
 

 

Efficient Wavelet-Based Scale Invariant Features Matching 
 

SHWU-HUEY YEN1,a, NAN-CHIEH LIN1,b, HSIAO-WEI CHANG2,c 
 Department of Computer Science and Information Engineering 

Tamkang University1 
151 Ying-Chuan Road, Tamsui, New Taipei City 25137, Taiwan 

REPUBLIC OF CHINA 
Department of Computer Science and Information Engineering 

 China University of Science and Technology2 

245, Sec. 3, Academia Road, Taipei 11581, Taiwan 
REPUBLIC OF CHINA 

105390@mail.tku.edu.twa   696410777@s96.tku.edu.twb 

changhw@cc.cust.edu.twc 
 
 

Abstract: - Feature points’ matching is a popular method in dealing with object recognition and image matching 
problems. However, variations of images, such as shift, rotation, and scaling, influence the matching 
correctness.  Therefore, a feature point matching system with a distinctive and invariant feature point detector as 
well as robust description mechanism becomes the main challenge of this issue. We use discrete wavelet 
transform (DWT) and accumulated map to detect feature points which are local maximum points on the 
accumulated map. DWT calculation is efficient compared to that of Harris corner detection or Difference of 
Gaussian (DoG) proposed by Lowe. Besides, feature points detected by DWT are located more evenly on 
texture area unlike those detected by Harris’ which are clustered on corners. To be scale invariant, the dominate 
scale (DS) is determined for each feature point. According to the DS of a feature point, an appropriate size of 
region centered at this feature point is transformed to log-polar coordinate system to improve the rotation and 
scale invariance. To enhance time efficiency and illumination robustness, we modify the contrast-based 
descriptors (CCH) proposed by Huang et al. Finally, in matching stage, a geometry constraint is used to 
improve the matching accuracy. Compared with existing methods, the proposed algorithm has better 
performance especially in scale invariance and blurring robustness. 
 
Key-Words: - Matching, Discrete Wavelet Transform (DWT), Dominate Scale (DS), Scale Invariance, 
Log-Polar Transform, Feature Point Descriptor 
 
1 Introduction 
Many computer vision techniques, such as image 
retrieval and object recognition/tracking, have 
become more and more popular today. Robustness 
of feature points’ matching is a key to success of 
these applications. However, a small variation on 
images, such as shift, rotation and scaling, may 
affect the accuracy of feature point matching greatly. 
Therefore, to design a feature points matching 
system with robust detecting ability and invariant 
descriptor becomes the main challenge of this issue. 

In 1977 Moravec developed an operator to locate 
“points of interest” which are also known as features, 
keypoints, or salient points in other research works. 
This operator is considered as a corner detector 
since it defines interest points as points where there 
is a large intensity variation in every direction. 
Moravec concluded that corners could be used to 
find matching regions in consecutive image frames 
[1][2]. The Moravec corner detector is 

computationally efficient but it suffers from several 
problems. It is not rotation invariant, considered to 
have a noise response, and is susceptible to 
reporting false corners along edges and at isolated 
pixels. In 1988, Harris and Stephens developed an 
operator combing corner and edge detector by 
addressing the limitations of the Moravec operator 
[3]. The detector has desirable detection and 
repeatability rates which is why it has been widely 
used till now. However, the Harris corner detector 
still has some shortcomings. It is computationally 
demanding, sensitive to noise, has poor localization 
on many junction types, and it is not rotation 
invariant.  

At first, corner detectors were designed for 
robotics and shape recognition and therefore, they 
may not be so suitable when applied to other 
applications [4]. In 1999, by taking Difference of 
Gaussian (DoG), Lowe presented a well-known 
scale-invariant feature transform (SIFT) algorithm. 
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The SIFT features are invariant to image scale and 
rotation. They are also robust to changes in 
illumination, noise, and minor changes in viewpoint. 
To be highly distinctive, descriptors are computed in 
the image closed in scales to the keypoint’s scale. 
Histograms contain 8 bins (gradient orientations) 
each, and each descriptor contains a 4x4 array of 
histograms around the keypoint. This leads to a 
SIFT feature vector with 128 (=4x4x8) elements. 
For more information about SIFT, interested readers 
may refer to [5] [6]. There has been an extensive 
study done on the performance evaluation of 
different local descriptors, including SIFT, using a 
range of detectors [7]. The evaluation carried out 
suggests strongly that SIFT-based descriptors are the 
most robust and distinctive, and are therefore best 
suited for feature matching. Nevertheless, the 
complication of the SIFT algorithm made 
researchers continue to work on developing simpler 
algorithms in this topic.  

The Discrete Wavelet Transform (DWT) 
provides a powerful framework to decompose 
images into different scales and orientations. In [4], 
they presented a wavelet-based salient point detector 
that extracts points on where variations occur in the 
image. To amend problems of shift variance and 
poor directional selectivity for diagonal features, 
Kingsbury suggested replacing DWT by Dual Tree 
Complex Wavelet Transform (DTCWT) [8]. Later 
on, they extended the DTCWT to a multi-scale 
keypoint detector [9]. An accumulated map is used 
to find robust keypoint scale selection. Compared to 
SIFT, their proposed method is shown to be more 
robust to rotation and less numerous. Also, DTCWT 
detector usually detects one keypoint per salient 
feature, which avoids producing too many 
redundant keypoints as in SIFT. However, besides 
keypoint detection by DTCWT, the descriptor 
design is also very important which is not discussed 
in [9]. 

Huang et al. [10] proposed a contrast-based 
descriptor called contrast context histogram (CCH). 
They proposed to extract the corners from a 
multi-scale Laplacian pyramid by Harris corner 
detector as feature points. CCH exploits the contrast 
properties of a local region centered at a feature 
point. Since it only evaluates the intensity 
differences between the center pixel (feature point) 
and the other pixels within the region, CCH is 
computationally efficient and invariant to rotation 
and linear illumination changes. However, the CCH 
is not scale invariant. 

In this paper, we propose a wavelet-based feature 
point detector to combine with the CCH descriptor. 
The primary motivation is to develop an effective 

feature point detecting system with a local 
descriptor that has smaller dimensionality. The 
computation simplicity and multi-scale properties 
are the reasons DWT is adopted. Accumulated map 
is used for feature points detecting. The local 
descriptors are computed in the image closed in 
scales, so called dominant scale (DS) determined by 
multi-scale of DWT, to the feature point’s scale. 
One novelty of the proposed algorithm is the size of 
region for calculating descriptor is accordance with 
the DS of the feature point. In this way, the feature 
points are not only computation efficient but also 
scale invariant. Since the accumulated map from 
DWT is used for feature points detecting, the 
problem of shift variance in DWT is not our concern. 
Also, since the orientation of the feature point is 
determined by its gradient, the poor directional 
selectivity of the DWT has no impact to our 
algorithm either. 

The remaining of the paper is organized as 
follows. In Section 2, we describe the detail of our 
proposed method. Section 3 is the experimental 
results. The conclusion and future work are given in 
Section 4. 

 
 

2 Proposed Method 
There are three main steps in our system: Feature 
Point Detection, Feature Point Descriptor and 
Feature Point Matching. Details are described in the 
following. 

 
 

A. Feature Point Detection 
First we do the Discrete Wavelet Transformation 
(DWT) on the input image until the width or height 
of subband is not larger than 20 pixels. For example, 
an image with size 512×512 will do the DWT up to 
5 levels. For each level i of the DWT, it generates 
three subbands Bib, b = 1, 2, 3 for HL, HH, LH. 
Equation (1) is to evaluate the energy magnitude Mi 
on level i. 
 

βραρ )(
3

1
ib

b

i
i ∏

=

= ,                   (1) 

 
where ρi is the coefficient of Mi, ρib is the magnitude 
of the coefficient on subband Bib, α and β are 
parameters. Setting low values for α and β will 
emphasis fine scales and improve the localization 
and detection of fine scale features, but it will make 
the detector sensitive to noise. In our experiments,  
α = 1 and β = 1/4 are used as recommended in [9] 
which claimed that this setting gives the best results 
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on different types of images. 
For each Mi, we use a bicubic interpolation 

function to resize it to have the size of the input 
image, and use (2) to evaluate the accumulated map 
A.  

∑
=

=
n

i
if

1
)M(A ,                         (2) 

 
where f is an interpolation function and n is the 
maximum level of DWT. The feature points are 
those local maximum of size 3×3 areas on A. Shown 
in Fig. 1, we compare the proposed feature points 
with the Harris corner feature points in Lena of 
128×128. The image has 67 feature points detected 
by our method and 105 feature points by Harris 
corners. Unlike those shown in (b) which are close 
together, the feature points by DWT are located 
more evenly.  Besides, feature points on the 
smooth texture connecting the ribbon to the hat are 
detected on (a) but not on (b). This shows that the 
proposed feature points are not only less in number 
but better represents the image comparing to Harris 
corners.  
 

 
(a)                 (b) 
 

Fig. 1 Feature points detected by (a) the proposed 
method and (b) Harris Corner Detector 
 

 
After all the feature points are detected, DSp, the 

Dominant Scale (DS) for a feature point p, is 
determined. DS is first proposed in [11] to have 
scale invariant property. If a feature point p is most 
prominent in a certain scale s, then p should have 
the strongest energy in the level i comparing to that 
on other levels assuming i is the level most close to 
such scale s. Thus, for a feature point p, the energies 
on all levels are compared and the level which has 
the largest energy is the DS of p as indicated in the 
Eq.(3).  

 
{ }  E ,...,E..., , Emax Arg  DS 1p nii∀

=      (3) 

 
where Ei, the energy on level i, is the sum of 
corresponding position of feature point in three 
subbands of level i in DWT and n is the maximum 
level of DWT. The smaller value of DSp indicates 
that the feature point p has stronger reaction on 
lower level of DWT, and therefore a larger region 
around p should be included as sample data to 
calculate the feature point descriptor. On the other 
hand, the larger value of DSp represents that a 
smaller region around p should be included as 
sample data to calculate the descriptor. The diagram 
for feature point detection is shown at Fig. 2 where 
(1) & (2) means Eq.(1) & Eq.(2) are applied 
respectively. 
 
 
 
 
 
 

 
Fig. 2 The diagram of feature point detection  
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B. Feature Point Descriptor 
We use DSp to decide the scale for R, a circular 
region for calculating local descriptor. As mentioned 
previously, larger DSp should choose smaller R and 
smaller DSp should choose larger R. Once R is 
decided, to be rotation invariant, a circular region of 
radius R/2 centered at the feature point p is used for 
calculating the descriptor. The circular area is then 
transformed to log-polar coordinate system that the 
circular area becomes a rectangular area. The 
transformation is accomplished by Eq.(4) and 
Eq.(5). 

  
R

2sinr - 
2
R  , 

R
2cosr  

2
RI  r) ,polar( ⎟⎟

⎠

⎞
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⎝
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⎝
⎛×⎟
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⎞
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⎛×+=

πθπθθ

   (4) 
 

( )  log(r) ,polar  ) ,(polar-log θδθ = ,           (5) 
 
where I(x, y) is the intensity of the sample within 
the circle, θ and r are the orientation axis and radius 
axis of the polar coordinate system. That is  
 

2 2
0 0r ( ) ( )x x y y= − + −   

and 
1

0 0tan ( )y y x xθ −= − − ,                (6) 
 
where (x0, y0) is the feature point p. The advantage 
of the log-polar transformation (LPT) is two-fold. 
One is that objects occupying the center of Cartesian 
image become dominant over coarsely sampled 
background elements in the image periphery. And 
the other is that if image I2 is a rotation of image I1, 
then the difference of their LPTs is simply a 
translation in θ axis. As illustrated in Fig.3, (c) is a 
90o rotation of (a), and (b), (d) are corresponding 
LPTs of (a) and (c). It is obvious that (d) is a 
translation of (b). The superimposed yellow curves 
depict the corresponding areas after transformation. 
Thus, in the matching problem, setting the 
orientation of the feature point as θ = 0 realizes the 
goal of rotation invariant. 

After LPT, the obtained rectangular area, as in 
Fig. 3(b), is divided into 16 blocks with 2 equal 
parts in vertical (log(r)) and 8 equal parts in 
horizontal (θ). For each region k, a 2-bin histogram 
is constructed which records the average intensity 
differences that are above/below the intensity of the 
feature point [10]. Unlike CCH in [10] where the 
calculation is based on the intensity differences 
between the feature point and the other pixels in the 
region k, we calculate intensity differences between 
the mean intensity μ of a 3×3 window centered at 

the feature point and the rest of pixels in the region 
k. By this way, the matching is more robust to 
possible small shifts of the feature points. Equations 
(7) and (8) define such histogram. 

 

 
(a)                  (b) 

 

 
(c)                (d) 

 
Fig. 3 Rotation effect on LPT (a) original image (c) 
original image rotated 90° (b) and (d) are the LPTs 
of (a) and (c) respectively 
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where x is the intensity value of a pixel in the region 
k and μ is the mean intensity of a 3×3 window 
centered at the feature point, and N is number of 
points involved in the calculation. Finally, all these 
values of 16 regions are concatenated as a feature 
point descriptor of 32-dimension shown in (9). 
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C. Feature Point Matching 
For a query image Q and a target image T, the steps 
described above are applied such that all feature 
points are located and descriptors are evaluated. It is 
assumed that there are NQ and NT feature points in Q 
and T respectively. A matrix named Compare(Q,T) 
with size NQ×NT is constructed as in (10) to denote 
the distances of descriptors between feature points 
of Q and T where the distance d(p, p’) is defined in 
(11) with p, p’ are feature points of Q and T. The 
smaller it is meaning these two feature points are 
more likely to be the correct matching.  
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32
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=
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In order to improve the matching accuracy, we 
use a simple geometric principle to ensure matching 
consistency. Three smallest values in Compare(Q,T) 
are located, say d(Pα , Pα ′), d(Pβ , Pβ ′), and d(Pγ , Pγ ′). 
If the figure formed by Pα , Pβ , Pγ in Q is similar to 
that formed by Pα ′, Pβ ′, Pγ ′ in T, then we call these 
points three basic points for Q and T respectively. 
Two figures are claimed to be similar if the 
corresponding ratios of three sides are similar 
enough. If these two figures are not similar, the next 
smallest value in Compare(Q,T) is picked to replace 
the biggest value of the three and check for 
similarity again. If all values in Compare(Q,T) have 
been checked and still can’t find the similar figures, 
these two images are claimed to be not matching.  

 
Fig. 4 Three basic points in Q (left image) and T 
(right image) with feature point consistency relation 

 
Suppose Pα , Pβ , Pγ and Pα′ , Pβ′ , Pγ′ are three 

basic points found in Q and T, and we are looking 
for a matching for the feature point Pi of Q. For row 
i of the Compare(Q,T), if the smallest value is d(Pi, 
Pj), check for the consistency relation as illustrated 
in Fig. 4. That is to calculate the ratios Pi with basic 
points in Q corresponding to Pj with basic points in 
T. If Pi, P’

j are a matching pair then ratios defined in 
(12) should all equal to 1. However, in real 
applications with possible noises, Pi and P’

j are 
considered matched if ratios are close to 1 as 
defined in (13) where t is a given threshold. If t is 
small (e.g., 0.1) then matching accuracy will be 
improved but with possible high false negative, yet 
if t is large (e.g., 0.5) then the recall rate will be high 
with a price of increasing false positive. If the 
consistency relation in (13) is not satisfied for Pi, P’

j, 
and the next smallest value on row i is d(Pi, P’

l), 
then P’

l will replace P’
j and the consistency relation 

is checked again. If the consistency relation is failed 
for every point on row i, we claim Pi of Q has no 
matching in T. 
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|r1/r2 - 1| < t  and  |r2/r3 - 1| < t  and  |r1/r3 - 1| < t.          

(13) 
 
 
3 The Experimental Results 
We compare the proposed method to the CCH 
method [10]. In CCH descriptors, feature vectors 
can be 32-dimension or 64-dimension. Our feature 
vectors are 32-dimension, therefore we choose 
32-dimension feature descriptor of CCH for 
comparison. In order to compare the results, our 
algorithm and the CCH use the same feature 
matching method as described in C of the Section 2. 
The program is written by JCreator with JDK 
version 1.4, and the CPU is Intel Core 2 with 1.83 
GHz clock rate. Memory size is 2GB. The testing  
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           (a)                     (b)                     (c) 

 

     
            (d)                    (e)                      (f) 
 

Fig. 5 The query images: (a) rotated 180° on Lina (i.e., R180(L)) (b) rotated 5° on Lina (i.e., R5(L)) (c) intensity 
changes on F-16 (i.e., I(F)) (d) Gaussian burring on Pepper (i.e., B(P)) (e) adding Gaussian noise on F-16 (i.e., 
N(F)) (f) JPEG compression on Pepper (i.e., J(P)) 
 
images are Lena(L), F-16(F), and Pepper(P) of 
256×256. The query images are under several 
modifications- scaling, rotation, intensity change, 
adding Gaussian noise, Gaussian blurring, and JPEG 
compression- then find the matching features 
corresponding to the original images. The details of 
image modifications are the following: scaling (S)- 
the query image is halved (128×128), intensity (I)- 
the query image is 25% brighter than the original 
image, noise (N)- 3% of Gaussian noise is added to 
the query image, blurring (B)- Gaussian burring 
with a radius of 1.0 pixel is added, JPEG 
compression (J)- the query image is compressed 
then de-compressed with a compression quality of 4 
(quality level is 1~12), rotation (R180 & R5)- the 
query image is rotated by 180 degrees and 5 degrees. 
All these image processes are done by Adobe 
Photoshop 6.0. Some of the query images are shown 
in Fig. 5. 

In order to evaluate the effectiveness of the 
algorithm, two common criteria (14) and (15) are 
used. 

  
points featurequery  all ofnumber 

points feature matchedcorrect  ofnumber   recall= , 

(14) 

 
 

  
points feature matched ofnumber 

points feature matchedcorrect  ofnumber 
precision =

, 

                                      (15) 
   

Recall and precision are real numbers between 0 and 
1. The higher of the value in recall and precision 
indicates the better performance of the matching. 
However, the higher of the recall usually causes the 
lower of the precision, and the higher of the 
precision causes the lower of the recall. Therefore, 
F-measure that combines precision and recall by 
their harmonic mean is also adopted as given in (16). 
This is also known as the F1 measure, because recall 
and precision are evenly weighted. It is a special 
case of the general Fβ measure which was derived 
by van Rijsbergen. Fβ measures the effectiveness of 
retrieval with respect to a user who attaches β times 
as much importance to recall as precision [12].  

precision recall2
presision recall

F ⋅
= ⋅

+
.                (16) 
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Table 1. Comparison on recall 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Comparison on precision 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     

 
Partial experiment results are summarized in 

Tables 1-3 for recall, precision, and F-measure. The 
t-value in Tables is the threshold t in (13) of the 
geometric constraint. When t is small (e.g., 0.1) then 
matching accuracy will be improved but with 
possible high false negative, yet if t is large (e.g., 0.5) 
then recall rate will be high with a price of 
increasing false positive. The labels under query in  
Tables are the modified query image (e.g., I(F) 
means a 25% intensity brightening has been applied 
on the image F-16; B(P) means a Gaussian blurring 
is applied on the image Pepper, etc.). In Tables, 
those bolded figures indicate the better 
performances and blue figures are the same 
performances between these two methods. The 
average on the right of the Table is considering 
performances for different threshold t-values on the 
same query image; and the average on the bottom of 
the Table is considering performances for different 
query images under the fixed t-value. 

In changes of illumination (e.g., I(F)), both 
methods performed very well because the feature 
descriptors are based on the average in difference of 
intensities. It is worth noting that the intensity 
differences calculation in our method is based on the 
mean intensity of a 3×3 window centered at the 
feature point, while in CCH is based on only the 
feature point’s intensity. As the result indicates, the 
robustness has been improved by our method. When 
Gaussian noises are added to the query image (e.g., 
N(F)), more feature points are detected caused by 
noises. Thus precisions are not as good as recalls. 
The CCH method outperformed the proposed 
methods in recall, precision, and F-measure. In 
Gaussian blurring experiment (e.g., B(P)), the 
proposed method outperformed the CCH 
significantly. This indicates that corner features are 
vulnerable to blurring. The results also illustrates 

RECALL                    Our method    vs.   CCH[10] 

query t = 0.5 t = 0.4 t = 0.3 t = 0.2 t = 0.1 Ave 

I(F) 0.98 0.94 0.98 0.92 0.96 0.91 0.93 0.87 0.90 0.83 0.950 0.894

N(F) 0.92 0.98 0.92 0.95 0.91 0.93 0.88 0.94 0.85 0.91 0.896 0.942

B(P) 0.96 0.59 0.96 0.59 0.97 0.56 0.97 0.50 0.97 0.42 0.966 0.532

J(P) 0.92 0.91 0.92 0.87 0.87 0.85 0.83 0.84 0.72 0.80 0.852 0.854

S(L) 0.88 0.71 0.87 0.66 0.82 0.60 0.75 0.57 0.63 0.45 0.790 0.598

R180(L) 0.86 0.85 0.80 0.81 0.77 0.76 0.69 0.68 0.58 0.58 0.740 0.736

R5(L) 0.84 0.83 0.81 0.79 0.78 0.75 0.66 0.65 0.55 0.54 0.728 0.712

Ave 0.909 0.830 0.894 0.799 0.869 0.766 0.816 0.721 0.743 0.647  

PRECISION                 Our method    vs.   CCH[10] 

query t = 0.5 t = 0.4 t = 0.3 t = 0.2 t = 0.1 Ave 

I(F) 0.82 0.79 0.82 0.83 0.84 0.83 0.86 0.87 0.91 0.91 0.850 0.846

N(F) 0.83 0.86 0.83 0.87 0.84 0.88 0.86 0.89 0.89 0.92 0.850 0.884

B(P) 0.48 0.14 0.49 0.14 0.53 0.15 0.58 0.17 0.72 0.20 0.560 0.160

J(P) 0.96 0.68 0.95 0.73 0.91 0.74 0.88 0.75 0.82 0.79 0.904 0.738

S(L) 0.62 0.48 0.65 0.62 0.68 0.66 0.75 0.70 0.81 0.74 0.702 0.640

R180(L) 0.22 0.22 0.24 0.24 0.27 0.26 0.31 0.28 0.43 0.46 0.294 0.292

R5(L) 0.19 0.21 0.23 0.23 0.25 0.24 0.39 0.27 0.41 0.39 0.294 0.268

Ave 0.589 0.483 0.601 0.523 0.617 0.537 0.661 0.561 0.713 0.630  

WSEAS TRANSACTIONS on SIGNAL PROCESSING Shwu-Huey Yen, Nan-Chieh Lin, Hsiao-Wei Chang

ISSN: 1790-5052 127 Issue 4, Volume 7, October 2011



 

 

Table 3. Comparison on F-measure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

that the choice of t-value (t = 01. vs. 0.2) has an 
impact on the precision of the proposed method. In 
JPEG experiment (e.g., J(P)), the recall 
performances in both algorithms are almost the 
same (except when t =0.1) but in precision 
performance our method is better especially when t 
is higher. In the scaling experiment (e.g., S(L)), the 
proposed method outperformed the CCH in both 
recall and precision for every possible t values. This 
also shows the proposed multi-scale wavelet method 
is scale robustness. In rotation experiment (e.g., 
R5(L)), the results of both methods are about the 
same. They both are good on recall rates but poor in 
precisions. This means that under the proposed 
matching criteria, many query feature points are 
matched but not matched correctly. In the future, we 
will explore further more on the feature 
distinctiveness and invariance with respect to 
rotation 

In F-measure (Table 3), our method has better 
performances in the experiments in general. The 
stricter t-value (t = 0.1) provides more reliable 
matching results in both methods. Comparing to 
CCF, our method showed the most improvement on 
Gaussian blurring (0.705 vs. 0.243). Due to the 
smoothing effect from blurring, Harris corner 
detector fails to detect features precisely. Besides, 
the descriptor of the proposed algorithm is based on 
the 3x3 average value of the feature point which 
also increases the robustness. Due to the 
center-based contrast used in the descriptor, both 
methods perform very well on intensity changes. 
Performance on rotation is not good on both 
methods. Using log-polar transformation likewise, 
both algorithms set the orientation of the feature 
point as θ = 0 to realize the goal of rotation invariant. 

However, the results are not as expected. The further 
study on this is necessary in the future.  

Table 4 summarizes the time consumptions in 
two methods. The differences in computation for 
these algorithms are (1) feature points detected by 
DWT (ours) and by Harris corner detector (CCH); 
(2) our method needs to find a mean value of a 3x3 
window. DWT involves only additions and 
subtractions, while Harris corner detector needs 
matrix operations. However, time consumption is 
mostly coming from the matching step and it 
increases with the number of feature points. Since, 
in general, Harris corner detector results more 
feature points than DWT does, the time 
consumption is less in our method than in the CCH. 
In Gaussian blurring experiment, the number of 
detected feature points is much reduced in Harris 
detector. This causes a poor matching performance 
but the time consumption is much reduced too. 
Without considering the Gaussian blurring 
experiment, the average time consumption of our 
method is only half of that of the CCH, averagely 
20,885 ms vs. 41,729 ms. As indicated in [10], the 
computation efficiency in CCH is two times faster 
than in SIFT. We can conclude that our method is 
even more efficient in computation.  

 
 
 
 
 
 
 
 
 

F-MEASURE                Our method    vs.   CCH[10] 

query t = 0.5 t = 0.4 t = 0.3 t = 0.2 t = 0.1 Ave 

I(F) 0.89 0.86 0.89 0.87 0.90 0.87 0.89 0.87 0.90 0.87 0.896 0.868

N(F) 0.87 0.92 0.87 0.91 0.87 0.90 0.87 0.91 0.87 0.91 0.872 0.912

B(P) 0.64 0.23 0.65 0.23 0.69 0.24 0.73 0.25 0.83 0.27 0.705 0.243

J(P) 0.94 0.78 0.93 0.79 0.89 0.79 0.85 0.79 0.77 0.79 0.877 0.790

S(L) 0.73 0.57 0.74 0.64 0.74 0.63 0.75 0.63 0.71 0.56 0.735 0.606

R180(L) 0.35 0.35 0.37 0.37 0.40 0.39 0.43 0.40 0.49 0.51 0.408 0.403

R5(L) 0.31 0.34 0.36 0.36 0.38 0.36 0.49 0.38 0.47 0.45 0.401 0.378

Ave 0.676 0.577 0.689 0.595 0.695 0.597 0.716 0.606 0.720 0.625  
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Table 4. Comparison of time consumption (in ms) 

            Method 
Attack Proposed method CCH[10] 

Scaling (S) 7288 20255 

Rotated 180° (R180 ) 24789 57087 

Rotated 5° (R5 ) 25841 58469 

Intensity changes (I) 23532 35172 

Gaussian Blurring (B) 15543 3390 

Gaussian Noise (N) 25603 44609 

JPEG Compression (J) 18256 34781 

Average 20121 36251 

 
 

 
4 Conclusion and Future Work 
We proposed a time efficient system using DWT to 
detect the feature points and improve the CCH to 
compute the feature descriptors, and finally, we 
adopted the geometric constraint to improve the 
matching accuracy. The proposed algorithm was 
supported by the experiments that it is robust to 
illumination changes, blurring, JPEG, and Gaussian 
noises. We also compared our method to CCH; the 
results in the proposed method were either better or 
similar in the CCH except the Gaussian noises. 
However, our average performance in Gaussian 
noise was still quite well (it is of 0.87 and up.)  

In the future, we will explore more on the feature 
distinctiveness and invariance with respect to 
rotation. We will also try to combine more 
information such as color into the system and apply 
the system to practical applications. 
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