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Abstract: - In this paper, we explore a stochastic resonance (SR) based detector using bistable system (BS) to 

detect a binary pulse amplitude modulated (PAM) signal embedded in non-Gaussian noise. Through the 

example of BS based watermark extraction, we show that a reliable performance cannot be obtained if the BS 

parameters are determined by traditional tuning technique. The key observation is that the BS parameters are 

not sensitive to the pdf of the noise but to the variance of the noise and the amplitude of the signal. That makes 

it possible to determine the BS parameters in advance and an adaptive BS can be constructed based on the 

estimated amplitude of the watermark (signal) and the variance of the DCT coefficients (noise). Experimental 

results show that the performance obtained from the proposed adaptive stochastic-resonator-based detector is 

stable and provides superior performance compared to the existing BS based watermark schemes and the 

Gaussian based maximum likelihood (ML) detector. 
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1 Introduction 
Stochastic resonance (SR) phenomenon was 

proposed by Benzi et al. to model the periodically 

recurrent ice ages [1]. Since then the SR has been 

used in many engineering systems to perform a wide 

variety of tasks [2], such as sensory enhancement 

and signal detection. The signature of SR is that the 

coherence of a system output improves with an 

increase of the noise. The output performance is 

revealed as a non-monotonic evolution that 

increases to a peak value with the increase of the 

noise and then decreases with further increase of the 

noise, which is typically termed as SR effect. In this 

case, the additional noise is added to the fixed 

system and the SR effect occurs. Therefore, the 

phenomenon is referred to noise-enhanced SR 

(NSR). On the other hand, parameter-induced SR 

(PSR) describes the phenomenon that the input is 

fixed and system parameters are tuned to have a SR 

effect [3]-[5]. Both NSR and PSR have been 

employed in signal and image processing and have 

been shown to provide an improvement in weak 

signal enhancement [3]-[10]. 

SR has been used in watermark extraction 

because of the characteristic of enhancement of the 

weak signal [11]-[14]. In the SR based digital 

watermarking techniques, watermark information 

considered as signal embeds in discrete cosine 

transform (DCT) coefficients regarded as noise. 

Because the signal and noise are fixed, the system 

parameters are adjusted to obtain the optimal 

performance of the extraction. Sun et al. proposed to 

use the SR effect in watermark extraction [11],[12].  

Here, the watermark information is added to the 

permuted DCT coefficients of the host image, and a 

bistable system (BS) is used to extract the 

watermark. Wu et al. [13] employed the same 

strategy but provided some improvement, such as 

using 88×  DCT blocks and an effective 

permutation of DCT coefficients. Duan et al. [14] 

proposed to add a desynchronization delay to 

improve the robustness of the technique compared 

to the matched filter. This technique also uses an 

array of SR detectors to improve the performance. 

The BS is used in [11]-[14] to extract the 

watermarks and these extraction techniques can be 

considered as PSR based watermark extraction 

technique.  

Although the PSR techniques mentioned above 

provide a good performance for watermark 

extraction, these techniques have a few limitations. 

These techniques typically decide one set of the BS 

parameters and use it to extract the watermarks from 

different images. It is observed that they use only 
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one parameter set in [11]-[13] but the parameter sets 

are not identical. The choice of the SR parameters is 

critical in obtaining a good extraction performance. 

Hence we may ask the following questions. To 

extract watermark from varying watermarked 

images, can one parameter set always provide good 

performance of extraction? If yes, how can we 

determine this parameter set? If not, can we build a 

system adaptive to the varying images? Duan et al. 

proposed a tuning method to obtain the appropriate 

parameters [14], [15]. However, it is not feasible to 

find the optimal parameters by tuning when we 

extract the watermarks from an image due to the 

difficulties in estimating the extraction performance. 

The watermark extraction performance can be 

evaluated using objective criteria (e.g. BER) or 

subjective criteria (e.g. human eyes). However, for 

watermark technique, we usually prefer a blind 

watermark, and hence the objective criteria cannot 

be applied. For the subjective criteria, the 

performance could not be guaranteed and may not 

be used in many applications. 

More generally, the problem of the watermark 

extraction is a problem of signal detection. Because 

the BS is widely used in exploiting the SR 

phenomena, the technique of the BS based 

watermark extraction is named as BS-SR watermark 

extraction [11]-[14]. Though not accurately named 

(we will show it below), the term is still used in this 

paper and henceforth the detector is referred to as 

the BS-SR detector. 

The schematic of the BS-SR detector is shown in 

Fig. 1. Note that the BS-SR detector is constructed 

using a BS followed by an inner detector [6], [16]-

[18] and BS shall be used as a stochastic resonator 

(or working in the SR regime). However, this is not 

the case in watermark extraction. As pointed out in 

[6], [19], conventional SR possesses the feature that 

noise plays a constructive role (for example, can 

increase the SNR), and therefore only happens when 

the signal is subthreshold or slightly suprathreshold 

in BS. While the BS employed in [11]-[14] is highly 

suprathreshold considering the amplitude of the 

signal (watermark embedded). 

 

 
Fig. 1 The schematic of the BS-SR detector. 

We have demonstrated in [20] that the BS is 

changed to a nonlinear component in a conventional 

detector if the BS parameters are obtained by tuning 

technique relying on the overall performance of the 

BS-SR detector. For the case of watermark 

extraction, it is shown that the probability density 

function (pdf) of the DCT coefficients are bell-

shaped with heavy tails [21]. This kind of non-

Gaussian noise exhibits spikes and a good detector 

typically includes a nonlinear limiter to reduce the 

noise spikes [22]. The BS can provide suitable 

nonlinearity to be a limiter and the BS-SR detector 

will change to a conventional detector, such as 

locally optimal (LO) detector [23]. Therefore, the 

BS employed in watermark extraction [11]-[14] 

could be considered as a limiter but not a stochastic 

resonator because tuning the BS parameters for a 

good overall detection performance will change the 

BS to a limiter that is the optimal nonlinearity in this 

case. The problem is that the tuning technique is not 

practical as mentioned in the drawbacks of the PSR 

base watermark extraction previously. 

To clarify the function of the BS in the BS-SR 

detector, we proposed in [20] the design of the BS-

SR detector by investigating the BS and inner 

detector separately. The BS parameters are 

determined according to a SR measure (cross-

correlation) to make the BS work as a stochastic 

resonator and then design the inner detector 

depending on the statistic feature of the BS output. 

Note that here the BS used as stochastic resonator 

may not be subthreshold and therefore the BS is not 

a strict stochastic resonator (increasing noise will 

not lead to an increase of the SR measure). Here, 

however, the BS is investigated solely (hence will 

not be the limiter) and the BS parameters are chosen 

according to the SR measure. Therefore we still use 

BS-SR detector henceforth. The major benefit 

obtained from this set up is that the BS parameters 

can be determined in a systematic way. 

In this paper, we address the design of the BS 

used as a stochastic resonator but not include the 

design of the inner detector that is assumed to be a 

linear detector. We have two major contributions. 

First, we propose a method to determine the BS 

parameters according to the SR measure. We 

investigate the working of the BS and show how the 

BS parameters are related to the SR measure. We 

then propose a tuning one parameter (TOP) 

technique to choose the near-optimal parameter sets 

to reduce the complexity of tuning. Furthermore, by 

analyzing the mechanism of the BS, in the view 
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point of the SR measure, we find that the BS 

parameters are not sensitive to the pdf of the noise 

but only to the variance of the noise and the 

amplitude of the signal. Hence the BS parameters 

can be determined by an experimental way. 

Secondly, we go one step further to design a BS-SR 

detector adaptive to the varying input. It is 

illustrated that we cannot achieve a good 

performance by applying only one parameter set for 

varying images and hence the BS-SR detector with 

adaptive parameters is proposed. The Experimental 

results show that the performance obtained from the 

proposed adaptive BS-SR detector is stable and is 

superior compared to the existing BS based 

watermark schemes and the Gaussian based 

maximum likelihood (ML) detector. 

The organization of this paper is as follows. In 

Section 2, we present a brief review of the BS-SR 

based watermarking techniques. In Section 3, we 

present the TOP technique to tune the BS and the 

method to determine the BS parameters. In Section 

4, the BS-SR based watermark technique is 

analyzed and the adaptive BS-SR detector is 

proposed. We present the simulation results in 

Section 5, followed by conclusions and discussions 

in Section 6. 

 

 

2 Review of the background work 
In this section, we present a brief review of the 

background work. First, we introduce the BS used in 

the BS-SR based watermark extraction technique. 

We then present a review of the existing BS-SR 

based watermarking techniques.  

 

 

2.1 Bistable system 
A commonly used BS can be understood using an 

analogy with a double well potential shown in Fig. 2 

and expressed by the following equation: 

42
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pU 







+






−=            (1) 

where ),( ba  are parameters of the double well 

potential. The barrier height, i.e., the distance 

between central barrier and the well bottom, is 

baH /)0( 2=  and potential minima are located at 

bac /±=± . The bistable system is the 

evolvement of a heavily damped ball put in the 

double well. The system output is )(tp , i.e., the 

position of the ball along p  axis. In the absence of 

any input, the velocity of the ball along p axis is 

expressed by )()()( 3 tbptaptp −=ɺ  and the ball 

will fall down and rest in its equilibrium 

 
Fig. 2 Double well potential 

 

point located at c± . An input is the velocity added 

to the ball. Therefore, with input )(tx  the velocity 

of the ball will be  

).()()()( 3 txtbptaptp +−=ɺ               (2)  

Because the closed-form solution of )(tp  is 

unavailable, we need to obtain )(tp  numerically. It 

is worth pointing out the discrete computer 

simulation model of Eq. (2). If )()()( tvtstx +=  

where )(tx is a deterministic signal and )(tv is a 

white noise, the simulation model can be found in 

[16], [24], [25]. There is a factor t∆ to scale )(tv  

such that the scaled )(tv  conforms with Winner 

increment, where t∆  is the sampling period in 

numerical simulation. While the )(tx  in Eq. (2), as 

will be seen later, is the watermark information 

embedded in the DCT coefficients and is not related 

to time. Therefore t∆  (the time interval of one 

sample applied to BS) in simulation can be chosen 

arbitrarily (but need to consider the a and b for a 

convergent output). )(tx is the velocity added to the 

ball and the reasonable simulation model is [11]-

[14], [17], [26] 

]),[][][(*][]1[
3

nxnbpnaptnpnp +−∆+=+   (3) 

where t∆  is sampling interval, and ][np  is the 

position of the ball (i.e., the output of the system) at 

time index n . If the parameters ba,  and t∆  are 

known, ][np  can be calculated recursively using Eq. 

(3). A fourth-order Runge-Kutta (RK) method can 

be used to obtain a more precise result [13], [26]. 
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2.2 BS-SR based watermark technique 
As mentioned in Section 1, several watermarking 

techniques have been proposed using BS [11]-[14]. 

A watermarking technique includes two stages: 

embedding and extraction. In this section, we 

present a brief review of the watermark scheme in 

[13]. Note that the BS-SR detector is used only in 

the extraction.  

 

 

2.2.1 Embedding algorithm  

The schematic of the embedding algorithm is shown 

in Fig. 3 (a). The host image I  is divided into 88×  

blocks. The DCT coefficients of kth  block are then 

calculated and zigzag scanned, and is denoted 

by KkX k ,...,2,1, = . The middle r  DCT 

coefficients of 
kX  are denoted by 

)( 21 UuUX k
u ≤≤  where 1U  is the starting index, 

2U is the ending index and 112 +−= UUr . 
k
uX  's 

are then cascaded to generate a sequence X with 

length rK .  

 

 
(a) Embedding algorithm 

 
(b) Extraction algorithm 

Fig. 3 Schematic of the SR watermarking scheme. 

 

To make X look like a white Gaussian noise 

(WGN), X  is permuted as follows. First, generate a 

random sequence R  with the same length of X  

using a specific key. Second, generate 'R  by sorting 

R  ascendant. Let L  contains the original index in 

R  of 'R elements. Finally, 'X  is obtained via 

permuting X  by L . For example,  20436510 ,,,X= , 

3201030 ,.,-.,-.R= ,  3301020 ,.,.,-.R'=- , 4123 ,,,L= , 

20106543 ,,,X' = . 

Assume ],1[],[ Mmmw ∈  is a binary 

watermark sequence consisting of -1 and 1. Note 

that the binary watermark should be a sequence of 0 

and 1 and 0 is converted to -1 for convenience. 

Every bit in ][mw  is repeated S  times and 

sequence ][ns  with the same length of 'X  is 

generated. The watermark embedding algorithm is 

given by s[n][n]=X[n]+AX w , where A  is the 

watermark intensity factor, wX  is the watermarked 

DCT coefficients. The original DCT coefficients are 

replaced by wX  and then inverse DCT transform is 

performed to generate the watermarked image. 

 

 

2.2.2 Extraction algorithm  

The schematic of the watermark extraction is shown 

in Fig. 3 (b). The first two steps are identical to 

those of embedding scheme and obtain wX . We 

apply wX  to the BS and obtain the output ][np . 

Then ][np  is partitioned into M segments, each of 

which include S  samples corresponding to one bit 

of the watermark. The estimated position in the 

double well for one watermark bit is calculated as 

follows,  

∑
+−=

=
Sm

Smn

npm
*

1*)1(

][][µ  .                          (4) 

The watermark bit ][mw  is recovered by,  





<−

≥
=

0][1

0][1
][

m

m
mw

µ
µ

            (5) 

 

 

3 Proposed method for optimal 

parameter determination 
The parameter set ),,( tba ∆  is crucial for the BS-

SR detector to have a good performance. However 

the parameter set is difficult to determine, which 

limits the usage of the BS-SR detector in 

applications. In this section, we first analyze the 

influence of the parametersa , b and t∆  separately 

and reduce the determination of 3 parameters to 

only 1 parameter. We then show that the near-

optimal parameters that make the BS have optimal 

SR effect are not sensitive to the pdf of the noise, 

only related to the variance of the noise and the 
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amplitude of the signal. That leads to an empirical 

method to find the near-optimal BS parameters. 

 

 

3.1 The influence of the parameters a , 

b and t∆  
First, it is worth clarifying the physically 

meaningful SR measure. If the optimal parameters 

are obtained when the overall detection performance, 

such as probability of detection, bit error rate (BER), 

is optimal, the BS may not work as a stochastic 

resonator [20]. Consider the function of the BS. The 

BS input ][nx  is composed of signal ][ns  and 

noise ][nv  and the BS output ][np  can be 

considered as signal ][' ns  plus noise ][' nv  as well. 

The ideal (optimal) state of the SR effect is the 

signal ][' ns  should be like the signal ][ns  as much 

as possible. Therefore, the cross-correlation can be 

used as a SR measure, which is defined as follows, 
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EC  (6) 

where 0>m  is the time lag, )(⋅E  denotes an 

average over the multiple experiments for a given 

m .  We define τ  as the system lag of the BS, 

which can be found by, 

m
m

C
=

=
τ

τ maxarg .                               (7) 

With a given set of parameters ),,( tba ∆ , the BS 

system has a delay τ  and the cross-correlation is  

τC . 

Secondly, we show the influence of the 

parameters a , b and t∆  below.  

1)    The influence of ),( ba . Parameters a  and b  

are combined to decide the size of the double 

well as shown in Eq. (1). Assuming that t∆  is 

fixed, the signal ][ns , the noise ][nv   and 

parameters ),( ba  cooperate to have the  near-

optimal SR effect. In general, for a strong noise, 

the size of the double well shall be large. For a 

given a  (denoted as 1a ), there shall be a  

suitable b  ( 1b ) that leads to a maximum cross-

correlation. While for another a  ( 2a ), there 

shall be another suitable b  ( 2b ). If the BS with 

parameter sets ( 11,ba ) and ( 22 ,ba ) can have 

same (or almost same) cross-correlation, we 

can fix one parameter and only tune the other 

one. A justification is shown in Fig. 4. It is 

observed that for )1000,1(),( =ba  and 

)5000,10( , the cross-correlations are same. We 

note that the cross-correlation between the 

input ][][][ nvnsnx +=  and signal ][ns  is 

about 0.1 and the cross-correlation between the 

BS output and ][ns  is about 0.45 (as shown in 

Fig. 4), which means the signal ][ns  is  

enhanced in the view point of the SR measure. 
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Fig. 4 Cross-correlation versus parameters ),( ba . In the 

simulation, signal is a 20 bit random binary PAM with 

1.0=A . Every bit in the PAM signal is interpolated 50 

times to generate a sequence ][ns  with length of 1000 

samples. ][ns  is embedded in the 1000 i.i.d. WGN 

(zero-mean, unit variance) samples to generate the input 

to the BS. The BS parameters are with 01.0=∆t , b  is 

tuned to find the maximum cross-correlation for 1=a  

and 10=a  respectively. Cross-correlation is calculated 

from 1000 simulations for a given ),( ba  using Eqs. (6) 

and (7). 

 

2)    The influence of t∆ . t∆  is the time interval 

for one discrete time sample applied to the 

system. For a given ),( ba , if t∆  is too large, 

the system can always reach its stable position 

for a given sample; while if t∆  is too small, 

one sample has very little influence to the 

system output. It can be shown that the two 

extremes (too large or too small t∆ ) cause poor 

cross-correlation and t∆ shall match ),( ba for 

a certain input. Fig. 5 shows that for a given 

t∆ , there will be a suitable ),( ba  to have a 

maximum cross-correlation. When t∆  and 

),( ba  are matched, for different t∆ , the cross-

correlations are quite close. In Fig. 5, 
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),,( tba ∆ =(1,1000,0.01) and (1,10000,0.005) 

lead to the same cross-correlation. 
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∆ t=0.01

∆ t=0.005

 
Fig. 5 Cross-correlation versus t∆ . The setup of the 

experiment is the same as described in Fig. 4. The BS is 

with 1=a and b  is tuned for maximum cross-

correlation for t∆ =0.01 and t∆ =0.005, respectively. 

 

Thirdly, we propose a simplified tuning 

technique to determine the BS parameters. From the 

relationship between ),( ba  and the cross-

correlation and the relationship between t∆  and the 

cross-correlation, we can conclude that ),( ba  and 

t∆  cooperate with each other to have the optimal 

SR effect (maximum cross-correlation). Because for 

different a , there shall be different b  for the 

maximum cross-correlation, and the maximum 

cross-correlations are very close for these ),( ba ’s. 

Therefore, we can fix a  and only tune b  for the 

maximum cross-correlation. Similarly, different t∆  

will have different ),( ba  and the maximum cross-

correlation obtained from the different t∆  with the 

suitable ),( ba  are quite close. Hence, t∆  can be 

fixed a priori. Based the discussion above, the 

tuning technique in determining ),,( tba ∆  of the 

BS can be reduced from a 3-D tuning to 1-D tuning. 

First, we fix a , such as 1=a . Second, determine a 

suitable t∆  according to the application. Suitable 

t∆  means that b  shall be reasonable (not very large 

and not very small) if this t∆  is applied to the BS. 

For example, 01.0=∆t , we find that 1000=b  for 

maximum cross-correlation and t∆  is considered 

suitable. Finally, b  is tuned for the maximum cross-

correlation. We only tune one parameter (TOP) in 

this tuning method, and thus TOP is used afterwards. 

 

 

3.2 Near-optimal BS parameter 

determination 
Even though we can use 1-D tuning to determine the 

BS parameters, the tuning technique is difficult to 

be put into applications because the pdf of the noise 

cannot be obtained accurately and we need the pdf 

of noise to find the BS parameters. Another 

important feature of the BS used as stochastic 

resonator is that the BS parameters are not sensitive 

to the pdf of the noise. Fig. 6 illustrates the SR 

measure versus the BS parameters and different 

noise pdfs. It is observed that BS parameters for 

maximum cross-correlation are same for the 4 pdfs 

with same variance 
2σ ，where the pdf of Gaussian 

mixture is defined as 
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Fig. 6 Cross-correlation versus b  for different noise pdfs. 

The setup of the experiment is the same as described in 

Fig. 4. The BS is with 1=a , t∆ =0.01 andb  is tuned to 

obtain maximum cross-correlation for different pdfs of 

the noise, which are Gaussian, Gaussian mixture, 

Laplacian and uniform. All the pdf are zero mean and 

variance 12 =σ . The Gaussian mixture is with 

9.0=α and 5=β . 

 

We can present a justification below. The 

suitable BS parameters mean that the physical size 

of the BS match the signal and the noise well. 

Consider that the evolvement of the ball in the 

double well. The ball is forced by ][nx  that is 

composed of the signal and the noise. From the 

velocity of the ball as shown in Eq. (2), we can 

think somehow that the power of the signal and the 

noise is crucial for the movement of the ball. 
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Assuming that the pdf of the noise is zero-mean and 

symmetric, the SR effect means that the position of 

the ball is in “resonance” with the signal. The most 

important factors in the best matching between the 

signal, the noise and the double well are the power 

of the signal, the power of the noise and the double 

well. The noise with large power will force the ball 

mount the central barrier frequently while a noise 

with small power will not. Therefore the 

characteristic of the evolvement of the ball is likely 

to be related to the power and not to the pdf of the 

noise.  

This feature, the BS parameters are not sensitive 

to the pdf of the noise for optimal SR effect, is 

important to develop BS based applications. When 

the BS is used as a stochastic resonator, the near-

optimal parameters will be identical for varying 

symmetric pdfs with same power. That provides an 

easy way to determine the BS parameters off-line 

because we can use any noise with zero-mean and 

symmetric pdf (the simplest one is WGN) to obtain 

the BS parameters by simulation. Combined with 

the TOP technique, we can construct a look up table 

(LUP) for the BS parameters with respect to A  

(amplitude of watermark) and 
2σ  (power of the 

noise). The procedure is shown below. 

1)    Generate the input by adding a random PAM 

(amplitude A ) to a WGN (variance 
2σ ). 

2)    The BS is with fixed ),( ta ∆  and b  is tuned to 

get maximum cross-correlation for the given 

input.  

3)    Go back to step 1 to generate the input with 

different A  and/or 
2σ  and to find the 

appropriate b  in step 2. 

4)    The mappings between the parameters b  (with 

fixed a  and t∆ ) and  ( A , 
2σ ) are saved in a 

LUT for later use. 

Next we will show how to use the LUT to 

construct an adaptive BS-SR detector used in 

watermark extraction. 

 

 

4 Proposed adaptive BS-SR detector 
In Section 3, we proposed a method to determine the 

BS parameters. In this section, we consider the 

application of the method in digital watermarking 

and propose an adaptive BS-SR detector to extract 

the watermarks. We first analyze the extraction 

problem based on the embedding algorithm 

mentioned in Section 2.2 and an optimal ML 

detector is derived. We then show that in 

watermarking applications, designing an optimal 

detector is difficult because the noise pdf is not 
Gaussian and is difficult to estimate. Instead, a BS-

SR detector could be employed as a suboptimal 

detector. Thirdly, we present the statistics of the 

input samples and show that the performance 

obtained by the BS with fixed parameters could be 

improved. Finally, an adaptive BS-SR detector is 

proposed. 

 

 

4.1 The analysis of the extraction problem 
In Section 2.2, we presented the approach to embed 

the watermark information. Let 3=A , 91 =U ,  

442 =U , 256=M  and 500=S . The host Lena 

image and the binary watermark image are shown in 

Fig. 7. 

 

 
(a) 512512 ×  Lena image 

 
(b) 1616×  binary watermark image 

Fig. 7  Lena image and embedded watermark image. 

 

The watermarked DCT coefficients WX  has 256 

segments with every segment having 500 samples. 

The 500 samples in one segment can be looked at as 

adding 3 (if watermark is 1, 3=A ) or -3 (if 

watermark is 0) to 500 permuted DCT coefficients 

considered as i.i.d. (identical and independent 
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distributed)  WGN. Therefore, the extraction is a 

detection problem of two hypotheses, shown as 

follows. 





=+=

=+−=

SnnvAnxH

SnnvAnxH

,...,2,1],[][

,...,2,1],[][

1

0   ,     (8) 

where A  is watermark intensity factor, ][nv   is the 

i.i.d. WGN (with zero-mean and variance 
2σ ). 

With the Bayesian paradigm, the probability of error 

is estimated as follows: 

)()|()()|( 001110 HPHHPHPHHPPe +=   (9) 

where )|( ji HHP  is the conditional probability 

that indicates the probability of deciding 
iH  when 

jH is true. Our goal is to design a detector that 

minimizes 
eP . In the watermark application, the 

prior probability, )( 0HP  and )( 1HP , is assumed 

identical, i.e., )( 0HP = 2/1)( 1 =HP due to the blink 

watermark. Further assuming that the pdfs  

)|( 0Hxp  and )|( 1Hxp  are known, we can have 

a maximum likelihood (ML) detector that would 

decide 1H  if 

1
)|(

)|(

0

1 >
Hxp

Hxp  ,                               (10) 

which is the optimal detector. Provided that 

)|( 1Hxp  and )|( 0Hxp are Gaussian, for the 

mean-shift Gaussian detection formulated in Eq. (8), 

it is well-known that we should decide 1H  if the test 

statistic )( xT  is: 

0][)(
1

>= ∑
=

S

n

nxxT .                            (11) 

The pdf of )( xT  is also Gaussian. Therefore, 

[ ]











=

<+>=

S

A
Q

HxTPHxTPPe

/

)|0)(()|0)((
2

1

2

10

σ

 (12) 

where )(⋅Q is the complementary cumulative 

distribution function (CDF) of the normal 

distribution. For 3=A  and 1002 =σ , 

121085.9 −×=eP . In other words, the error occurs 

very rarely. 

 

 

4.2 Optimal detection versus BS-SR 

detection 
It is well known that the ML detector is an optimal 

detector in the error minimization sense when the 

noise is known. In particular, if the noise is 

Gaussian, the ML detector is linear as shown in Eq. 

(11). While for non-Gaussian noise, the ML detector 

is non-linear. Why do we employ the BS-SR 

detector to extract the watermarks? The reasons are 

listed as follows. To obtain the ML test statistics 

)( xT , we need to have the complete knowledge of 

the pdfs )|( 0Hxp  and )|( 1Hxp , which is not 

always available in practical applications. Also, the 

pdfs always vary with time and applications. In 

addition, for some non-Gaussian noise, )( xT  could 

be too complicated though we know )|( 0Hxp  and 

)|( 1Hxp  exactly. Therefore, we can rarely have 

the ideal conditions to design the optimal ML 

detector. The ML detector based on (11) is optimal 

if the noise is i.i.d. Gaussian, but will be suboptimal 

if the noise is not i.i.d. Gaussian. Alternatively, the 

BS-SR detector will provide a suboptimal 

performance. In the following, we first show that 

pdf of the samples in a segment of WX  looks like 

Gaussian but changed significantly after the 

watermarked image is attacked by JPEG 

compression and Gaussian noise. We then justify 

that the BS-SR detector can have a better 

performance than Gaussian based ML detector in 

watermark extraction from JPEG compressed 

watermarked images. 

Figure 8 shows the histograms of the samples of 

two segments (the 1st and 161th segments from 

watermarked Lena image) of WX  corresponding to 

a binary watermark with values A  and A−  . The 

histograms of the samples of the same two segments 

after the original watermarked image is attacked by 

JPEG compression and Gaussian noise are shown in 

Fig. 9 and Fig. 10, respectively. Note that the JPEG 

compression is performed by the Matlab function 

“imwrite(.)” with format “JPEG” and quality, such 

as 50 in Fig. 9. The Gaussian noise is added into the 

watermarked image by using the Matlab function 

“imnoise(.)” with the variance, such as 0.03 in Fig. 

10.  Although the pdfs of samples from the original 

watermarked image look like Gaussian (Fig. 8), but 

after JPEG compression, the pdfs do not look like 

Gaussian, (Fig. 9). That is because when the 

watermarked image is being compressed, many 

DCT coefficients are truncated to zero, which means 

that both the watermark information embedded and 

the original DCT coefficients are degraded. 

Therefore, we observe that many samples are zeros 

and the other samples are quite scattered. If we add 
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Gaussian noise to the watermarked image, the mean 

does not change a lot but the variance is about 30 

times the variance of the samples from the original 

watermarked image. The pdfs are shown in Fig. 10. 
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(b) watermark bit = -1 

Fig. 8 The histograms of two segments in WX  of 

the original watermarked image. 
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(b) watermark bit = -1 

Fig. 9 The histograms of two segments in 

WX of the JPEG compressed watermarked 

image with quality of 50.. 
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(a) watermark bit = 1 
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(b) watermark bit = -1 

Fig. 10 The histograms of two segments in WX  of 

the watermarked image added Gaussian noise with 

variance of 0.03. 

WSEAS TRANSACTIONS on SIGNAL PROCESSING Gencheng Guo, Mrinal Mandal

ISSN: 1790-5052 73 Issue 2, Volume 7, April 2011



 

 

We show that the samples in one segment of 

WX  corresponding to one watermark bit may not 

be Gaussian and it is usually difficult to estimate the 

exact pdf of these samples. Therefore, the optimal 

ML detector is difficult to derive and the ML 

detector based on Eq. (12)  (still called ML detector 

afterwards) will be a suboptimal detector. A BS-SR 

detector with appropriate parameters may improve 

the performance. However the choice of the 

parameters is critical to obtain a good performance. 

The performance of the BS-SR detector and the 

ML detector are compared in Fig. 11 with two 

examples. The solid line is the theoretical ML 

performance calculated by Eq. (13). The dotted line 

is the real performance of the ML detector. It is 

obvious that the BS-SR detector with suitable 

parameters can have a better performance. We have 

shown that in practice, it is not feasible to obtain 

good BS parameters by tuning. The method 

presented in Section 3 will be used to build a BS-SR 

detector with adaptive BS parameters. 
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(b) Quality 50 

Fig. 11 The BERs of the extracted watermark from 

watermarked Lena image (subject to JPEG 

compression with quality 50 and 30) against 

parameter b  of the bistable system with 1=a and 

t∆ =0.01. 

 

 

4.3 Nature of watermarked DCT coefficients 

WX  

We present the statistical features of the WX , from 

which the watermark is extracted. And the reasons 

of using the adaptive BS-SR detector are shown as 

follows. 

We embed a watermark image into Lena image 

and obtain WX  as described in Section 4.1. Totally 

there are 256 segments in WX , every segment 

includes 500 samples corresponding to one 

watermark bit. Now we present the statistical 

features of the 256 segments in Fig. 12, Fig. 13 and 

Fig. 14. 

 

−4 −2 0 2 4
0

5

10

15

20

25

Mean values of the 256 segments

T
im

e
s
 o

f 
o
c
c
u
ra

n
c
e

 
(a) Mean 

0 50 100 150
0

2

4

6

8

10

12

14

Variance values of the 256 segments

T
im

e
s
 o

f 
o

c
c
u

ra
n

c
e

 
(b) Variance 

Fig. 12 The histograms of the mean and variance of 

the 256 segments in WX  of the original 

watermarked Lena image. 
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(b) Variance 

Fig. 12 The histograms of the mean and variance of 

the 256 segments in WX  of the watermarked Lena 

image subject to JPEG compression with quality of 

50. 
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(a) Variance 

Fig. 14 The histograms of the mean and variance of 

the 256 segments in WX  of the watermarked Lena 

image subject to the Gaussian noise attack with 

variance of 0.03. 

 

Figure 12 shows the means are near 3 and -3 and 

the variances vary from 30 to 140. It is easy to 

divide the watermark embedded into two categories. 

The means near -3 represent the watermark bit -1 

and the means near 3 represent the watermark bit 1. 

There is a big gap between these two categories and 

therefore it is easy to make a decision. However, 

when the watermarked image is attacked by JPEG 

compression or by adding Gaussian noise, we show 

that a lot of the watermark information is lost and 

the two categories become merged. For JPEG 

compression, the watermark information is filtered 

heavily, showing the means are very near 0, but the 

variances change little. For Gaussian noise attack, 

the watermark information is not lost, but the noise 

is strong and masks the watermark information. We 

can consider that the mean of the samples in a 

segment corresponding to one bit of the watermark 

denotes the strength of the watermark A  varying 

from very weak (such as 0.1) to very strong (such as 

3). The variance represents the noise strength 
2σ , 

and also varies from very weak (30) to very strong 

(2300).  

From the discussion in Section 3, we know a 

suboptimal parameter set ),,( tba ∆  depending on 

( A , 
2σ ), and there should be different ),,( tba ∆   

for the BS to have a good SR effect. It would be 

difficult to obtain a good performance by providing 

only one set ),,( tba ∆  for significantly varied ( A , 

2σ ). Therefore we propose an adaptive BS-SR 

detector to achieve better performance. 
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4.4 The proposed adaptive BS-SR detector 

A suitable ),,( tba ∆  could be decided for a given 

A  and 
2σ . Instead of using one ),,( tba ∆  for the 

various images [12], [13], we employ adaptive 

parameters for various images or even for various 

segments of an image. We describe the adaptive BS-

SR detector and use it in the watermark extraction.  

For watermark scheme, the embedding algorithm 

is the same as that shown in Fig. 3 (a). The decoding 

algorithm is similar to that shown in Fig. 3 (b), 

except the bistable system module. The bistable 

system module in Fig. 3 (b) is changed to adaptive 

bistable system and its schematic is shown in Fig. 

15. It is observed that there are 4 sub-modules in the 

system. These sub-modules are explained below. 

 

 
Fig. 15 Schematic of adaptive bistable system. 

 

1)     Data segmentation: ][nX w  is partitioned 

into M segments, which are denoted as 

],1[],,1[],[ SiMmiX m
w ∈∈ corresponding to 

M bits of the watermark, where 

]*)1[(][ iSmXiX w
m
w +−= . 

2)    Parameter estimation: We model ][iX m
w  as a 

watermark embedded in i.i.d. WGN and 

estimate the mean ][ˆ mA and variance ][ˆ 2 mσ . 

Note that ][ˆ mA and ][ˆ 2 mσ  are the maximum 

likelihood estimation (MLE) of the embedding 

amplitude A  and the noise variance 
2σ  in the 

mth  segment, which are shown as 

∑
=

=
S

i

m
w iX

S
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1

][
1

][ˆ                            (13) 
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m
w

m
w iX

s
jX

S
mσ     (14) 

3)    Choice of the parameter set: We choose an 

appropriate b from the LUT according to the 

estimated )ˆ,ˆ( 2σA . With the fixed a and t∆ , 

),,( tba ∆  are applied to the BS. 

4)    Bistable system: The input sequence is 

processed by the BS with adaptive parameters 

and generate the output ][np , which is used to 

extract watermark information according to Eqs. 

(4) and (5). 

 

We note that the proposed BS-SR detector uses 

the parameters adaptive to the every segment 

][iX m
w , which means for every segments, the 

][ˆ mA and ][ˆ 2 mσ  are estimated and the suitable 

parameters are chosen from the LUT. In watermark 

extraction, we find that the BS parameters are not 

very sensitive to the extraction performance, and 

therefore, we can only estimate one )ˆ,ˆ( 2σA  for one 

image (not for every segment) to reduce the 

implemental complexity. The MLE of the )ˆ,ˆ( 2σA  

of one image is shown below: 

∑
=

=
M

m

mA
M

A
1

][ˆ
1ˆ                            (15) 

∑
=

=
M

m

m
M

1

22 ][ˆ
1

ˆ σσ                          (16) 

where ][ˆ mA and ][ˆ 2 mσ  are the estimated 

watermark amplitude and variance of the mth  

segment as calculated in Eqs. (13) and (14). 

We name BS-SR-I for the BS-SR detector that 

only chooses the BS parameters once for one image 

(using Eqs. (15) and (16)). We name BS-SR-II for 

those that choose the BS parameters for every 

segment. Compared to the existing SR scheme, our 

scheme chooses parameters adaptively based on the 

)ˆ,ˆ( 2σA  estimated from varying images or even 

varying segments of one image. The performance 

should be better than that obtained from that with 

fixed parameters. In addition, the determination of 

the parameters is more practical than the techniques 

by tuning parameters.  

 

 

5  Experimental results 
In this section, experimental results are given to 

illustrate the transparency, robustness against JPEG 

compression and Gaussian noise. We omit other 
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experiments for simplicity and the results provided 

are enough to arrive at a conclusion of the BS-SR 

detection performance. The images, Lena, Peppers, 

Goldhill and Baboon are chosen as the host images. 

We embed watermark shown in Fig. 7 (b) into host 

images by the embedding algorithm presented in 

Section 2.2 with 3=A , 91 =U ,  442 =U , 

256=M  and 500=S . We present the 

performance results from Gaussian based ML 

detector, Wu's method [13], Sun's method [11], BS-

SR I detector and BS-SR II detector. The PSNRs of 

the watermarked images are all 41.07 dB. 

First, we show the performance after the 

watermarked images are attacked by JPEG 

compression. The BERs are shown in Table 1 with 

respect to the five techniques and the compression 

qualities (from 80 to 30). Note the BERs are all 0 

when the compression quality is 100 and 90 for the 

five techniques. From Table 1, it is observed that the 

performance of ML detector is always better than 

Wu's method, which means that Gaussian based ML 

detector works well as a suboptimal detector. Sun's 

method can provide a better performance than the 

ML detector. The performance of the proposed BS-

SR I and BS-SR II detectors are shown in the two 

rightmost columns. It is observed that the 

performance of the BS-SR detectors are generally 

better than the ML detector and Sun's method and 

the adaptive BS-SR detector is suitable for all kinds 

of images. Comparing BS-SR I and BS-SR II, we 

found that the latter provides only a little 

improvement but not significantly. 

Secondly, we add Gaussian noise to the 

watermarked images. The results are shown in Table 

2. The ML detector has a very good performance. 

For the 4 images in our experiments the 

performance of the ML detector is always better 

than that of Wu's method. Compared with the ML 

detector, the BS-SR detector is as good as the ML 

detector in term of BER. 

We show that the BS-SR detector has an 

improved performance compared to the ML detector 

when the watermarked image is attacked by JPEG 

compression. However, the BS-SR detector may not 

have a better performance than the ML detector 

when the image is attacked by Gaussian noise. The 

reasons are depicted as follows. First, if the noise is 

i.i.d. WGN, the ML detector is the optimal detector. 

When the image is compressed by JPEG, many 

coefficients are converted to 0 that leads to the loss 

of the signal (watermark) as well as the noise. The 

coefficients in one segment may not be a WGN, 

which is shown in Fig. 13 (a) and (b). The Gaussian 

based ML detector is not optimal detector and hence, 

the BS-SR detector employed as suboptimal 

detector provides an improved performance. 

Secondly, when adding Gaussian noise to an image, 

the signal information will not loss but the noise 

will become very strong. The pdf of the coefficients 

is still considered as Gaussian, see Fig. 14 (a) and 

(b). We can still consider that the watermark is 

embedded in WGN, so the ML detector tends to be 

the optimal detector. That is why the BS-SR cannot 

have an improved performance. However, the BS-

SR detector can be fairly compared to the ML 

detector. 

 

 

6  Conclusions and discussions 
The motivation for this research is to show how we 

can use the BS-SR detector for the binary PAM 

signal embedded in non-Gaussian noise. The signal 

can be extended for periodic signals or any other 

ones that can be converted to two states, and hence 

the proposed BS-SR could be used for other 

applications, such as sinusoidal signal detection in 

non-Gaussian noise.  To simplify the choice of the 

parameters of the BS-SR detector, based on the 

effect of the BS parameters, a TOP technique was 

proposed to reduce the 3-D tuning to 1-D tuning. 

Furthermore, it was shown that the SR effect in the 

BS is not sensitive to the pdf of the noise, which 

leads to an empirical method to determine the BS 

parameters by an off-line simulation. In addition, an 

adaptive SR detector is constructed via choosing 

suitable parameters for the everchanging input. For 

the BS based watermarking scheme, we can provide 

a method to determine the BS parameters by an off-

line simulation and the suitable BS parameters can 

be chosen via estimating the amplitude of the signal 

and the amplitude of the noise when extracting the 

watermarks. We show that the adaptive BS-SR 

detector can achieve a better performance than a 

linear detector. When pdf is difficult to obtain and 

the optimal detector is unavailable, the adaptive BS-

SR detector provides a suboptimal choice.  

It is worth pointing out that our techniques can 

construct a BS-SR detector and have a stable 

performance, but the performance is not optimal. It 

was shown that the pdf of the DCT coefficients are 

non-Gaussian noise with heavy pdf tails [21]. For 

this kind of non-Gaussian noise, a good detector 

typically includes a nonlinear limiter to reduce the 

noise spikes [22]. The BS can provide a suitable 
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Table 1. The BERs (in %) of the extracted watermark subject to JPEG compression with different qualities. 

The BERs in bold font are the minimum values for a specific case. The parameters used in Wu's method are 

)103,4000(),( 11×=ba  and 
610−=∆t . The parameters used in Sun's method are )103,500(),( 10×=ba  

and 
510−=∆t . For BS-SR I, the parameters used are 01.0=∆t , 1=a and 45,50,60][40,40,45,=b  for Lena 

corresponding to the six compression qualities, 40,30,45][30,30,40,=b  for Peppers, 

30] 30, 15, 15, 15, [15,=b  for Goldhill and 3] 3, 3, 3, 3, [3,=b  for Baboon. For BS-SR II, different b  is 

chosen for every segment with fixed 01.0=∆t  and 1=a . 

 

Image Quality 
  Methods   

ML method Wu’s method Sun’s method BS-SR I BS-SR II 

Lena 

80 0 0.39 0 0 0 

70 0 0.43 0 0 0 

60 1.56 9.38 1.56 1.95 1.95 

50 6.25 14.45 6.64 6.25 6.64 

40 10.55 18.75 9.77 9.77 8.98 

30 16.8 26.56 14.45 16.41 16.41 

peppers 

80 0 1.56 0 0 0 

70 2.73 4.69 1.56 1.56 1.17 

60 7.03 10.16 2.34 1.56 1.95 

50 12.5 18.36 8.98 9.38 8.98 

40 18.75 25.39 16.41 16.41 15.23 

30 26.56 35.55 25 24.61 25 

Goldhill 

80 0 0.39 0 0.39 0.39 

70 0.39 1.56 0 0 0 

60 1.17 3.52 0.78 0.78 0.78 

50 1.95 5.47 1.95 2.34 1.95 

40 7.42 7.42 4.69 4.69 4.69 

30 13.67 14.06 10.16 10.55 9.77 

Baboon 

80 1.17 1.56 1.17 1.17 0.78 

70 1.95 1.95 1.56 1.95 1.56 

60 2.73 3.52 2.73 3.13 2.73 

50 4.3 6.25 4.3 3.91 3.91 

40 5.86 7.81 5.47 5.08 5.08 

30 10.94 11.33 11.72 10.16 9.77 
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Table 2. The BERs (in %) of the extracted watermark subject to the attacks of Gaussian noise with different 

variances. The parameters used in Wu's method and in Sun's method are identical to the parameters shown in 

Table 1. For BS-SR I, the parameters used are 01.0=∆t , 1=a and 5] 10, 15, [40,20,=b  for Lena 

corresponding to the five variance of the additive WGN, 10] 15, 20, 40, [40,=b  for Peppers, 

10] 10, 15, 40, [40,=b  for Goldhill and 5] 5, 10, 15, [20,=b  for Baboon. For BS-SR II, different b  is 

chosen for every segment with fixed 01.0=∆t  and 1=a . 

 

Image 
Variance 

added 

  Methods   

ML method Wu’s method Sun’s method BS-SR I BS-SR II 

Lena 

0.01 0 0.39 0 0 0 

0.015 0 0.43 0 0 0 

0.02 1.56 9.38 1.56 1.95 1.95 

0.025 6.25 14.45 6.64 6.25 6.64 

0.03 10.55 18.75 9.77 9.77 8.98 

Peppers 

0.01 0.78 1.95 1.17 1.17 1.56 

0.015 2.34 3.91 2.34 2.34 3.13 

0.02 3.91 7.03 5.08 4.3 5.08 

0.025 8.2 8.2 6.25 7.42 7.03 

0.03 7.81 9.77 8.59 8.98 9.38 

Goldhill 

0.01 1.56 1.56 1.56 1.56 1.56 

0.015 2.34 3.52 2.34 2.34 2.73 

0.02 4.69 4.3 5.47 5.47 5.47 

0.025 5.47 5.47 7.81 6.64 6.64 

0.03 8.59 11.33 9.77 10.55 10.94 

Lena 

0.01 3.52 3.52 3.52 3.52 3.91 

0.015 5.08 6.25 6.64 6.25 6.25 

0.02 5.86 7.03 7.42 7.03 6.64 

0.025 5.86 7.42 6.25 5.86 7.03 

0.03 10.55 10.94 9.77 10.55 10.94 
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nonlinearity to be employed as this nonlinear limiter. 

The BS used as a limiter followed by a linear 

detector will be a locally optimal (LO) detector [23]. 

If we tune the BS parameters for an overall optimal 

BER, the BS is more likely to be a limiter and that is 

why it can have an improved performance compared 

to the ML detector. However, in this case, the BS is 

not employed as a stochastic resonator and it is 

difficult to put this technique into real applications. 

The method proposed in this paper determines the 

optimal parameters for the BS to be a stochastic 

resonator. We consider the BS separately and the 

BS parameters are chosen based on maximum SR 

measure (cross-correlation measure), which are not 

the parameters for minimum BER. Therefore, the 

optimal parameters for BS to be stochastic resonator 

is not the optimal BS parameters for the optimal BS-

SR detector. 

The second issue is why we cannot achieve the 

optimal performance even through the optimal 

parameters that lead to maximum cross-correlation 

are applied to the BS. That will also answer the 

question: why we cannot obtain a significant 

improvement compared to the ML detector and the 

other BS based detector. The reason is that the linear 

detector followed the BS used as stochastic 

resonator (see Fig. 1) is not optimal. Considering the 

output of the BS, we can think that it is composed of 

signal and noise. To design an optimal detector in 

the view point of the BS output, the pdf of the noise 

at the BS output side needs to be estimated. That is 

difficult because the BS output is Markov chain but 

not homogenous. We simply use linear detector 

followed the BS. If the inner detector is linear, for 

the non-Gaussian noise with heavy pdf tails, the BS 

shall be a suitable nonlinear limiter to construct a 

LO detector. The parameters for the BS to have an 

optimal SR effect are not those that make the BS to 

have a suitable nonlinearity. That is why the optimal 

parameters for the BS to be a stochastic resonator 

are not the parameters for the BS-SR detector to 

have an optimal BER. In a word, the linear inner 

detector for the BS used as a nonlinear limiter is 

optimal but is not optimal for the BS used as 

stochastic resonator. In this paper, we proposed 

several techniques to design the BS as a stochastic 

resonator, but did not consider the design of the 

inner detector followed the BS. The optimal design 

of the inner detector is an open question and the 

further improvement of the BS-SR detector depends 

on the progress of this question. 
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