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Abstract: - The parameter estimation of the frequency agility (FA) signal using the coding Nyquist folding 

receiver (CNYFR) is presented. The estimation algorithm adopting linear frequency modulation (LFM) as the 

local analogue modulation is derived. The Nyquist zone is estimated by the pseudo Wigner-Ville distribution 

(PWVD) and the hopping frequencies are calculated by the maximum likelihood (ML) method. Simulations 

show that CNYFR with analogue modulation of LFM has better performance than the sinusoidal frequency 

modulation (SFM) one, and the parameter estimation accuracy is acceptable when the SNR is above 0dB. 
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1 Introduction 
The frequency agility (FA) signal, also known as the 

frequency hopping (FH) signal, has been widely 

applied in radar, communication, sonar and other 

fields because of its good performance in low 

possibility of intercept and anti-interference. In the 

field of radar, FA has always been a research focus. 

Bellegarda studied multiple access FH signals using 

a synthesis tool of the hit array in the context of 

coherent active radar [1]. Morrison proposed an 

approach which allows the frequency spectrum to be 

greatly under-sampled to provide a greater effective 

bandwidth for a stepped frequency continuous wave 

(SF-CW) synthetic aperture radar (SAR) [2]. Becker 

studied passive localization of FA radars for angle 

and frequency measurements [3]. Rogers presented 

analytical techniques for evaluating the performance 

of FH radars based on the autocorrelation properties 

of the frequency selection process [4]. Lellouch 

investigated an agile orthogonal frequency division 

multiple (OFDM) waveform to solve the problem of 

Doppler frequency shift in FA [5].  

The bandwidth of a FA radar signal could be 

greater than 10GHz. For the intercept receiver of the 

FA signal, the main question is how to intercept such 

a wide bandwidth under the condition of low 

sampling rate less than 3Giga sample per second 

(GSPS). Fortunately, the FA signal could be 

regarded as a kind of sparse signals, and could be 

processed by the recent powerful concept denoted as 

compressed sensing (CS). Under CS, we may 

intercept the radar signals with low sampling rate. 

The concept of CS was proposed by Candes and 

Donoho [6-7], et al in 2006. From then on, many 

scholars studied the application of CS in various 

aspects. Herman studied a high-resolution radar via 

CS [8]. Ma used CS for surface characterization and 

metrology [9]. Potter applied CS in radar imaging 

[10]. Provost studied the application of CS for photo-

acoustic tomography [11]. Flandrin discussed the 

connection between CS and time frequency 

distribution, and showed that improved 

representations can be obtained with the cost of 

computational complexity [12]. Now CS has been 

applied to a variety fields such as receiver and 

camera.  

In the receiver side, some scholars have proposed 

different structures. Tropp and Laska developed an 

architecture called the random demodulator, which 

consists of a pseudorandom number generator, a 

mixer, an accumulator (or a low pass filter) and a 

low rate analog-to-digital converter (ADC). First, 

they mixed the input signal with a high-rate pseudo 

noise sequence. Then, the output signal passes 

through a filter with a narrow passband and a few 

samples with a relatively low rate compared to the 

Nyquist rate are acquired. The system can be used to 

perform the spectrum sensing, geophysical imaging 

as well as radar and sonar imaging. The major 

advantage of the random demodulator is that it 

avoids a high-rate ADC, and expands the CS theory 

to analog signals. Also, it is robust against noise. 

However, some engineering issues should be 

considered such as the speed of the mixer and the 
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impulse response of the filter [13-14]. Romberg 

proposed another structure called random 

convolution. It circularly convolves the input signal 

with a random pulse and then subsamples the output 

signal. Since the system is universal and allows fast 

computations, it is perfect to be a theoretical sensing 

strategy. Some applications include radar imaging 

and Fourier optics. The random convolution system 

is simpler and more efficient than other random 

acquisition techniques. Further, the system is suited 

to a wide range of compressed signals. However, the 

realization of random pulse is a challenging problem. 

For instance, whether different shifts of the pulse are 

orthogonal is still a problem [15-16]. 

In the application of camera, Takhar developed a 

new camera architecture called compressive imaging 

camera, which uses a digital micro mirror array to 

acquire linear projections of an image onto 

pseudorandom binary patterns. The most exciting 

feature of the system is that it can be adapted to 

image at wavelengths with conventional charge-

coupled device (CCD) and complementary metal 

oxide semiconductor (CMOS) imagers, and it has 

good features including simplicity, universality, 

robustness, and scalability. However, some problems 

still exist as follows; for example, more other 

measurement bases can be implemented, and higher-

quality reconstruction of images needs further studies. 

Besides, a more complex photon sensing element can 

be used to colour, multispectral, and hyper spectral 

imaging [17]. 

  Driven by the idea of CS, Fudge proposed the 

Nyquist Folding Receiver (NYFR) [18]. This type of 

receiver overcomes the disadvantages of the 

traditional sub-sampling technique, only aiming at a 

particular Nyquist sampling, and avoids frequency 

sweep. The key of the NYFR is that the Nyquist zone 

could be mapped to a parameter of the local analogue 

modulated signal on the received signals, and then 

we can sample the received signals which contain the 

additional Nyquist zone information by a low 

sampling rate. By changing the bandwidth of local 

analogue modulation and the channel number, we 

can achieve the whole probability interception of a 

wideband or ultra-wideband signal in one channel 

without using frequency sweep. However, the 

structure of NYFR is easily affected by noise at the 

zero crossing rising (ZCR) time when controlling the 

radio frequency (RF) sample clock of shape pulse 

using a full analogue structure for wideband 

modulation. Besides, the structure of single channel 

limits interception bandwidth mostly and the 

implementation of sinusoidal frequency modulation 

(SFM) as a local analogue modulation is difficult. 

This paper presents an improved structure marked 

as coding NYFR (CNYFR), also called dual channel 

NYFR (DCNYFR) to realize the interception of the 

FA signal, and shows the algorithm using pseudo 

Wigner-Ville distribution (PWVD) for the estimation 

of the Nyquist zone. Moreover, since linear 

frequency modulation (LFM) is easier to be 

generated, we adopt LFM as the local analogue 

modulation instead of SFM. 

The rest of the paper is organized as follows. 

Section 2 analyses the structure for CNYFR in 

details, and gives the advantages of dual-channel. 

Section 3 describes the estimation of Nyquist zone. 

Section 4 provides simulations. Finally, section 5 

concludes the paper. 

 

 

2 Coding Nyquist Folding Receiver 
With continued improvements in digital signal 

processing (DSP) technology, the ADC is becoming 

one of the bottlenecks in a variety of signal 

applications ranging from radar to communications, 

where the information is processed within extremely 

wide RF bandwidths. Since the environment of 

signal applications is generally sparse, it is feasible 

to reduce the sample rate. Fudge considered the 

information sampling of these sparse signals and 

presented a practical receiving structure called 

NYFR which can be applied to the direct processing 

of high RF signals.    

 

 

2.1 Structure for CNYFR 
We pay attention to the NYFR which is an analog-to-

information receiver architecture. The key technique 

is that it folds the multiple original signal component 

frequencies into a narrow bandwidth prior to ADC. 

In this case, the sample rate of ADC can be reduced 

obviously. Base on the architecture of the NYFR, we 

can make some advances and propose this CNYFR. 

The structure of the CNYFR is shown in Fig.1. 

Assume that the input signal is FA, and the agile 

range is from several hundreds of MHz to 20GHz. 

Besides, we assume the input analog signal has been 

pre-processed into a complex signal. Firstly, the 

input signal is filtered by a ultra wideband (UWB) 

low-pass filter (LPF1) whose passband is up to 

20GHz to remove the out-of-band noise to get the 

complex signal ( )x t . Then, ( )x t  is multiplied by 

( )ip t , 1,2i = , to obtain the modulated signal 

( ) ( ) ( )i ir t x t p t= , then ( )ir t  is filtered by the second 

complex low-pass filter (LPF2) with the passband 

[ ]/ 2 / 2s sf f−  to get the signal ( )is t , where sf  is 
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the sampling rate for ADC. Finally, sample signal 

( )is t  by the rate of sf  to obtain ( )is n . Then, ( )is n  

will be sent to DSP for the estimation of the Nyquist 

zone. In this paper, different from the NYFR, ( )ip t  

is generated by the direct digital synthesizer (DDS) 

and digital analog converter (DAC), where DDS is 

constituted of sf , the phase ( )nθ  and the initial 

phase 0ϕ . 

 
Fig.1. The structure of CNYFR 

For 1( )p t  and 2 ( )p t , we draw on the idea of 

code-division multiple access (CDMA). In CDMA 

communication system, the signal which the users 

adopt to transmit different information is not 

discriminated from each other by different 

frequencies or time slots, but by their own coding 

sequences or different waveforms of signals. 

Similarly, in the NYFR, we introduce the coding 

mechanism and generate the UWB complex 

analogue modulation oscillators 1( )p t  and 2 ( )p t  to 

stand for different Nyquist zones of the whole 

frequency band we are interested in. First of all, we 

divide the interception bandwidth IB  into N  sub-

bands. The bandwidth of each sub-band is fixed to 

1 sK f , where 1K  is the factor of coding. Then, on the 

one hand, the bandwidth for 1( )p t  increases 

exponentially by kBθ  in each sub-band where 

{ }11,2,...,k K∈ , and Bθ  is the bandwidth of ( )tθ , 

where ( )tθ  is the phase modulation function, such 

as a sinusoidal function, a polynomial function, etc. 

Meanwhile, the waveforms are the same among the 

sub-bands. In this case, the 1( )p t  can be given by  

 ( ) ( ) ( ) ( ){ }1 0 12 1

1 1 1
1

sN nK j k f t k n K t

n k
p t e

π ϕ θ+ + − −  
= =

= +∑ ∑  (1) 

where 0ϕ  is the initial phase and { }1,2,...,n N∈ . 

On the other hand, the bandwidth for 2 ( )p t  is 

fixed in each sub-band and increases exponentially 

by nBθ  among the sub-bands. So 2 ( )p t  can be 

given by 

 ( ) ( ) ( )1 02

2 1 1
1 s

N nK j k f t n t

n k
p t e

π ϕ θ + + 
= =

= +∑ ∑  (2) 

 

 

2.2 Theoretical analysis 
Considering ( )x t  is frequency agile, which is 

denoted as 

 
1 (2 )

0
( ) ( )q q

Q j f t

rq
x t e t qT

π ϕ µ
− +

=
= −∑  (3) 

where  

1,0
( )

0,

Pt T
t

otherwise
µ

≤ <
= 


; 

PT   width of sub-pulse; 

 rT  pulse repetition interval (PRI); 

r PT T>  ;  

qf   agile frequency; 

qϕ  initial phase for the qth sub-pulse; 

Q   the number of components. 

The NYFR presented by Fudge used the ZCR 

voltage of SFM to control the shaping pulse to get 

the UWB analogue modulation ( )p t . While, the key 

of the NYFR is to move the local wideband signals, 

such as FA, with different Nyquist zones into the 

baseband. As long as the analogue modulation has 

different band information in each corresponding 

Nyquist zone, we can get the same result in the 

NYFR. Therefore, the analogue modulation could 

be simply rewritten as equation (1) and equation (2). 

According to equation (1) and equation (2), the 

maximum interception bandwidth can be expressed 

as 
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 1( 1 / 2)I sB NK f= +  (4) 

After being mixed and filtered by LPF2, the 

outputs should be 

 

( )
( ) ( )

( )

, , 0 ,

1

21

0

q s H q q H q I qj f f k t k k tQ

q

r

s t

e

t qT

π ϕ ϕ θ

µ

 − + − −−  
=

=

⋅

−

∑  (5) 

 

( )
( ) ( )

( )

, , 0 ,

2

21

0

q s H q q H q J qj f f k t k k tQ

q

r

s t

e

t qT

π ϕ ϕ θ

µ

 − + − −−  
=

=

⋅

−

∑  (6) 

where  

( ), , 1 /I q q J q s sk round f k K f f = −  ; 

, 1/J q q sk f K f =   ; 

⋅    stands for round down; 

[ ], 0 1J qk N∈ − ; 

[ ], 11I qk K∈ .  

 , , , 1( 1)I q H q H qk k n K= − −  (7) 

 , , 1J q H qk n= −  (8) 

Substituting equation (8) into equation (7), we 

get 

 , , , 1H q I q J qk k k K= +  (9) 

Sample 1( )s t  and 2 ( )s t  then 

 

( )
( ) ( )

( )

, , 0 ,

1

21

0

q s H q s q H q I q sj f f k nT k k nTQ

q

s r

s n

e

nT qT

π ϕ ϕ θ

µ

 − + − −−  
=

=

⋅

−

∑  (10) 

 

( )
( ) ( )

( )

, , 0 ,

2

21

0

q s H q s q H q J q sj f f k nT k k nTQ

q

s r

s n

e

nT qT

π ϕ ϕ θ

µ

 − + − −−  
=

=

⋅

−

∑  (11) 

where 1/s sT f=  is the sampling interval. 

From equation (10), we know that the qth sub-

pulse of the output ( )1s n  is a wideband signal 

whose center frequency, bandwidth and initial phase 

are ,q s H qf f k− , 1 ,s I qB k Bθ=  and , 0q H qkϕ ϕ− , 

respectively. The qth sub-pulse of the output ( )2s n  

is also a wideband signal which has the same centre 

frequency and initial phase but different bandwidth 

2 ,s J qB k Bθ= . 

2.3 The choice of the local analogue 

modulation 
In this paper, we chose frequency modulation (FM) 

as the local analogue modulation. Like the 

amplitude modulation (AM), FM is well known as a 

broadcast signal format for communication. In 

particular, the LFM signal is a kind of FM signal 

whose instantaneous frequency (IF) is modulated by 

a linear signal. Because of low probability of 

intercept, it is one of the most important signals in 

radar field, which has high range resolution, inhibits 

leakage and near field interference. Due to its good 

pulse compression characteristic, many high 

resolution radars such as SARs use this kind of FM 

waveform. It is a mature technology to generate the 

waveform; therefore, we are more inclined to 

choose LFM than SFM as the local analogue 

modulation.  

 

 

2.4 The advantage of Dual-channel 

The signals ( )1s t  and ( )2s t  are just in one Nyquist 

zone namely the baseband [ / 2 / 2]s sf f− . 

According to the Nyquist sampling theorem, the 

condition of sampling without aliasing is  

 ( )
, 1

/ 1 / 2 /

I q

I s

s

k B K B

B f B N

f

θ θ

θ

≤

= −

≤

 (12) 

Suppose that we use SFM function ( )tθ , i.e.,  

 ( ) ( )sin 2e ft t f tθ π=  (13) 

The instantaneous frequency of equation (13) is 

( )cos 2e f ff t f f tπ= , therefore 2 e fB t fθ = , where 

/e ft f f= ∆  is the factor of frequency modulation, 

f∆  the frequency drift and ff  the frequency of the 

modulation signal.  

Equation (12) could be rewritten as 

 
2

2

s
e

I f s f

f N
t

B f f f
≤

−
 (14) 

Generally, for SFM, et  is one of the most 

important parameters we need to design. Compared 

with the single channel method, the dual-channel 

can realize wider IB  with the same parameters of 

SFM. When s If B≪  and 2 / 2e s I ft f N B f≤ , IB  can 

be widened N  times. 

We can recover the signal without distortion 

when equation (12) is satisfied. For electronic 

reconnaissance,  when the interception frequency 

range is 21GHz, the sampling rate is 2GHz and 

1 5K = , we get 2N =  from equation (4), then 

400Bθ ≤ MHz. 

1( )p t  and 2 ( )p t using SFM and LFM are shown 

in Fig.2 and Fig.3, respectively. 
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Fig.2. 1( )p t  and 2 ( )p t using SFM 

 
Fig.3. 1( )p t and 2 ( )p t  using LFM 

 

 

2.5 The advantage of the CNYFR 
The proposed CNYFR has developments over the 

NYFR in the following aspects: 

The structure of the NYFR used convolution of a  

Dirac sequence with the pulse template to generate 

the local analogue modulation, therefore, it results 

in too complex theoretical analysis and there are lots 

of approximate equivalent; while, the derivation of 

the CNYFR for local analogue modulation showed 

in (1) and (2) are easy to understand, and avoid 

approximate equivalent.  

Moreover, the structure of the NYFR is easily 

affected by noise at the time of ZCR when 

controlling the RF sample clock of pulse template 

using a full analogue structure for wideband 

modulation. Differing from the NYFR, the pulse 

train ( )ip t  is generated by the DDS and digital 

analog converter DAC, where DDS is constituted of 

sf , the phase ( )nθ  and the initial phase 0ϕ . The 

( )ip t  and DSP of the CNYFR are synchronous, and 

we can estimate the initial phase of the received 

signal easily. 

 

 

3. The estimation of the Nyquist zone 
Before estimating the Nyquist zone, we assume that 

the signal has been detected with a relevant 

algorithm. After the detection, we could estimate the 

parameters of the Nyquist zone. 

As mentioned above, the outputs of ( )1s n  and 

( )2s n  are wideband signals where the centre 

frequency, bandwidth and initial phase are 

,q s H qf f k− , ,I qk Bθ  and , 0q H qkϕ ϕ−  for ( )1s n ; 

,q s H qf f k− , ,J qk Bθ  and , 0q H qkϕ ϕ−  for ( )2s n , 

respectively. We could estimate the Nyquist zone 

,I qk  using the time-frequency distribution (TFD) 

such as PWVD by dividing the bandwidth 1sB  

corresponding to the amplitude of the ridge of TFD 

and the bandwidth Bθ . In the same way, we could 

estimate the Nyquist zone ,J qk . Then, we use 

equation (9) to estimate the final Nyquist zone ,H qk . 

Because the FA signal has multiple components, 

the problem of cross-terms exists. In order to get 

accurate parameter estimation, it is necessary to 

reduce the effects of cross-terms. Therefore, we 

adopt the TFD namely PWVD. PWVD is derived 

from the WVD. WVD is based on the stationary 

property of quadratic signal form. As the quadratic 

form of ( )1s n  is not always stationary, we should 

use PWVD. 

The definition of PWVD is as follows: 

 
( )

( ) ( ) ( ) 2

,

/ 2 / 2

s

j f

PWD t f

s t s t h e dπ ττ τ τ τ
+∞ ∗ −

−∞

=

+ −∫
 (15) 

where ( )h τ  is the window function. 

In order to validate the effectiveness of the 

method, we set the polynomial function as ( )tθ , and 

 2( )t ktθ π=  (16) 

where k  is the slope of modulation. 

We assume that ( )h τ  is a Gaussian window 

 
2

( )h e αττ −=  (17) 

Under this condition, equation (5) or equation (6) 

is a LFM. We just rewrite them to the unified 

expression  

 ( ) ( )2
02 0.5 ij f t kt

s t e
π ϕ+ +

=  (18) 

where iϕ  is the initial phase.  
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The product signal is  

 

( ) ( )
( ) ( )

( ) ( )

( )

2
0

2
0

0

2 /2 1/2 /2

2 /2 1/2 /2

2

/ 2 / 2

i

i

j f t k t

j f t k t

j f kt

s t s t

e

e

e

π τ τ ϕ

π τ τ ϕ

π τ

τ τ∗

 + + + +  

 − − + − +  

+

+ −

= ⋅

=

 (19) 

Then inserting equation (19) into equation (15), 

the PWVD of LFM is as follows: 

 

( )

( ) ( ) ( )
( ) ( )0

2

2 2

,

/ 2 / 2

s

j f

j f kt j f

PWD t f

s t s t h e d

e h e d

π τ

π τ π τ

τ τ τ τ

τ τ

+∞ ∗ −

−∞

+∞ + −

−∞

=

+ −

=

∫

∫

 (20) 

According to the convolution property of the 

Fourier transform, we know that the product in time 

domain means convolution in frequency domain. 

Therefore, equation (20) is equal to 

 ( ) ( ) ( )0,sPWD t f f f kt H fδ=  − +  ⊗   (21) 

where the mark ⊗  denotes one dimension 

convolution at frequency f . Here we use  

 

( )

( )

( )

0

0

2 2

2

0

j f kt j f

j f kt f

e e d

e d

f f kt

π τ π τ

π τ

τ

τ

δ

+∞ + −

−∞

+∞ + −

−∞
=

=  − +  

∫

∫  (22) 

and 

 
( )2 /1/2 1/2( )
f

H f e
π απ α −−=  (23) 

is the Fourier transform of ( )h τ , which is 

monotonously decreasing, and we can get the 

maximum of ( )H f  at 0f = . 

Then by equation (21) and equation (23), we can 

get 

 
( ) ( )( )

( )( )20

0

/1/2 1/2

,s

f f kt

PWD t f H f f kt

e
π απ α
 − − +−  

= − +

=
 (24) 

The ridge of PWVD contains important 

information about the characteristics of the signal. 

We put forward an algorithm to extract the ridge. 

The idea is to search for the maximum of 

( ),sPWD t f  along f . Thus, the ridge of 

( ),sPWD t f  is given by  

 ( ){ }( ) argmax ,s
f

r t PWD t f=  (25) 

Based on analysis above, we know that equation 

(24) gets the maximum at 0f f kt= + , then 

 ( ) 0( )r t f t f kt= = +  (26) 

Under this condition, we can get the bandwidth 

from the amplitude of the ridge of PWVD. Further, 

we estimate ,I qk  and ,J qk  by the ridge of PWVD. 

The procedure is shown in Fig.4. 

We set 8.4qf = GHz as an example to see the 

PWVD results of the output signals. 

It can be divided into four steps. 

Step 1: Do PWVD to the output ( )1s n  and 

( )2s n ; 

Step 2: Extract the ridge of PWVD by equation 

(25); 

Step 3: Detect the amplitude of the ridge of 

PWVD and calculate the bandwidths corresponding 

to the amplitude which are denoted as 1sB  and 2sB , 

respectively; 

Step 4: Compute ,I qk  and ,J qk  using 1 ,s I qB k Bθ=  

and 2 ,s J qB k Bθ= , respectively, and estimate the final 

Nyquist zone ,H qk  using equation (9). 

 
Fig.4. The estimation of Nyquist zone 

 

,I qk ,J qk of different components are shown in 

Table 1. 

Table. 1 ,I qk ,J qk of different components 

qf  ,I qk  ,J qk  

6. 8GHz 3 1 

8.4GHz 4 1 

12.6 GHz 1 2 

18.2GHz 4 2 

 

After the estimation of ,I qk  and ,J qk , we can 

reconstruct the signal  

( ) ( ) ( ),1

1 0

I q sQ j k nT

s rq
d n e nT qT

θ µ
 −  

=
= −∑  or 

( ) ( ) ( ),1

2 0

J q sQ j k nT

s rq
d n e nT qT

θ µ
 −  

=
= −∑ . Multipling 

them by ( )1s n  and ( )2s n  respectively, we get the 

same equation as follows: 

( ) ( ) ( ), , 021

0

q s H q s q H qj f f k nT kQ

s rq
z n e nT qT

π ϕ ϕ
µ

 − + −−  
=

= −∑ (27) 

 Here, we can see that ( )qz n  is independent of 

the local analogue modulation. Either using SFM or 

LFM, finally we get the same ( )qz n  which is a 

single-frequency signal whose frequency is 

,q s H qf f k−  determined by qf , sf ,and ,H qk . 
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(a) the PWVD of ( )1s n  using LFM 

 
(b) the PWVD of ( )2s n  using LFM 

 
(c) the PWVD of ( )1s n  using SFM 

 
(d) the PWVD of ( )2s n  using SFM 

 
(e) the PWVD of ( )qz n  using LFM /SFM 

Fig.5. The PWVDs for different signals 

Without loss of generality, we consider the 

output ( )qz n  which is the qth sub-pulse of ( )z n . 

Obviously, ( )qz n  is a single tone whose carrier 

frequency is ,CNYFR q s H qf f f k= − . After the 

estimation of ,
ˆ
H qk , we use a classical algorithm, 

such as maximum likelihood (ML) to estimate the 

frequency ˆCNYFRf . ˆqf  is given by 

 ,
ˆ ˆ ˆ
q CNYFR s H qf f f k= +  (28) 

The PWVDs for different signals are shown in 

Fig.5. For FA signal, the results are shown in Fig.6. 
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(a) 16.4GHz component 

 
(b) 3.2GHz component 

 
(c) the PWVD of ( )1s n  using SFM 

 
(d) the PWVD of ( )2s n  using SFM 

Fig.6. The PWVDs for FA signal 

 

 

4. Simulations for the estimation of 

Nyquist zone 
Simulations have been done to verify the 

performances of the estimation of the Nyquist zone 

and the hopping frequency. One of the components 

of the received signal is assumed to be 8.4GHz. The 

local wideband modulations are SFM and LFM. 

Their bandwidths are both 100MHz. The number of 

channels could be one or two. The pulse width is 

0.5µs. The SNRs are from -5dB to 10dB where the 

noise is Gaussian and white. Each signal was run 

200 times of Monte-Carlo experiment. The 

performance is evaluated by the probability of 

correct decision (PCD) and normalized root mean 

squared error (NRMSE) of the estimated frequency:  

 PCD T

T

R

S
=  (29) 

 

( )2
1

1 TS

TS
NRMSE

κ
κ

ς ς

ς
=

−

=
∑

 (30) 

where  

TR  time of correct decision; 

TS  time of experiment, 200TS = ; 

ς  the parameter to be estimated; 

κς  the value of estimation.  

In each experiment, if the estimation of Nyquist 

zone is right, TR  add 1. The results are shown in 

Fig.7 and Fig.8. The CNYFR with analogue 

modulation of LFM has the best performance and 

accuracy of hopping frequency estimation is 

acceptable when the SNR is above 0dB, because the 
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PCD of Nyquist zone is above 90% when the SNR 

is greater than -1dB. 

 
Fig.7. The PCD of the estimated Nyquist zone  

 
Fig.8. NRMSE of estimated hopping frequency 

Firstly, it is more accurate for linear modulation 

to find the maximum and minimum of the ridge than 

sinusoidal modulation. Moreover, the amplitudes, 

,I qk and ,J qk , are easier to be estimated. Secondly, 

dual-channel reduces the difficulty of the realization 

of analog modulation and widens the interception 

bandwidth which is important for the intercept of 

other wideband signals such as LFM, et al. To sum 

up, the CNYFR with analog modulation of LFM can 

achieve the best performance.  

Letting the SNR=3dB, we make one time 

simulation to estimate ,I qk , ,J qk ,and qf . The results 

are shown in Table 2, Table 3 and Table 4. It is 

shown that all the results are in accord with the 

statistics ones. 

 

Table. 2 Using SFM-Dual 

qf  ˆ
qf  ,

ˆ
I qk  R or 

W 
,

ˆ
J qk

 

R 

or 

W 

6. 8GHz 6.800028GH

Z 

3 R 1 R 

8.4GHz 8.3999897G

Hz 

4 R 1 R 

12.6 GHz 12.600007G

Hz 

1 R 2 R 

 

Table. 3 Using LFM-Dual 

qf  ˆ
qf  ,

ˆ
I qk  R 

or 

W 

,
ˆ
J qk  R 

or 

W 

6. 8GHz 6.799954GHZ 3 R 1 R 

8.4GHz 8.400009GHz 4 R 1 R 

12.6 

GHz 

  

12.600007GHz 

1 R 2 R 

Table. 4 Using SFM-single 

qf  ˆ
qf  ,

ˆ
H qk  R or 

W 

6. 8GHz 6.799992GHZ 3 R 

8.4GHz 8.399989GHz 4 R 

12.6 GHz 12.599987GHz 6 R 

Notes: R stands for 'right', W 'wrong'. 

 

 

5 Conclusions 
Based on the structure of the CNYFR, the 

interception of the FA radar signal can be achieved. 

Then, we adopt PWVD to estimate Nyquist zone. 

The CNYFR can estimate the hopping frequencies 

of the received signal as a result of the 

reconstruction signal generated by the information 

of the zone and improve the reliability of the 

structure NYFR using the analogue modulation of 

LFM. The method of DDS +DAC in the CNYFR 

overcomes the sensitivity of noise in the NYFR to 

generate the wideband modulation. This digital 

method is easy to be controlled and the implement 

needs to do the further research. 

Simulation results show that in the case of the 

CNYFR with analogue modulation of LFM, the 

PCD of the Nyquist zone is above 90% when the 

SNR is greater than -1dB, and NRMSE of the 

hopping frequency can be less than 410−  when the 

SNR is greater than 0dB. The performance of the 

CNYFR with analogue modulation of LFM is better 

than the one of SFM. 
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