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1 Introduction
This paper is a continuation of this writer’s

study of the general problem of linear system
representation. We begin with a short sur-
vey of background material, and then give
further related results concerning engineer-
ing education, superposition, and commuta-
tivity.

In the signal-processing literature, x(α)
typically denotes a function. In the follow-
ing we distinguish between a function x and
x(α), the latter meaning the value of x at the
point (or time) α. Sometimes a function x is
denoted by x(·), and also we use Hx to mean
H(x). This notation is often useful in studies
of systems in which signals are transformed
into other signals.

A recent paper [1] considers continuous-
time linear time-invariant systems governed
by a relation y = Hx in which x is an in-
put, y is the corresponding output, and H is
the system map that takes inputs into out-
puts. It was assumed that inputs and out-
puts are complex-valued functions defined on
the set IR of real numbers. As is well known,
it is a widely-held belief of long standing
that the input-output properties of H are
completely described by its impulse response.
Using a standard interpretation of what is
meant by a system’s impulse response, it is
shown in [1] that this belief is incorrect in
a simple setting in which x is drawn from
the linear space C of bounded uniformly-

continuous complex-valued functions defined
on IR. More specifically, it was shown that
there is an H of the kind described above,
even a causal H, whose impulse response is
the zero function, but which takes certain in-
puts into nonzero outputs.1 This contradicts
the conclusion of a familiar engineering ar-
gument using the so-called sifting property
of Dirac’s impulse function. An important
role in [1] is played by inputs that do not
approach zero at infinity in a pointwise or
certain average sense, and a similarly impor-
tant role is played by such inputs in connec-
tion with related discrete-time results (see,
e.g., [3]). This observation served as the mo-
tivation for the study reported on in [4], in
which it is shown that the members of a cer-
tain large family of linear systems are in fact
completely characterized by their (suitably
defined) impulse responses – which exist as
certain limits. These limits are functions in
the usual sense (as opposed to generalized
functions). Reference [4] addresses the case
in which inputs belong to the space Lp(IR

d)
of pth-power integrable complex-valued func-
tions x defined on IRd, in which p satisfies
1 ≤ p < ∞, and d is an arbitrary positive
integer. Outputs are taken to be elements of
the space B(IRd) of bounded complex-valued

1A similar result [2] holds for maps whose domain is the
whole space of bounded Lebesgue-measurable signals. Each
of these propositions holds also for maps whose domain and
range are the corresponding spaces of real-valued functions.
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functions y defined on IRd, with the norm
given by

‖y‖ = sup
α∈ IRd

|y(α)|. (1)

For the reason that [4] contains the first in
a series of recent representation results, and
for the reader’s convenience, a detailed de-
scription of the main result in [4] is given in
the Appendix.

In [5] we consider the case in which out-
puts are elements of B(IRd), but inputs be-
long to the normed linear space C0(IR

d) of
continuous complex-valued functions x de-
fined on the set IRd of real d-vectors such
that x(α) → 0 as ‖α‖(d) → ∞, in which

‖ · ‖(d) stands for a norm on IRd. As is widely
known, such multidimensional systems are of
interest in connection with, for example, im-
age processing. The theory concerning these
systems is in some respects more interest-
ing than for the Lp(IR

d)-input-B(IRd)-output
case in [4]. It is assumed that H is continu-
ous and shown that H has a representation
given by

(Hx)(α) = lim
ε→ 0

∫
IRd

(Hqε)(α−β)x(β) dβ (2)

in which the convergence is uniform with re-
spect to α, and qε is a certain type of function
that depends on the parameter ε. Also given
is a necessary and sufficient condition under
which there is a function h such that the right
side of (2) can be written as a convolution

∫
IRd

h(α − β)x(β) dβ.

Related results are given in [6] for the case
in which inputs belong to Lp(IR

d) ∪ L1(IR
d),

where again 1 ≤ p < ∞ (of course, the case
in which p = 2 is of particular interest).

For reasons closely related to the mate-
rial in [1] outlined above, a difficulty arises
in attempts to obtain corresponding results
for the important case in which the space
of inputs is L∞(IRd), the normed linear
space of complex-valued bounded Lebesgue-
measurable functions defined on IRd, with the
norm given by (1). In [7], we indicate how
this difficulty can be circumvented. More ex-
plicitly, in [7] we describe a representation
theorem proved along the general lines of the
theorem in [5] for the case in which both the
range and domain of H is L∞(IRd), but under

an additional (typically reasonable) assump-
tion of the form

Hx = lim
σ →∞(HWσx) (3)

for each x, in which {Wσ : σ > 0} is a cer-
tain set of weighting operators.2 Of partic-
ular interest is the observation in [7] that
for the large family of inputs and maps H
addressed, the Dirac impulse-response con-
cept is in fact not the key concept concern-
ing the representation of H, and that instead
the input-output properties of H are deter-
mined in general by a certain type of family
{Hqε : ε ∈ (0, ρ)} of responses.

Here we consider a different but closely re-
lated aspect of the general problem of linear-
system representation. One can give a very
long list of books – many of them basically
very good books – in which superposition is
said to hold in the case of any linear system
with an excitation that can be written as a
sum of a countably infinite number of exci-
tations. As is well known, this conclusion
– which has been taught to decades of stu-
dents in several fields – plays a central role in
textbook material concerning the origins of
both discrete-time and continuous-time con-
volution representations. In [8], and also in
the brief note [9], attention is directed to
the fact that the conclusion is not correct.
One consequence of the oversight is that the
usual representation for linear discrete-time
systems has had to be corrected by adding
an additional term [8].3 In [9], in the setting
of linear spaces with metrics and a standard
definition of convergence, a simple criterion
is given for (infinite) superposition to hold.
A discrete-space example is given in [9] to
illustrate that superposition can fail. How-
ever, the linear system map in the example
is not continuous, and it is defined on only
a certain unusual input space. In addition,
the simple criterion given for superposition
to hold involves a strong assunption on the
convergence of the input sum representation
of the input. With that assumption, super-
position can fail only for system maps that
lack continuity.

In the following section, attention is fo-
cused on shift-invariant continuous-space

2A similar result is given in [10] for the special (and less
complex) case in which inputs are bounded functions that are
continuous.

3As mentioned in [8], this writer does not claim that cases
in which the extra term is nonzero are necessarily of impor-
tance in applications, but he does feel that the existence of
these cases illustrates that the analytical ideas in the books
are flawed.
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systems with continuous system maps. In-
puts and outputs are elements of the familiar
space L∞(IRd). We show that superposition
can fail in this important setting. Also given
– and again in contrast with what is said in
texts on linear systems – is a related result
showing that continuous shift-invariant lin-
ear mappings need not commute with the
operation of integration (even when the two
composite operations are well defined).4 Our
main results are Theorems 1 and 2 of the fol-
lowing section. The section contains in addi-
tion results that provide sufficient conditions
under which commutativity is valid.

2 On Superposition and Com-
mutativity

2.1 Preliminaries

As in Section 1, ‖ · ‖d stands for a norm

on IRd, and L∞(IRd) denotes the linear space
of bounded Lebesgue measurable complex-
valued functions defined on IRd, where d is
any positive integer. We view L∞(IRd) as a
normed space with the norm given by

‖x‖∞ = sup
α∈ IRd

|x(α)|. (4)

All integrals in this section and in the Ap-
pendix are Lebesgue integrals. For 1 ≤
p < ∞, Lp(IR

d) stands for the usual
normed linear space space of pth power inte-
grable complex-valued functions defined on
IRd. BL1(IR

d) denotes the linear space of
bounded L1(IR

d) functions.

2.2 Lack of Infinite Superposition

Our main result is the following.

Theorem 1 : There are elements x and
x1, x2, . . . in L∞(IRd), and a continuous lin-
ear shift-invariant map G from L∞(IRd) into
itself, such that

(i) x =
∑∞

n=1 xn in the sense of pointwise
convergence.

(ii)
∑∞

n=1 Gxn converges in L∞(IRd), and we
have

Gx �=
∞∑

n=1

Gxn.

4For related material motivated by the fact that there ex-
ist continuous shift-invariant linear maps whose input-output
behavior is not determined by its impulse response, see [11] –
[13].

Proof:
Let x be any element of L∞(IRd) such that

lim‖α‖d→∞ x(α) = c, in which c is a nonzero
number, and define xn by xn(α) = x(α)
for n − 1 ≤ ‖α ‖d < n, and zero other-
wise, for each positive integer n. It is clear
that x =

∑∞
n=1 xn in the sense of point-

wise convergence. We will show that there
is a continuous linear shift-invariant map G
from L∞(IRd) into itself, such that (ii) holds,
with in fact each Gxn the zero function in
L∞(IRd). We will use the following lemma.
Lemma 1 : There is a continuous linear
shift-invariant map H from L∞(IRd) into it-
self such that

(a) H takes every element of BL1(IR
d) into

the zero function in L∞(IRd).

(b) (Hy)(α) = ζ for all α ∈ IRd and each
y ∈ L∞(IRd) with lim‖α‖d→∞ y(α) = ζ, in
which ζ is an arbitrary complex number.

Lemma 1 is all but stated in [14]. For the
reader’s convenience, a proof is given in the
Appendix.

Select G to be any H of the kind described
in the lemma, and observe that G satisfies
(ii) because of the assumed limit property
of x, and the fact that each xn belongs to
BL1(IR

d). This proves the theorem.
The fact that the series

∑∞
n=1 xn of the the-

orem is not required to converge in L∞(IRd)
is crucial, in that (see [9])

∑∞
n=1 Gxn con-

verges in L∞(IRd), with

Gx =
∞∑

n=1

Gxn

when the series converges in L∞(IRd) (and
G is as indicated). Also, a result entirely
analogous to Theorem 1 holds in the cor-
responding discrete-space setting. Specifi-
cally, direct modifications of the proof show
that Theorem 1 holds if L∞(IRd) is replaced
with the usual normed linear space �∞(Zd)
of complex-valued functions defined on Zd,
where Z denotes the integers. The theorem
holds also if L∞(IRd) is replaced with its cor-
responding real-valued space, and similarly
for �∞(Zd).

2.3 Lack of Commutativity

The tools used to prove Theorem 1 also
yield the following.
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Theorem 2 : Let a be any element of
BL1(IR

d) such that a has a nonzero inte-
gral. Then there is an element x in L∞(IRd)
and a continuous linear shift-invariant map
H from L∞(IRd) into itself such that H maps
BL1(IR

d) into itself and

H
∫

IRd
a(·−β)x(β) dβ �=

∫
IRd

Ha(·−β)x(β) dβ.

Proof:
Choose x to to be an element of L∞(IRd)

with lim‖α‖d→∞ x(α) = c, in which c is a
nonzero number, and notice that the theorem
follows at once from Lemma 1 and Proposi-
tion 1 (in the Appendix). Here too, we arrive
at a case in which the right side, but not the
left side, is the zero function in L∞(IRd).

The theorem holds also if L1(IR
d) and

L∞(IRd) are replaced with their correspond-
ing real-valued spaces. Also, a result en-
tirely analogous to Theorem 2 holds in the
corresponding discrete-space setting in which
L∞(IRd) and BL1(IR

d) are replaced with the
familiar spaces �∞(Zd) and �1(Zd), respec-
tively, and the integrals are replaced with the
analogous infinite sums.5

2.4 Sufficient Conditions for Commu-
tativity

We close Section 2 by stating two results
that provide conditions under which a linear
map does commute with integration:

Theorem 3: Suppose that 1 ≤ p < ∞,
and that M is a linear shift-invariant map
whose domain includes Lp(IR

d)∪L1(IR
d). As-

sume that M is defined on Lp(IR
d)∪L1(IR

d)
such that the restriction of M to Lp(IR

d)
is a continuous map into Lp(IR

d), and the
restriction of M to L1(IR

d) is a continuous
map into L1(IR

d). Let x ∈ Lp(IR
d), and let

g ∈ L1(IR
d). Then, with � the element of

Lp(IR
d) given by

� =
∫

IRd
g(· − β)x(β) dβ

we have

M� =
∫

IRd
(Mg)(· − β)x(β) dβ.

5A classical observation related in a general sense to The-
orem 2 is that differentation under the integral sign is not
always valid.

Theorem 3 is an extension [6] of Lemma
21.2.2 of [15, pp. 568] where the p = 1 case is
given. Although not stated in [15], the proof
given of the lemma yields also the following.

Theorem 4: Suppose that 1 ≤ p < ∞, and
that M is a continuous linear shift-invariant
map of Lp(IR

d) into itself. Let g ∈ Lp(IR
d)

and let x ∈ L1(IR
d). Then, with � the ele-

ment of Lp(IR
d) given by

� =
∫

IRd
g(· − β)x(β) dβ

we have

M� =
∫

IRd
(Mg)(· − β)x(β) dβ.

2.5 Conclusion

It is shown that infinite superposition can
fail in a certain important setting. It is also
shown that continuous shift-invariant linear
mappings need not commute with the opera-
tion of integration (even when the two com-
posite operations are well defined).

3 Appendix

3.1. The Theorem in [4]: Lp(IR
d) Inputs

As in Section 1, H stands for a system
map that takes inputs into outputs. Recall
that B(IRd) denotes the normed linear space
of bounded complex-valued functions defined
on IRd, with the norm given by (1).

In the following theorem, which is a slightly
simplified version of the main result in [4], p
satisfies 1 ≤ p < ∞, and Lp(IR

d), the space
of inputs, stands for the set of Lebesgue mea-
surable complex-valued functions x defined
on IRd such that

∫
IRd

|x(α)|p dα < ∞.

As usual, when Lp(IR
d) is regarded as a met-

ric space with the usual Lp(IR
d) norm ‖ · ‖p

the elements of Lp(IR
d) are understood to be

equivalence classes. Of course, the case in
which p = 2 is of particular importance. By
convergence in Lp(IR

d), we mean convergence
with respect to the norm in Lp(IR

d). Here
L∞(IRd) stands for the normed linear space
of essentially bounded Lebesgue measurable
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complex-valued functions on IRd.6 Given
h ∈ L∞(IRd), we say that gε ∈ L∞(IRd) for
ε ∈ (0, 1) converges in M∞(IRd) to h as ε → 0
if we have∫

S
|gε(β) − h(β)| dβ → 0 as ε → 0.

for every bounded Lebesgue measurable sub-
set S of IRd. Also, m ∈ (1,∞] and p are
related by 1/p+1/m = 1 (in other words, m
is the exponent conjugate to p for p > 1, and
m = ∞ corresponds to p = 1).
Q denotes the family of bounded L1(IR

d)-
valued maps q defined on (0, 1) such that,
with q(ε) denoted by qε,

∫
IRd

qε(α) dα = 1 for ε ∈ (0, 1),

sup
ε

∫
IRd

|qε(α)| dα < ∞,

and

lim
ε→ 0

∫
‖α‖(d) > ξ

|qε(α)| dα = 0, ξ > 0.

Note that q given by the familiar expression

qε(α) = 1/ε, |α| ≤ ε/2
= 0, otherwise

is an element of Q for d = 1.

It is reasonable to say, roughly speak-
ing, that H has an impulse response (or
what might more accurately be called a “q-
response limit”) if for every nicely-behaved
q ∈ Q we have Hqε well defined for each ε ∈
(0, 1), with limε→ 0 Hqε existing in a mean-
ingful sense and not dependent on q. The
main result in [4], except for a minor sim-
plification, is the following theorem. For the
type of H addressed in the theorem, H has an
impulse response h in the precise sense that
statement (b) of the theorem holds. (The
literature says little about the existence of
impulse responses for general systems, which
typically are simply assumed to exist.)

Theorem: Suppose that H (which is linear
and shift invariant) is a continuous map of
Lp(IR

d) into B(IRd). Let q be an element of
Q.

Then

(a) qε ∈ Lp(IR
d) for each ε.

6in Section 2, L∞(IRd) stands for the corresponding space
of bounded (not essentially bounded) functions.

(b) Hqε is an element of Lm(IRd) for each ε,
Hqε converges in Lm(IRd) if p > 1, or
in M∞(IRd) if p = 1, to an element h of
Lm(IRd) as ε → 0, and h is independent
of q.

(c) We have

(Hx)(α) =
∫

IRd
h(α−β)x(β) dβ, α ∈ IRd

for all x ∈ Lp(IR
d), and each Hx is a

continuous function on IRd.

(d) (Hqε)(·) converges almost everywhere to
h as ε → 0, provided that qε is given on
IRd by

qε(α) = (1/εd)r(α/ε), ε ∈ (0, 1) (5)

where r ∈ L1(IR
d) has unit integral, is

essentially bounded, and has compact
support.7

Statement (c) of the theorem shows that,
for the family of H’s considered, the input-
output properties of each H are completely
described by its impulse response. As dis-
cussed at the beginning of this paper, not all
linear shift-invariant systems are character-
ized by their impulse responses.

3.2 Proof of Lemma 1

We use the following three propositions, in
which F denotes the map defined on L∞(IRd)
by

(Fy)(α) =
∫

IRd
f(α − β)y(β) dβ, α ∈ IRd

where f ∈ BL1(IR
d) with unit integral.

Also, C stands for the normed linear space
of bounded uniformly-continuous complex-
valued functions defined on IRd, with the
norm described by (4).8

Proposition 1: If y ∈ L∞(IRd) satisfies

lim
‖α‖d→∞

y(α) = ζ for some ζ,

7The statement that (Hqε)(·) converges almost everywhere
to (the equivalence class) h means that (Hqε)(α) → g(α) for
almost every α, in which g is any individual function belonging
to the class h. Also, it is not difficult to check that q defined
by (5) is an element of Q.

8A complex-valued function x defined on IRd is uniformly
continuous if for each ε > 0 there is a δ > 0 for which |x(α1)−
x(α2)| < ε whenever ‖α1 − α2‖d < δ.
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then
lim

‖α‖d→∞
(Fy)(α) = ζ.

Proof of Proposition 1:
Suppose that y is as indicated. We have

(Fy)(α) =
∫

IRd
f(α−β)y(β) dβ = ζ

∫
IRd

f(β) dβ

+
∫

IRd
f(α − β)[y(β) − ζ] dβ

for each α. Consider the last integral, and
let any ε > 0 be given. Choose a positive c1

so that

sup
‖α‖d > c1

|y(α) − ζ|
∫

IRd
|f(β)| dβ < ε/2

and then, using the hypothesis that f ∈
L1(IR

d), select a c2 > 0 for which

sup
α∈ IRd

|y(α) − ζ|
∫
‖β‖d ≤ c1

|f(α − β)| dβ < ε/2

for ‖α‖d > c2. Observe that for ‖α‖d > c2,
∣∣∣∣
∫

IRd
f(α − β)[y(β) − ζ] dβ

∣∣∣∣

≤
∫
‖β‖d > c1

|f(α − β)[y(β) − ζ]| dβ

+
∫
‖β‖d ≤ c1

|f(α−β)[y(β)−ζ]| dβ < ε/2+ε/2 = ε,

which proves the proposition.
Proposition 2:

lim
‖α‖d→∞

∫
IRd

f(α − β)y(β) dβ = 0

for each y ∈ BL1(IR
d).

Proof of Proposition 2:

Both f and y belong to L2(IR
d). Using a

version of the Parseval identity [16, p. 119],

(2π)d
∫

IRd
f(α − β)y(β) dβ

=
∫

IRd
exp {j(ω · α)}f̂(ω)ŷ(ω) dω, α ∈ IRd

(6)
in which ω · α stands for the dot product of
ω and α, j =

√
−1, and f̂ and ŷ denote the

Fourier transforms of f and x, respectively.
These Fourier transforms belong to L2(IR

d).
By the Schwarz inequality, z given by z(ω) =

f̂(ω)ŷ(ω) for all ω belongs to L1(IR
d). There-

fore, by the Riemann-Lebesgue lemma for
functions in L1(IR

d) [16, p. 57], the right
side of (6) approaches zero as ‖α‖d → ∞,
proving the proposition.
Proposition 3: There exists a continuous
linear shift-invariant map E : C → C such
that (Ey)(α) = ζ for all α ∈ IRd and each
y ∈ C with lim‖α‖d→∞ y(α) = ζ, in which ζ is
an arbitrary complex number.

For a proof of this proposition, see the
proof of the theorem in [17].

Continuing with the proof of the lemma,
observe that

|(Fy)(α1)− (Fy)(α2)| ≤ ‖y‖∞
∫

IRd
|f(α1−β)

−f(α2 − β)| dβ

= ‖y‖∞
∫

IRd
|f(β) − f(α2 − α1 + β)| dβ

in which the last integral approaches zero as
‖α2 − α1‖d → 0. Thus, because f ∈ L1(IR

d),
we see that F in fact maps into C.

Set H = EF with E as described in Propo-
sition 3. We see that H is a linear shift-
invariant continuous map of L∞(IRd) into
C, and therefore of L∞(IRd) into itself. By
Propositions 2 and 3, the range of H re-
stricted to BL1(IR

d) is the zero function,
showing that part (a) of the lemma holds.
Using Propositions 1 and 3, we see that part
(b) also holds. This proves the Lemma.

It is of interest to note that we have proved
a stronger result than is stated in the lemma,
in that the range H[L∞(IRd)] of H can be
taken to be contained in (the relatively sim-
ple space) C. 9 There are several variations
of Lemma 1. For example, for d = 1, one can
show (using the result in [1]) that H can be
taken to be causal.
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