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Abstract: - In the paper a method for measuring kinematics of sit-to-stand motion using inertial sensors and 
human body model is presented. The proposed method fuses data from inertial sensors and data from three-
segment human body model using Extended Kalman filtering technique and in this way alleviates some of the 
drawbacks associated with inertial sensors. Dynamic human body model is constructed based on principles of 
Lagrangian dynamics and incorporates shank, thigh and HAT (Head-Arms-Trunk) segments. The moments 
required in obtained model equations (ankle, knee and hip moments) are calculated based on the EKF last best 
estimate and Newton-Euler inverse dynamic approach. Outputs from the EKF are segment angles 
(orientations), angular rates of change (angular velocities) and angular accelerations. The performance of the 
method is verified by the measurements acquired with Optotrak optical motion analysis system. Obtained 
results are presented and discussed. 
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1 Introduction 
Microelectromechanical (MEMS) inertial sensors 
have become widely available over the last few 
years [1]. Their small size and low cost have made 
them attractive for wide range of applications in 
different research areas: robotics [2], navigation and 
attitude-control systems [3, 4], man-machine 
interfaces, virtual reality, analysis of human motion 
[5, 6, 7] etc.  
When used in human motion analysis these sensors 
have some advantages over more sophisticated 
motion analysis systems commonly used today like 
Optotrak – Northern Digital Inc. or Vicon - Vicon 
Motion Systems: a) they are lightweight and 
portable (DC power supply), b) they don’t require 
complicated and time consuming setting up 
procedures, c) they are unobtrusive since they don’t 
constrain user in motion, d) they can be used for 
measurements in subject’s natural environment (e.g. 
subject’s home) and e) they are less expensive.  
Despite their advantages inertial sensors also have 
their share of drawbacks [5, 6, 8, 9]. The dynamic 
and gravitational component in accelerometer 
output signal can’t easily be distinguished during 

movements with higher accelerations and the drift in 
gyroscope signal results in large integration errors.  
Number of inertial sensor applications are available 
with different approaches to the elimination/ 
reduction of inertial sensor errors and extraction of 
relevant data. Moe-Nilssen [8] examined how 
accelerometers could be used in measurements of 
human postural stability (as inclinometer) and 
concluded that transformation from sensor to Earth 
coordinate frame was beneficial since it increased 
discrimination power of the system. The method 
was tested with a healthy subject and a subject with 
balance disorder and compared to double integration 
procedure. Good discrimination and good 
robustness to drift in time were observed for the test 
examples. This method is an example of approach 
where inertial sensors are used as stand-alone 
sensors providing more of qualitative then 
quantative information. 
Luinge et. al. [10] developed Kalman filter 
algorithm in which the sensor orientation was 
determined by integration of gyroscope signal. 
Obtained orientation was split into two components: 
the tilt and rotation around global vertical axis. 
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Calculated tilt was compared to the tilt obtained 
from accelerometer measurements and the 
difference presented the input to the Kalman filter. 
The output from Kalman filter was combined with 
other gyroscope component (rotation around global 
vertical axis) to produce better orientation estimate. 
The proposed method was tested on simulated data 
on a simple test signals with good matching. 
Authors noted that larger errors can be expected in 
practical applications. The approach is an example 
of a method that uses inertial sensor measurements 
and signal processing algorithms to obtain position 
and orientation data. 
Zhu and Zhou [6] proposed a real-time motion 
tracking system based on inertial and magnetic 
sensors. Linear Kalman filter was used for data 
fusion of different sensor outputs and produced an 
estimate of segment position and orientation. 
Authors suggested the application of 15-segment 
human body model for full human motion tracking, 
however the implementation was not described in 
the paper. The proposed method was tested in 
manual manipulation on horizontal plane and 
rotation on single-axis rotating table. Testing was 
also accomplished on actual arm movement tracked 
by three inertial sensor modules attached to upper 
trunk and upper and lower arm. Performance of the 
method was compared to reference values, 
integration based and accelerometer-magnetometer 
based approaches. Obtained results demonstrated 
good matching with reference values and superior 
performance to other two methods. 
Zhou and Hu [11] proposed the development of the 
system based on commercially available inertial and 
magnetic modules for kinematic measurements of 
upper extremities. Recorded data was pre-filtered in 
order to eliminate high frequency noise and low 
frequency drift and was followed by anti-aliasing 
filtering. Transformation of coordinates was 
performed in order to express data in world 
coordinate frame in form of quaternions. Kinematic 
modeling and optimization algorithms were applied 
to obtain better orientation estimates. Validation 
was accomplished on experimental data recorded on 
several daily living activities: reach, drink, eating 
and arm flexion-extension. CODA marker kinematic 
measurement system was used for simultaneous 
reference measurements. Authors concluded that the 
proposed method was precise and stable in arm 
orientation estimation but suggested additional 
testing in home environment. 
Inertial/magnetic sensor based methods yield good 
results but introduce additional restrictions on 
measurement environment [5, 6, 12]. These 
restrictions can not easily be fulfilled in average 

ambulatory setting and presence of ferrous materials 
and devices that emit electromagnetic field can 
potentially result in faulty magnetometer readings. 
More recently, an effort has been made toward the 
development of filtering techniques for reduction of 
magnetic disturbance effects [12], by 
implementation of complementary Kalman filter 
based on error models for every sensor (most 
importantly magnetometer). From data fusion the 
information about gyroscope, accelerometer and 
magnetometer offsets were obtained which were 
used for in-use sensor re-calibration. Experimental 
validation with good tracking was achieved by 
placing an iron cylinder near the sensor and by 
comparing the orientation estimates with Vicon 
reference measurements. However additional testing 
is required since experimental measurements were 
performed in controlled and limited conditions. 
In our proposal we assume that magnetometers can 
in certain applications (e.g. robot assisted sit-to-
stand motion) be substituted by dynamic human 
body model. In this approach, which we named 
“Model Based Inertial Sensing”, data acquired from 
inertial sensors and data from dynamic human body 
model are fused using Extended Kalman Filter 
(EKF) alleviating some of the drawbacks associated 
with magnetometers while maintaining required 
level of accuracy. The paper is structured as follows. 
In Section 2 construction of dynamic human body 
model is presented. Next, the accelerometer signal 
decomposition is explained and EKF design 
outlined. In Section 3 experimental validation 
procedure is presented followed by presentation of 
the results. Finally in Section 4, after the discussion, 
conclusions are drawn and guidelines for 
improvement of the method are suggested. 
 
 
2   Materials and methods 
 
2.1 Dynamic human body model 
The proposed method is based on dynamic human 
body model corresponding to simplified model of 
human subject performing standing-up motion 
viewed in sagittal plane. The model consists of three 
rigid segments corresponding to shank, thigh and 
HAT (Head-Arms-Trunk) as depicted in Figure 1. In 
the figure the following notation is used  
 

iΘ  - angle of the i-th segment in respect to  
         horizontal (y) axis, 
mi - mass of the i-th segment, 
li - length of the i-th segment, 
ci - distance of the i-th segment Center of Mass  
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      (CoM) from distal joint, 
      i = 1, 2, 3. 
 
Anthropometric data i.e. segment masses, lengths 
and CoM positions are obtained from the literature 
[13]. 

 
Fig. 1 – Three segment dynamic human body model  
 
During the modeling phase the following 
simplifications were introduced: a) human body 
motion is restricted to the sagittal plane, b) 
symmetry of sit-to-stand motion in respect to 
sagittal plane is assumed [14], c) joints are assumed 
to be ideal with no friction during rotation, d) 
segments are assumed to be rigid bodies with their 
masses contained at CoM, e) the model is in contact 
with environment only by shank segment (i.e. ankle 
joint). 
Mathematical description of the proposed three-
segment dynamic human body model was obtained 
using principles of Lagrangian dynamics [15]. 
These principles enable derivation of dynamic 
equations of motion of a complex system using a set 
of simple procedures which as a result produce 
system of differential equations. In general, number 
of differential equations equals the number of 
generalized coordinates (sometimes called 
Lagrangian coordinates) i.e. the number of degrees 
of freedom of the system. A great variety of 
coordinates may be used, depending on parameters 
of interest. In the modeling phase several sets of 
generalized coordinates were tested. Finally, a set of 
generalized coordinates defined as segment angles 

1Θ , 2Θ  and 3Θ was chosen. In the set each angle 
was defined as the angle between the corresponding 
segment and horizontal (y) axis in the counter-
clockwise direction (see Figure 1). This angle 
definition produced mathematical description of the 

model with lowest complexity (as compared to other 
angle definitions that were tested) thus reducing 
subsequent computational cost. 
For each degree of freedom the Lagrangian equation 
is written: 

                   i
iii

TVKK
dt
d

=
Θ∂
∂

+
Θ∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Θ∂
∂             (1) 

where: 
K – is kinetic energy of the system,  
V – is potential energy of the system, and 
Ti – is the sum of generalized forces/moments  
       applied on the i-th segment.  
 
Figure 2 depicts model joints with corresponding 
joint moment notation. 
 

 
Fig. 2 – Model joints and notation of corresponding 

joint moments 
 
Using (1) and notations from Figure 1 and Figure 2, 
non-linear, coupled differential equations of motion 
for shank (2), thigh (3) and HAT (4) are derived. 
From (2)-(4) segment angles (orientations), angular 
velocities and angular accelerations can be 
calculated. Since the intended application of the 
proposed method is in rehabilitation (robot assisted 
standing-up [16]), segment orientations are 
considered to be most important kinematic 
parameters from which all other kinematic 
parameters can be obtained. 
 
2.2 Accelerometer signal analysis 
The output of inertial accelerometer consists of two 
components, dynamic and the gravitational [7, 8, 9]. 
The dynamic component represents true 
acceleration of system to which the accelerometer is 
attached to, while the gravitational component 
represents Earth gravity. Figure 3 presents 
characteristic sensor orientations in respect to Earth 
surface. As it can be seen from the figure, the 
problems arise when sensor motion is not aligned 
with its sensitive axis, in which case the true
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acceleration is projected onto accelerometer 
sensitive axis along with gravitational component. If 
it is assumed that the motion of accelerometer has 
significantly lower acceleration than the Earth 
gravity constant, the angle between the two 
components of the output signal can be calculated 
[8].  
 

 
Fig. 3 – Orientation of sensor sensitive axis in 
respect to Earth surface and the sensor output 

 
The same can not be accomplished when the 
amplitude of true sensor acceleration has values 
close to Earth gravity constant, thus explicit 
knowledge of sensor orientation is required. Since 
the accelerations expressed in reference coordinate 
frame (vertical-horizontal frame in respect to Earth 
surface) are of interest, processing of the 
accelerometer output is required [8, 9].  
In order to obtain accelerations along zREF and yREF, 
the decomposition of accelerometer signal to its 
main components representing projections of 
dynamic and gravitational acceleration to sensor 
sensitive axis must be accomplished. These 
projections are then projected back onto the 
reference frame and true vertical and horizontal 
accelerations are calculated. For this, the angle 
between sensor coordinate frame and reference 
coordinate frame (i.e. sensor orientation) needs to be 
known. The sensor orientation is defined as the 
angle between the z sensor axis and y axis of 
reference coordinate frame as is shown in Figure 4. 
This angle definition was chosen because of 
compatibility with angle definition used in dynamic 

human body model. The actual sensor accelerations 
in vertical and horizontal directions are derived 
using (5) and (6). 
 

 
Fig. 4 – Accelerometer signal components 

 
                 Θ+Θ= cosgsinaa

REFSENSOR yy               (5) 
                  Θ+Θ= singsinaa

REFSENSOR zz              (6) 
 
The accelerometer signal decomposition for y 
component is graphically depicted in Figure 4. 
Because of the nature of the inertial sensing, 
direction of the dynamic acceleration output is 
opposite to actual direction of the motion and is 
taken into account in later calculations. 
The sensor angle (sensor orientation) Θ  is in the 
proposed method available as a system state of the 
Extended Kalman filter (EKF). 
 
2.3 Extended Kalman Filter architecture   
Kalman filtering is a technique widely used in 
multisignal integration tasks [4, 6, 10, 12, 17, 18]. In 
essence it filters out the noise from the data by 
combining   multiple   data   sources  in  a  recursive  
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manner and for the operation needs only data from 
the current time instance as well as from the 
previous one. This makes the Kalman filter 
computationally efficient and suitable for real time 
applications. Due to non-linearities present in three-
segment dynamic human body model a variant of 
the filter, the EKF, had to be used. The EKF 
performs linearization of the system at every time 
instance and then uses the linearized model for its 
operation [19]. In the proposed method the EKF is 
employed for fusion of the acquired inertial data and 
data from dynamic human body model. In the 
proposed EKF the system is described by 
the system equation 
                         wxAx +⋅= +

−
−

1kk ˆˆ                        (7) 
and the measurement equation 
                           ),( kkk vxhz =                          (8) 
 
In (7) x denotes the state vector, A the transition 
matrix and w the white process noise. In (8) h 
represents the (non-linear) measurement vector and 
v is the white measurement noise. In the Kalman 
filter algorithm an assumption is made that noises v 
and w are Gaussian distributed, have zero mean and 
are uncorrelated [19].  
During the EKF design, several filter structures 
were tested and the structure with lowest 
computational cost and highest achieved accuracy 
was chosen and is represented by (9) and (10).  
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In the measurement equation (10) the parameters are 
defined as follows: 
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The measurement vector comprises two types of 
data: directly and indirectly measurable data. 
Directly measurable data is acquired via inertial 
sensors measurements and includes the following 
measurement vector components 
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where: ayi –acceleration of the i-th segment  CoM 
                   in the direction of reference frame 
                    y axis (horizontal) 
            azi – acceleration of the i-th segment CoM 
                   in the direction of reference frame 
                    z axis (horizontal) 
 
Using kinematic equations, a term linking segment 
linear accelerations to used generalized coordinates 
is derived as it can be seen in (10).  
Indirectly measurable data is acquired via Newton-
Euler inverse dynamic approach using the EKF last 
best estimate, force plate measurements and 
anthropometric data. It includes the following 
measurement vector components expressed in terms 
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of equations of the proposed dynamic human body 
model 

                                      

123

112

101

hM
hM
hM

≡
≡
≡

 

 
The EKF algorithm was implemented according to 
[17] and [19] as shown below: 
Measurement update is 
          1

k
T

kkk
T

kkk )( −−− += RHPHHPK         (11) 
               ))0,ˆ((ˆˆ kkkk

−− −+= xhzKxx             (12) 
                    −−= kkkk )( PHKIP                     (13) 
and time update is  
                  k

T
kkk1k QAPAP +=−
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where: −

kx̂  - a priori state vector estimate, 
            kx̂  - a posteriori state vector estimate, 
            −

kP  – a priori  estimate error covariance  
                      matrix,            
            +

kP  – a posteriori  estimate error covariance  
                      matrix,   
            Kk – Kalman gain,         

            )0,(
x
h

k
j

i
k xH

∂
∂

=  – the Jacobian matrix of  

                  partial derivates of ()h  with respect   
                  to x i.e. linearized measurement vector  
                  around the EKF last best estimate, 
            Rk – measurement noise covariance matrix, 
            Qk – process noise covariance matrix. 
 
Equations (7), (8) and (11)-(14) form the complete 
set of equations for the EKF algorithm used in the 
proposed method. The EKF initial system state 
estimates were set to true system state in all 
experimental runs.  
 
 
3 Experimental validation  
 
3.1 Experimental setup and procedure 
The proposed method was verified on a healthy 
subject performing four sit-to-stand trials with 
normal/self-selected speed. The Optotrak 3010 
optical motion analysis system was used for 
measurements of kinematic parameters of standing-
up. Inertial sensor specific noise were later added to 
the measured signals in order to obtain EKF input 
data. Measurement setup presented in Figure 5 was 
constructed for the purpose of experimental 

measurements. Set of linear infrared cameras was 
positioned parallel to the subject’s sagittal plane in a 
way that all infrared (IR) markers are in its field of 
view at all times. Four IR markers were attached to 
subject’s skin at key anatomical positions: ankle, 
knee, hip and shoulder joints. Trajectories of the 
four markers (with 50Hz sampling rate) fully 
describe subject standing-up motion and correspond 
to trajectories of segment endpoints in the three 
segment dynamic human body model.  
 

 
Fig 5. – Measurement setup 

 
Subject was standing on AMTI OR6-5-1 force plate 
which measured ground reaction forces during 
standing up. These forces (and moments) are used 
for calculation of joint moments which are part of 
the EKF state vector. Optionally, the force plate can 
in ambulatory settings be substituted by shoe insole 
with force sensor [20]. The seat was mounted on top 
of the multidimensional force sensor (model 40E15 
from JR3 Inc.) to enable detection of seat-off 
moment. The knowledge of seat-off moment is of 
importance because the proposed three segment 
dynamic human body model is valid only at those 
times when there is no subject-seat interaction. The 
seat-off moment was detected as the moment when 
the amplitude of vertical force component felt 
beneath the 5% of the value it had when the subject 
was sitting quietly. However, in ambulatory setting 
a simple On/Off switch would be sufficient for seat 
contact detection. Seat/force sensor structure was 
mounted on the end of leaver like structure which 
ensured unobstructed execution of sit-to-stand 
maneuver.  

Table 1 –Test subject data 
Initials Gender Age Height Weight 

JK M 23 1.77 m 77 kg 
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The measurement procedure during the sit-to-stand 
measurements was as follows. The test subject was 
weighted and his height measured in order to 
determine input data for anthropometric tables (see 
Table 1). The subject did not suffer of any medical 
conditions which would constrain normal 
accomplishment of standing-up motion.  
Before the recorded measurements subject 
accomplished three sit-to-stand trials in order to get 
familiar with measurement equipment and 
measurement environment. Then he prepared in 
initial position on the seat, and waited for the 
operator to start the recording of data and to begin 
with rising. The operator stopped the measurement 
when the test subject was in standing position for 
about 2 seconds. After each measurement the 
subject returned to initial position for the next 
measurement trial. Recorded positional coordinates 
of the markers with respect to reference coordinate 
frame were numerically differentiated to obtain 
velocities and accelerations of each segment. 
Recorded data was also used for calculation of 
segment orientations which were later used as 
reference measurements. Velocity and acceleration 
signals were then low-pass filtered with Butterworth 
filter with 5 Hz cut-off frequency in order to 
eliminate noise components. The same filtering 
algorithm was applied on force sensor 
measurements. The whole procedure introduced 
additional numerical error to the EKF input signals. 
Finally, inertial sensor specific noise was added to 
angular velocity and linear acceleration signals 
which were presented to the EKF as part of the 
measurement vector. The data flow in the 
experimental validation is depicted in Figure 6. 
 

 
Fig 6. – Experimental validation data flow chart 
 
3.2 Experimental results 
The obtained results of joint angle estimates 
compared to the reference measurements for one 

measurement trial are presented in Figure 7, while 
Figure 8 depicts root mean square error (RMSE) 
values for each of angle estimates.  
Figure 9 presents average value of segment angles 
over all four measurement trials with standard 
deviation defined for every 10% of time required for 
successful standing up motion (with the beginning 
at seat-off moment). Figure 10 depicts RMSE for 
shank, thigh and HAT segment for all four 
measurement trials.  

 
Fig 7. – Comparison of reference measurements and 

estimation 
 

 
Fig 8. – RMSE values 

  
 

4. Discussion and conclusion 
Obtained results show good tracking capability for 
all three estimated segment angles. The average 
estimation error (RMSE) over four measurements is 
3.75o for the shank, 2.41o for the thigh and 4.48o for 
the HAT segment. Obtained estimation error is 
comparable to similar methods which do not use 
magnetometers as additional sensor. However, it is 
less accurate then methods that use magnetometers 
but it is not sensitive to presence of ferrous objects 
or devices that emit electromagnetic field during 
operation.  
Estimated shank angle has certain amount of 
oscillations for every measurement trial. This was 
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attributed to selected filter parameters (matrices R 
and Q) and to Newton-Euler inverse dynamic 
approach. Filter parameter selection i.e. filter tuning 
was done manually and selected parameters were 
used for all four measurement runs. This proved to 
be time consuming and there was no guarantee that 
chosen parameters were the optimal. Thus, 
introduction of Adaptive Extended Kalman Filter is 
planned (AEKF). The AEKF would be implemented 
similar as in [3] and would change parameters R 
and Q depending on current system dynamics since 
from Figure 9 it can be seen that standard deviation 
of angle estimation is higher during transition phase 
(app. from 0.4-1 s). In this way we believe better 
filter performance could be achieved and previously 
mentioned oscillations reduced. 
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Fig. 9 – Average value for estimated segment 

angles: a) shank, b) thigh and c) HAT 

In general, HAT angle estimation error is the largest 
and this is attributed to the fact that equations 
describing its motion have more complex form in 
respect to other segments. Estimated thigh angle 
error has the lowest RMSE value, but we assume 
that this will change when AEKF is applied since 
shank motion is described by kinematic equations of 
lower complexity and by selection of optimal filter 
parameters it should achieve the lowest RMSE 
value (as in case of Measurement 1 in Figure 10).  

 
Fig. 10 – RMSE values for all measurement trials 

 
Further accuracy improvements could be 
accomplished if three-segment dynamic human 
body model is augmented to include some 
phenomena that were neglected during modeling 
phase as are joint friction and restriction of 
movement to sagittal plane. Addition of several 
more body segments (e.g. head, lower and upper 
trunk) could also be beneficial in terms of accuracy 
but mathematical complexity of the model and 
associated kinematic equations would increase 
significantly, thus further analysis is required.  
The presented approach and its results are the first 
stage in development phase of low cost inertial 
sensor based kinematic measurement system. The 
system is aimed to be used in conjunction with robot 
assistive devices (e.g. for standing-up support). 
Achieved experimental results demonstrate 
feasibility of the proposed “Model Based Inertial 
Sensing” method, with good tracking for all 
segment angles. Using numerical algorithms 
segment angular velocities and angular accelerations 
can be calculated. In this way complete set of 
kinematic parameters of the human standing-up 
motion is derived. In future research the method will 
be tested using actual inertial sensor measurements 
on group of healthy and impaired subjects with 
simultaneous measurements with commercially 
available inertial/magnetic sensors for comparison. 
The influence of the standing-up speed on method 
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performance will also be examined Finally, 
inclusion of the proposed method in control scheme 
of robot rehabilitation device for standing-up 
support as kinematic measurement system and its 
testing is planned.  
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