Sec. 3. All numer-
ical calculations are performed by using the software
Mathematica 5.0.

3 Enhancement of the stability of the
metastable state

Of central interest to us are the occupancy probability
W0 of the left potential well (see Eq. (24)) and its re-
sponses to the switching rateν and to the temperature
D. Figure 2 exhibits the ratioW0/W1 as a function of
the switching rateν at different values of the temper-
ature. It can be seen that the functional dependence
of W0/W1 on the switching rateν is of a bell-shaped
form. Notably, at low temperatures for intermediate
values ofν the mean occupancy of the metastable state
(the left potential well) is much larger than the mean
occupancy of the stable state, i.e., such fluctuations
enhance the occupancy of the left minimum, although
most of the time it is not the absolute minimum of the

0.0001 0.001 0.01 0.1 1 10
Ν

1

10

100

1000

W
0
�W

1

H1L

H2L

H3L

H4L

Fig. 2. The ratioW0/W1 vs the noise switching rateν
at various temperaturesD. The occupancy probabil-
ities W0 andW1 of the left and right potential wells,
respectively, are computed by means of Eq. (24). The
parameter values:a = 2, ε = 1, andk = 0.125. The
different curves correspond to the different values of
the parameterq and temperatureD: (1) q = 0.48,
D = 0.035; (2) q = 0.33, D = 0.035; (3) q = 0.48,
D = 0.065; (4) q = 0.33, D = 0.065.

potential. Thus, we observe a noise-induced stability
for the metastable state (cf. also Table 1).

The tendency that is apparent in Figure 2, namely,
an increase of the occupancy probabilityW0 as the
temperatureD decreases, also appears at lower values
of D. Moreover, decrease of the kurtosisϕ = 1/2q−3
of the trichotomous noiseZ also enhances the stability
of the metastable state [cf. curves (1) and (2) in Fig.
2].

In the case of dichotomous noise, the phe-
nomenon of noise-induced stability in models similar
to Eq. (10) has already been examined in Ref. [18],
where analogous results of Fig. 2 are presented and a
comprehensive physical interpretation of the effect is
given. So our result exposed in Fig. 2 shows that the
phenomenon of noise correlation time induced stabil-
ity is robust enough to survive a modification of the
noise as well as of the potential profile.

It is of interest to examine the behavior of the ex-
act expression ofW0 (Eq. (24)) versus temperature.
In Fig. 3 we have plotted the occupancy probabilities
W0 andW1 as functions of the dimensionless temper-
atureD for an intermediate value of the correlation
time τc = 200. For increasing values ofD the proba-
bility W0 starts from the valueW0 ≈ 1 and decreases
to the minimum. Next it grows to the local maximum
and decreases to the other minimum. Finally, at high
temperatures, it grows to the valuek.

The interesting peculiarity of Fig. 3 is that there
are three temperature regimes where thermal fluctua-
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Table 1. The occupancy probabilityW0 of the left
potential well

1/D ≡ Ũ0/kBT q ν Occupancy
probabilityW0

28.6 0.48 109 1.116 · 10−13

28.6 0.48 0.05 0.99987

28.6 0.33 109 1.116 · 10−13

28.6 0.33 0.05 0.99987

15.4 0.48 109 5.949 · 10−8

15.4 0.48 0.4 0.90831

15.4 0.33 109 5.949 · 10−8

15.4 0.33 0.4 0.90174

The other parameter values in model (10) area = 2,
ε = 1, andk = 0.125. All quantities are
dimensionless with scaling (8) and (9). Here we
emphasize that in the high frequency limit,ν → ∞,
the Brownian particle is subjected to the average
potentialV2(x) and hence, the result forW0 is the
same as for the non-fluctuating potentialV2(x).

tions cause an enhancement of the occupancy of the
metastable state: (i) At high temperatures the effect
is trivial. In this case the Brownian particles “fail to
see” the structure of the potential profile and move
like in a simple rectangular potential well (cf. Fig.
4). (ii) For low values of the temperature the effect of
enhancement is very pronounced, i.e., nearly all parti-
cles are concentrated in the left potential well, which
has higher energy most of the time. This result is in
accordance with the phenomenon of noise correlation
time induced stability (see Fig. 2 and [18]). (iii) In
the case of moderate values of the temperature a new
resonance-like behavior is observed — enhancement
of stability also occurs in a finite interval of the tem-
perature, where the lowest depth of the potential wells
is comparable with the thermal energy of the particle.

A general feature of the phenomenon of double
temperature-enhanced stability is that the effect oc-
curs over a broad range of potential fluctuation rates
(cf. Figs. 5 and 6). It is remarkable that the local max-
imum of W0(D) disappears at such values of noise
correlation timeτc that are comparable with or lower
than the intrawell relaxation time for the right well of
the net potentialV1(x), i.e.

τc .
(1 − k)2

1 + ǫ − a(1 − k)
.

Let us note that the value of the temperature that max-
imizes W0(D) can be estimated from the following

0.01 0.1 1 10
D

0

0.2

0.4

0.6

0.8

1

W
0
,W

1

W0

W1

Fig. 3. The occupancy probabilitiesW0 and W1 of
the left and right potential wells, respectively, versus
the temperatureD (Eq. (24)). The parameter values
area = 2, ε = 1, k = 0.24, q = 0.45, andν =
5×10−3. At large values of the temperature,D > 10,
the probabilitiesW0 andW1 saturate to the valuesk
and1 − k, respectively.

equation:

τc ≈ exp

(

V1(k) − V1(1)

D

)

,

i.e. the noise correlation timeτc is comparable with
the Kramers escape time from the right potential well
(in the noise statez1 = a). This is a remarkable con-
nection that throws some light on the physics of the
effect, namely, it relates two characteristic time scales
of the dynamical system (10) and demonstrates that
all the three agents — colored noise, thermal noise,
and potential configuration — act in unison to gener-
ate enhancement of the occupancy of the metastable
state at moderate temperatures.

A comparison of the above results with calcula-
tions for mean passage times shows that the highly
nonlinear behavior ofW0 andW1 at low and moder-
ate temperatures is related to resonant activation [5],
[18], [31]. In particular, a general feature of the reso-
nant activation phenomenon for a linear ramp, which
is similar to our situation, is that with increasing bar-
rier height (or decreasing temperature) a long flat re-
gion of the mean first passage time develops around
the resonant switching rateνres (νres corresponds to
the minimum of the mean first passage time versusν)
[31].

There are several important time scales in our sys-
tem: six mean first passage timesT

(i)
n for the two

minima of Vn(x) (i = 0 and i = 1 correspond to
the left and right minima respectively); the intrawell
relaxation times forVn(x), and the correlation time
τc = 1/ν for the fluctuations of the potential. Ifτc
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Fig. 4. The stationary probability densityP s(x) at
various temperaturesD (Eq. (23)). The parameter
values arek = 0.24, a = 2, ν = 0.1, ε = 1, and
q = 0.45. At large values of the temperature,D > 10,
the probability densityP s(x) tends to a uniform dis-
tribution.

is long enough compared to the intrawell determin-
istic relaxation times of the net potentialVn(x), i.e.

τc ≫ max(L2
i /∆V

(i)
n ), whereL0 = k, L1 = 1 − k,

and ∆V
(i)
n are the depths of the net potential wells

V
(i)
n , the conditionD < min(∆V

(i)
n ) guarantees a

sharp occupancy distribution in the minima of the net
potentials. In this case the probability fluxJi from the
left (right) potential well to the right (left) one is given
by

J0 =
W0

T0
, J1 = −W1

T1
,

whereT0 andT1 are the mean first passage times from
the bottom of the left potential well to the bottom of
the right potential well and vice versa, respectively. In
the stationary case, the total probability flux between
the left and right potential wells must vanish, implying

W0

W1
=

T0

T1
. (25)

Now, we will briefly consider the behavior of the
probability W0 in the high frequency regime,ν >

min[∆V
(i)
n /L2

i ]. A general feature of our solution is
that with an increasing switching rateν the resonance-
like phenomenon, i.e., the local maximum [cf. Figs.
3 and 6], becomes less and less sharp until it disap-
pears atν ∼ max[∆V

(i)
n /L2

i ]. For large values of the
switching rateν two characteristic regions can be dis-
cerned for the temperatureD. First, the region of low
intrawell diffusion levelsDν < min[(∆V

(i)
n /Li)

2],
for which the characteristic distance of intrawell ther-
mal diffusion

√
Dτc is much smaller than the typi-

cal deterministic distances of the driven particles dur-
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Fig. 5. The occupancy probabilitiesW0 andW1 ver-
sus the dimensionless temperatureD, calculated by
means of equations (21) - (24). The noise switching
rateν = 5×10−10, the other parameter values are the
same as in Figure 3.
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Fig. 6. The occupancy probabilitiesW0 andW1 ver-
sus the dimensionless temperatureD, calculated by
means of equations (21) - (24). The case ofν = 0.2.
The other parameter values are the same as in Figure
3.

ing the noise correlation timeτc = 1/ν, and second,

the regimeDν ≫ min[(∆V
(i)
n /Li)

2], where thermal
diffusion dominates. In the regime of low diffusion
the behavior ofW0 is similar to that presented at low
temperatures in Fig. 6 (the temperature is lower than
the temperatureDmin corresponding to the first min-
imum of W0), but the “critical” temperatureDcr, at
which W0 = W1 = 1/2, decreases asν increases.
In the region of strong diffusion the Brownian particle
is subject to the average potentialV2(x) in the case
of fast fluctuations. Hence, in this regime the occu-
pancy probabilityW0 depends on temperature in the
same way as in the case of the non-fluctuating poten-
tial V2(x), i. e. with increasing the temperature,W0

increases monotonically up to the valuek.
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Fig. 7. The ratiosR1 ≡ W0/W1 andR2 ≡ T0/T1

versus the dimensionless temperatureD in the case of
q = 0.45. Solid line: the functionR1(D) computed
from Eq. (24). Dashed line: the functionR2(D) com-
puted from Eqs. (34) - (36). The parameter values:
a = 2, ε = 1, k = 0.24, ν = 10−3.

Next, we consider the regime

min

(

∆V
(i)
n

L2
i

)

> ν >

(

∆V
(1)
1

)2

D (1 − k)2
e−∆V

(1)
1 /D , (26)

which corresponds to temperatures that are lower than
the temperatureDmax corresponding to the local max-
imum of W0. In this case the formula (25) is applica-
ble. The mean first passage time depends on the initial
occupancy probabilitiesp(i)

n of the net potential wells
V

(i)
n . In the case of Eq. (26) the time scale of bar-

rier fluctuations is much faster than the escape times
and there is, between two crossings over the barrier,
enough time for the particle probability distribution to
relax and spend most of the time in a quasi-stationary
probability distribution corresponding to the station-
ary trichotomous process, i.e.

p
(i)
1 = p(z1) = q ,

p
(i)
2 = p(z2) = 1 − 2q , (27)

p
(i)
3 = p(z3) = q .

The exact formulas for the mean passage timesT0 and
T1, being complex and cumbersome, are presented in
the Appendix (Eqs. (36)).

In Fig. 7 the ratiosW0/W1 andT0/T1 are com-
pared forq = 0.45. When comparing the whole
curves ofT0(D)/T1(D) andW0(D)/W1(D), one can
distinguish two regions. ForD < Dmax = 0.1
the agreement between the curvesT0(D)/T1(D) and
W0(D)/W1(D) is surprisingly good at moderate tem-
perature values, and even excellent for small values of

D. Thus, in this region formula (25) with Eqs. (27)
applies and the occupation process of the potential
wells can be characterized by the mean first passage
times over the potential barrier. For higher values of
D, however, a significant discrepancy occurs. This
means that forD > Dmax, the time scale considered
(cf. Eq. (26)) is no more applicable and the condi-
tions for the initial occupancy probabilities (see Eq.
(27)) become invalid.

Finally, note that for sufficiently large values of
the correlation time, the first minimum and the local
maximum disappear and two plateaus occur at moder-
ate temperatures (cf. Fig. 5), i.e., in this parameter re-
gion thermal noise is effectively suppressed. To throw
some light on the physics of the above-mentioned ef-
fect, we shall now consider some physical approxima-
tions for the situation:

e−∆V
(0)
2 /D ≪ ν ≪ e−∆V

(0)
3 /D , (28)

which corresponds to the first plateau in Fig. 5. Re-
member the inequalities∆V

(1)
1 < ∆V

(0)
3 < ∆V

(0)
2 <

∆V
(0)
1 < ∆V

(1)
2 < ∆V

(1)
3 (cf. Eq. (12) and Fig. 1).

Let us now consider the derivation of an approxi-
mate equation for the mean first passage timeT0 (the
derivation ofT1 is analogous to that). For the regime
(28), the particle locked in the noise staten = 1 at the
right net potential minimum (cf. Fig. 1) will move, at
the initial time t = 0, to the left net potential mini-
mumV

(0)
1 (0). The particle can escape over the poten-

tial barrier back to the right potential minimum only
in the noise statez3 = −a. In this state the left net po-
tential well is shallow and the corresponding Kramers
time is much shorter than the noise correlation time
τc = 1/ν. In the case of trichotomous fluctuations
Z(t) the probabilityW̄ (t) that in a certain time in-
terval (0, t) transition to the noise statez3 = −a
does not occur is given bȳW (t) = exp(−qνt) [15].
The probability that the transition toz3 = −a occurs
within the time interval(t, t + dt) is νq dt. Conse-
quently, the mean first passage time from the left po-
tential well to the right one is approximately given by

T0 ≈ qν

∫ ∞

0
te−qνtdt =

1

qν
. (29)

As mentioned above the derivation ofT1 is anal-
ogous to that forT0 and the result is also the same as
for T0, i.e.,T1 ≈ T0. Thus from Eq. (25) we obtain

W0 ≈ T0

T1 + T0
≈ 1

2
.

A comparison with Fig. 5 shows that for the tem-
perature interval determined by the conditions (28)
our approximation (29) with Eq. (25) captures the ex-
act result extremely well.
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4 Conclusion

In the present work, we have analyzed the behavior of
one-dimensional overdamped Brownian motion in a
sawtooth-like asymmetric bistable potential driven by
a trichotomous noise and an additive thermal noise.
Using the corresponding master equation we have ob-
tained an exact expression for the occupancy probabil-
ity of the metastable state and demonstrated the phe-
nomenon of noise-induced stability. One should take
care not to confuse the terms noise-induced stability
and noise-enhanced stability used in this work with
the effect of noise-enhanced stability discussed in
[17], [19], and [22]. The effect called noise-enhanced
stability in [17], [19], [22] is only a postponement of
system instability (see also [16]), and is observed in
a periodically (or stochastically) driven system with
a single metastable minimum of the potential. The
system remains in the metastable minimum for some
time given by the mean first passage time for the bar-
rier, and the mean first passage time has a maximum
at a certain noise intensity. Evidently, in the stationary
regime, the occupancy probability of the metastable
state is zero. In the present work the potential fluctu-
ates stochastically with a certain correlation time and
has two minima. The less stable minimum is the abso-
lute minimum for a certain configuration of the poten-
tial, but most of the time this minimum is metastable.
Nevertheless, in a stationary regime it can be highly
occupied (see also [18]).

Our major novel result is the effect of double en-
hanced stability of a metastable state versus tempera-
ture. Notably, enhancement of the stability also occurs
at moderate temperatures, i.e., when the temperature
D is such that the lowest barrier height of the sys-
tem is just a fewD, which is relevant for cell biology
[32]. For dichotomous noise, which is a special case
of trichotomous noise, a qualitatively similar model
has been studied in [18]. However, to our knowl-
edge, neither the phenomenon of double temperature-
enhanced stability nor the existence of the correspond-
ing resonance-like peak versus temperature at moder-
ate values ofD have been noticed or discussed before.
The major advantage of this effect is that the control
parameter is temperature, which can easily be varied
in experiments.

Another important conclusion is that the phe-
nomenon is robust enough to survive a variation of
the noise kurtosis, the noise correlation time (over a
very broad range) or the potential profile.

Our exact analytical results, concerning enhance-
ment of the stability of a metastable state in a fluc-
tuating bistable potential can be a good starting point
to investigating more realistic systems. First, it would
be interesting, for example, to investigate the behavior

of W0 at continuous transformation of the piecewise
linear potential into a smooth one. Second, for pos-
sible experimental realizations the multiple regimes
of temperature-enhanced stability of the metastable
well versus different time scales should be consid-
ered in more detail, especially in the two-dimensional
case. Finally, our paper is restricted to the case of
a well-defined potential flipping rate determined by
noise correlation time. However, in many physical
systems fluctuations have power-law correlations (a
well-defined noise correlation time is absent). Thus, it
is important to investigate, by numerical simulations,
the occurrence of the resonant phenomena described
in this paper at those, strongly correlated fluctuations.

We believe that the results obtained are also of
interest for experimental cell biology, where the pro-
posed model can be applied [18], [23], [24].

Acknowledgments: The research was partly sup-
ported by the Estonian Science Foundation Grant No.
7319 and the International Atomic Energy Agency
Grant No. 12026.

5 Appendix: Formulas for the mean
first passage time

Here the exact formulas for the mean first passage
times (MFPT) from the bottom of the left potential
well to the bottom of the right potential well (T0) and
back (T1) will be represented. Using standard meth-
ods described in [33], from the backward equation of
master equation (13) the following set of equations for
the MFPT can be deduced:

(30)

(hi − zn)
∂

∂x
T

(m)
i (x, zn)

+ D
∂2

∂x2
T

(m)
i (x, zn)

− νT
(m)
i (x, zn) + νT

(m)
i (x) = −1,

wherei = 0, 1, m = 0, 1, n = 1, 2, 3, h(x) = h0 =
−1/k for x ∈ (0, k), h(x) = h1 = (1 + ǫ)/(1 − k)
for x ∈ (k, 1), and

T
(m)
i (x) =

3
∑

n=1

p(zn)T
(m)
i (x, zn). (31)

with the initial probabilities

p(z1) = p(z3) = q, p(z2) = 1 − 2q.

As the forceh is piecewisely constant, (30) splits
up into four linear differential equations with constant
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coefficients for the four vector functions (T
(m)
i (x, z1),

T
(m)
i (x, z2), T

(m)
i (x, z3), i = 0, 1, m = 0, 1), defined

on the intervals(0, k) and(k, 1), separately. The so-
lution reads

(32)

T
(m)
i (x, zn) = − 1

hi
x +

zn

hiν
+ C

(m)
i0

+
5
∑

j=1

C
(m)
ij Anij exp

(

λijx

D

)

,

whereC
(m)
i0 , C

(m)
ij are constants of integration, and

the quantitiesAnij , λij are the same as in Eq. (16).
The twenty-four independent conditions for the

constants of integrationC(m)
ij , C

(m)
i0 can be deter-

mined at the points of discontinuity, by requiring con-
tinuity for the quantitiesT (m)

i (x, zn) and for the sta-
tionary current densities at the pointx = k, and be ap-
plying the corresponding conditions of absorbing and
reflecting boundaries at the potential wells bottoms.
The appropriate boundary conditions toT

(m)
i (x, zn)

are:
T

(m)
0 (k, zn) = T

(m)
1 (k, zn) ,

d

dx
T

(m)
0 (x, zn) |x=k =

d

dx
T

(m)
1 (x, zn)|x=k ,

T
(m)
0 (1, zn) = T

(m)
1 (0, zn) = 0 , (33)

d

dx
T

(m)
0 (x, zn)|x=0 =

d

dx
T

(m)
1 (x, zn)|x=1 = 0 .

As follows from Eqs. (32) and (33), this proce-
dure leads to an inhomogeneous set of 24 linear alge-
braic equations forC(m)

ij andC
(m)
i0 .

Now the constantsC(0)
ij andC

(0)
i0 are determined

by the following system of 12 linear algebraic equa-
tions:

C
(0)
10 +

5
∑

j =1

C
(0)
1j An1j exp

(

λ1j

D

)

= − zn

h1ν
+

1

h1
,

5
∑

j =1

C
(0)
0j λ0jAnij =

D

h0
,

C
(0)
00 − C

(0)
10 +

5
∑

j =1

[

C
(0)
0j An0j exp

(

λ0jk

D

)

− C
(0)
1j An1j exp

(

λ1jk

D

)]

=

−zn

ν

(

1

h0
− 1

h1

)

+ k

(

1

h0
− 1

h1

)

,

(34)

5
∑

j =1

[

C
(0)
0j λ0jAn0j exp

(

λ0jk

D

)

− C
(0)
1j λ1jAn1j exp

(

λ1jk

D

)]

= D

(

1

h0
− 1

h1

)

,

n = 1, 2, 3 .

The corresponding equations forC
(1)
ij and C

(1)
i0

read:

C
(1)
00 +

5
∑

j =1

C
(1)
0j An0j = − zn

h0ν
,

5
∑

j =1

C
(0)
1j λ1jAnij exp

(

λ1jk

D

)

=
D

h1
,

C
(1)
00 − C

(1)
10 +

5
∑

j =1

[

C
(1)
0j An0j exp

(

λ0jk

D

)

− C
(1)
1j An1j exp

(

λ1jk

D

)]

=

−zn

ν

(

1

h0
− 1

h1

)

+ k

(

1

h0
− 1

h1

)

,

5
∑

j =1

[

C
(1)
0j λ0jAn0j exp

(

λ0jk

D

)

−C
(1)
1j λ1jAn1j exp

(

λ1jk

D

)]

= D

(

1

h0
− 1

h1

)

,

n = 1, 2, 3 .

(35)

Now, a straightforward calculation gives for the
mean passage timesT0 = T

(0)
0 (0) andT1 = T

(1)
1 (1):

T0 = C
(0)
00 +

5
∑

j=1

C
(0)
0j ,

T1 = C
(1)
10 − 1

h1
+

5
∑

j=1

C
(1)
1j exp

(

λ1j

D

)

.(36)

Hence, the problem set has been solved and we can
see that exact evaluation of the MPFT can be handled
by linear algebra.
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