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Abstract: In this paper, a Neural Network (NN) approach for the recognition of the Arabic digits is presented.
The two phases of training and testing in a Radial Basis Functions (RBF) type network is described. Biorthogonal
Wavelets are constructed and used for analysis of generated subwords of the digits. This approach decomposes
spoken Arabic digits based on the acoustical information contained within the speech signals. The procedure
locates the boundaries between subwords by finding the peaks in the function representing the spectral changes
between consecutive speech frames. The Frame-based energy parameters derived from a Wavelet Packet Scale
(WPS) are used in deriving the Spectral Variation Function (SVF). Three Biorthogonal wavelets are used as ana-
lyzing functions and their performances are compared with that of their Orthogonal counterpart and with that of
the traditional Fourier based Mel scale approach.
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1 Introduction

A two dimensional signal processing tool that reme-
dies problems arising from time frequency domain
methods such as trade off in time frequency resolu-
tions and limitations in analyzing non-stationary sig-
nals is the time-scale representation. The Wavelet
Transform (WT) accomplishes such representation. It
partitions the time-frequency plane in a non-uniform
fashion and shows finer frequency resolution than
time resolution at low frequencies and finer time reso-
lution than frequency resolution at higher frequencies.
This type of transform decomposes the signal into dif-
ferent frequency components, and then analyzes each
component with a resolution that matches its scale [9].
The Continuous Wavelet Transform (CWT) [4] of a
signalx(t), is given by :

CWT(a,b)(x(t)) =
1√
a

∫ ∞

−∞
x(t)ψ

(

t− b

a

)

dt (1)

Wherea andb are the real numbers that represent the
scale and the translation parameter of the transform
respectively. The functionψ(t) is called the mother
wavelet and has to have the following two properties:

(1)
∫ ∞
−∞ |ψ(t)|2dt <∞. This is equivalent to having
ψ(t) ∈ L2(<) the space of finite energy func-
tions.

(2)
∫ ∞
−∞ ψ(t)dt = 0. This is equivalent to having the

Fourier Transform ofψ(t) null at zero (i.e.,ψ(t)
has no dc components).

One can interpret this integral operation in two ways
[3]:

(1) It evaluates the inner product or the cross cor-
relation of x(t) with the ψ(t/a)/

√
a at shift

b/a. Thus it evaluates the components ofx(t)
that are common to those ofψ(t/a)/

√
a. Thus

it measures the similarities betweenx(t) and
ψ(t/a)/

√
a.

(2) It is the output of a bandpass filter of impulse
responseψ(−t/a)/√a at b/a of the input sig-
nal x(t). This is a convolution of the signal
x(t), with an analysis window1√

a
ψ(t/a) that is

shifted in time byb and dilated by a scale param-
etera.

The second interpretation can be realized with a set of
filters whose bandwidth is changing with frequency.
The bandwidth of the filters is inversely proportional
to the scalea which is inversely proportional to fre-
quency. Thus, for low frequency we obtain high spec-
tral resolution and low (poor) temporal resolution.
Conversely, (This is where this type of representation
is most useful) for high frequencies we obtain high
temporal resolution that permits the wavelet transform
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to zoom in on singularities and detect abrupt changes
in the signal [9]. This leads to a poor high frequency
spectral resolution. The Discrete Wavelet Transform
and the Fourier Transform are modified versions of
the Continuous Wavelet Transform. They can be de-
rived from the CWT for specified values ofa andb.
For example, if the mother waveletψ(t) is the ex-
ponential functione−it and a = 1

w and b=0 then,
the CWT is reduced to the traditional Fourier Trans-
form with the scale representing the inverse of the fre-
quency [29]. The advantages that this new representa-
tion has over the STFT can be noticed in its efficiency
in representing physical signals since it isolates tran-
sient information in a fewer number of coefficients
and also in overcoming the time frequency trade off
induced by STFT [9]. The properties of the CWT for
real signals include: linearity, scale invariant, transla-
tion invariant, real and has an inverse. For a detailed
discussion about the properties of the CWT and their
proofs, refer to [4]. Some of the applications of the
CWT in speech processing include:

(1) Analysis, synthesis and processing of speech and
music sound [17],

(2) Analysis of sound patterns [18],

(3) Formant tracking [8],

(4) Speech recognition [7] [10] [11] [12].

(5) Speech compression [13] [27].

1.1 The Biorthogonal Analyzing Function
Bior3.9

A two channels filter bank has a low-pass and a high-
pass filter in the decomposition (analysis) phase. Let
H0 andG0 denote the low-pass filter coefficients and
the high-pass filter coefficients respectively. Given
the coefficients ofH0, it is shown in [25] and [26]
that the coefficients of the filtersH1, G0 andG1 that
lead to orthogonality can easily be derived from the
coefficients ofH0. Biorthogonal filter banks produce
biorthogonal wavelets. This calls for a new scaling
function φ̃(t) and a new wavelet functioñw(t). Here,
one needs the conditions:H1(z) =H−1

0 (z) andG1(z)

=H−1
1 (z) [28]. The wavelet filters for analysis banks

are derived [25] from the scaling filters using the rela-
tions:

h1 = (−1)n+1g0(n) (2)

g1 = (−1)nh0(n) (3)

The analysis scaling and wavelet equations thus be-
come:

H0 H1 H̃0 H̃1

-0.0007 0 0 -0.0007
0.0020 0 0 -0.0020
0.0051 0 0 0.0051
-0.0206 0 0 0.0206
-0.0141 0 0 -0.0141
0.0991 0 0 -0.0991
0.0123 0 0 0.0123
-0.3202 0 0 0.3202
0.0021 -0.1768 0.1768 0.0021
0.9421 0.5303 0.5303 -0.9421
0.9421 -0.5303 0.5303 0.9421
0.0021 0.1768 0.1768 -0.0021
-0.3202 0 0 -0.3202
0.0123 0 0 -0.0123
0.0991 0 0 0.0991
-0.0141 0 0 0.0141
-0.0206 0 0 -0.0206
0.0051 0 0 -0.0051
0.0020 0 0 0.0020
-0.0007 0 0 0.0007

Table 1: Coefficients of the filters for bior3.9.

˜φ(t) =
Ñ

∑

0

2hr
0(k)φ̃(2t− k) (4)

˜w(t) =
N

∑

0

2gr
0(k)φ̃(2t− k) (5)

wherehr
0 and gr

0 are the reverse of the original fil-
ters h0 and g0 respectively. The construction of
φ(t), w(t), φ̃(t) and w̃(t) starts with imposing the
biorthogonality conditions on the filters. The lowpass
analysis coefficientshr

0(k) are double shift biorthogo-
nal to the lowpass synthesis coefficientsh1(k):

2
∑

h1(k)h
r
0(k + 2n) = δ(n) (6)

2
∑

g1(k)g
r
0(k + 2n) = δ(n) (7)

And the highpass filter is biorthogonal to the lowpass
filter:

∑

h1(k)g
r
0(k + 2n) = 0 and

∑

g1(k)h
r
0(k + 2n) = 0

(8)

Figure 1 shows the frequency responses of the decom-
position and reconstruction filters and, the decomposi-
tion and reconstruction scaling and wavelet functions
of the biorthogonal (bior3.9) [16] are displayed in Fig-
ure 2 and Figure 3. This wavelet is smooth, has a
linear phase and short length filters. Also, Table 1 dis-
plays the coefficients of the lowpasses and highpasses
filters of bior3.9.
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Figure 1: Impulse response for the construction and
decomposition filters.
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Figure 2: The Decomposition Scaling and Wavelet
Functions for the Bior 3.9 Wavelet.
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Figure 3: The Reconstruction Scaling and Wavelet
Functions for the Bior 3.9 Wavelet.

Selected Bandwidth Centers Band Centers
Nodes In Hz WPS Bands in Hz Mel Bands
[7,1] 78 117 (78-156) 100
[7,3] 78 195 ( 156-234 ) 200
[7,2] 78 273 (234 - 312) 300
[7,7] 78 351 (312 -390 ) 400
[7,6] 78 429 (390 -468 ) 500
[7,4] 78 507 ( 468-564 ) 600
[7,5] 78 585 (564 - 625) 700
[7,15] 78 663 (625 - 703) 800
[7,14] 78 741 (703 -781 ) 900
[7,12] 78 819 (781 -859 ) 1000
[7,13] 78 897 (859 -937 ) 1149
[7,8] 78 975 ( 937- 1015) 1320
[7,9] 78 1053 (1015 -1093 ) 1516
[6,5] 156 1171 (1093 -1250 ) 1741
[5,7] 312 1406 (1250 -1562 ) 2000
[5,6] 312 1718 (1562-1875 ) 2297
[4,2] 625 2187 (1875 -2500 ) 2639
[4,7] 625 2812 (2500 -3125 ) 3031
[4,6] 625 3437 (3125 - 3750) 3482
[3,2] 1250 4375 (3750 -5000 ) 4000

Table 2: The WPS Nodes Selection.

2 Wavelet Packet Scale
Experiments in human perception have shown that
frequencies of a complex sound within a certain band-
width of some nominal frequency cannot be individ-
ually identified. But if one of the components of this
sound falls outside of the bandwidth then it could be
distinguished. This bandwidth is commonly referred
to as the critical bandwidth [19]. In this section we ex-
plore the flexibility of the Wavelet Packet analysis for
the construction of a Mel-like scale for speech percep-
tion along with its banwidth and centers of frequen-
cies. We drive a relationship between these centers of
frequencies and the Wavelet Packet tree and construct
a Wavelet Packet Scale (WPS).
Accurate representation of speech signals is the pri-
mary goal of digital speech processing. The Wavelet
Packet (WP) representations provide a local time-
spectral description which reveals the non-stationary
nature of speech. This is a direct consequence of
the the WP capability of arbitrary multiresolution
time-spectral decomposition of speech [6]. The
WP analysis is normally implemented using perfect
reconstruction filter banks where only the lowpass
filter was iterated. This leads to a one sided tree
decomposition.

At each node of the WP tree we have the option to
analyze the signal with the lowpass or the highpass
wavelet or both. Two familiar options are the loga-
rithmic tree of the DyWT with lowpass iteration only
and the complete tree analogue to the STFT [25]. The
computation scheme for wavelet packets generation is
easy in the case of an orthogonal wavelet [16]. The
idea is to start with two filters of length 2N denoted by
h(n) and g(n) that correspond to a wavelet. They are
the reversed versions of the lowpass decomposition
filter and the highpass decomposition filter divided by
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√
2 respectively [16]. By induction, one can define

the following two sequences of functions(Wn(x), n
= 0,1,2,...) by:

W2n(x) = 2
2N−1
∑

k=0

h(k)Wn(2x− k) (9)

W2n+1(x) = 2
2N−1
∑

k=0

g(k)Wn(2x− k) (10)

whereW0(x) = φ(x) is the scaling function and
W1(x) = ψ(x) is the wavelet function. TheWn(x)
are called the Wavelet Packets functions.

2.1 Physical Interpretation

Consider the three-indexed family of analyzing
functions:

Wj,n,k(x) = 2−j/2Wn(2−jx− k) (11)

Where n is a positive integer and k and j are integers
representing the time-localization and the scale pa-
rameter respectively [16]. For fixed values of the pa-
rametersk andj, the physical interpretation ofWn(x)
is that it analyzes the fluctuations of an input signal
around the time2−jK at the scale2−j and at various
frequencies for the different values of the parameter
n [16]. The drawback in the way that the functions
Wn(x) are generated is that, form > m′ it does not
imply thatWm(x) oscillates more thanWm′ . To re-
store the property that the frequency increases with
the order one should sort the functionsWn(x) in their
increasing order of frequency [16].
The (WPS) needs a level seven wavelet tree decompo-
sition,

3 Speech Recognition Approaches
As classified by Rabiner and Juang [21], the three
popular approaches in speech recognition are:

(1) The acoustic phonetic approach,

(2) The pattern recognition approach,

(3) The artificial intelligence approach.

Since the second approach is chosen for the recogni-
tion systems introduced in this paper, it is discussed
in details in the next subsection while a brief descrip-
tion of the first is presented. The third approach is
included for completeness.

3.1 The Acoustic-Phonetic Approach
The acoustic-phonetic approach [21] and [22], is
based on the idea of phonemes which constitute the
basic sound units of a verbal language. Unlike the
letters in an alphabet, phonemes have distinct pronun-
ciations. For example, the diphthong (aw) is always
pronounced as (ou) in the word ‘out’. An acoustic-
phonetic speech recognizer first processes a speech
signal in short intervals and extracts a set of features
for each of these interval. The features can include
one or a combination of the parameters such as For-
mant, pitch, or energy. In a process known as segmen-
tation and labeling, the recognizer attempts to divide
the signal into regions corresponding to phonetic units
by using the features extracted. In the last step a word
that matches best the sequence of phonemes is chosen.

3.2 The Pattern Recognition Approach
The pattern recognition approach avoids explicit
segmentation and labeling of speech. Instead, the
recognizer uses the patterns directly [2]. This is based
on comparing a given speech pattern with previously
stored ones [21]. The way speech patterns are formu-
lated in the reference database affects the performance
of the recognizer. In general, there are two common
representations, namely, the Hidden Markov Model
(HMM) and the templates. The second one is chosen
here where the patterns are stored as a sequence of
speech units that have similar spectral characteristics
called subwords. Using a number of samples, the
recognizer uses averaging techniques to build a ref-
erence pattern that encodes the important and unique
features of each pattern. When the recognizer receives
new input, it compares it directly with the patterns
in the database in an attempt to find the best match [2].

Generally speaking, there are four steps involved in
this approach [21], namely,

(1) Feature Measurement, where an analysis is per-
formed to represent or model a time segment of
the speech signal.

(2) Pattern Training, where the recognizer creates
exemplars or templates for speech sounds of the
different classes.

(3) Pattern Classification, where the recognizer com-
pares the incoming speech pattern with all of the
reference patterns. For each comparison a simi-
larity measure is computed.

(4) Decision logic, is to make a final decision based
on the distance measures computed in the previ-
ous step.
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The Artificial Neural Network (ANN) which is dis-
cussed in detail in the next section, is employed in this
paper as the pattern recognition engine.

4 Pattern Recognition Engines
Pattern recognition algorithms such as the one de-
scribed by Rabiner and Wilpon in [24], use dynamic
programming or Dynamic Time Warping (DTW) for
isolated words systems. These algorithms are com-
putationally proportional to the size of the vocabulary
involved in a given recognition system, i.e., the tem-
plates stored for matching [21]. Two new approaches
submerged in the late 1970’s and early 1980’s to ac-
commodate the medium and large size vocabulary
recognition paradigms but are as effective for the dig-
its recognition systems. The first one is the HMM
[20], and the second is the ANN [15] and [14].

4.1 Artificial Neural Networks
A neuron is defined as the fundamental processing
unit of the human brain. Figure 4 shows a model of
a neuron that has N inputs (the X’s), N weights (the
W’s), a biasb and an output Y [5]. This output is cal-
culated by the formula:

Y = f(
N−1
∑

i=0

(WiXi − b)). (12)

where b is an internal threshold or offset, and f is
a non-linear function chosen from one of the ones
below:

(1)Hard limiter, where

f(x) =

{

+1 if x > 0
−1 if x < 0

or,

(2)Sigmoid functions, where

f(x) =











tanh(βx) if β > 0
or
1/1 + e−βx if β > 0.

The Sigmoid nonlinearities are used often since they
are continuous and differentiable [21]. In general, an
ANN is a network of several simple computational
units. It has a great potential for parallel computation
since the processing of the units is done independently
and are widely used in pattern classification, matching
and completion [15] [14].

.
.

.

2W

1W

0W
X 0

X 1

INPUT
OUTPUT

Y

X
N-1

N-1W

b

X 2

Figure 4: A computational node of a neural
network [14].

4.2 Radial Basis Neural Networks
The core of a speech recognition system is the recog-
nition engine. The one chosen in the paper is the Ra-
dial Basis Functions Neural Network (RBF). This is a
static two neuron layers feed forward network with the
first layer,L1, called the hidden layer and the second
layer,L2, called the output layer.L1 consists of ker-
nel nodes that compute a localized and radially sym-
metric basis functions. A multi-layer (RBF) Neural
Network is depicted in Figure 5. The pattern recog-
nition approach used in this work is based on com-
paring a given speech pattern with previously stored
ones [21]. The way speech patterns are formulated in
the reference database affects the performance of the
recognizer. In general, there are two common repre-
sentations,

Input Layer Hidden Layer Output Layer
( L  )1 ( L  )2

Figure 5: A multi-layer neural network [14].

The outputy of an input vectorx to a (RBF) neural
network like the one in Figure 6, withH nodes in the
hidden layer is governed by:

y =
H−1
∑

h=0

whφh(x). (13)

WSEAS TRANSACTIONS on SIGNAL PROCESSING Jalal Karam

ISSN: 1790-5052 48 Issue 1, Volume 7, January 2011



wherewh are linear weights andφh are the radial sym-
metric basis functions. Each one of these functions
is characterized by its centerch and by its spread or
width σh. The range of each of these functions is
[0,1].

INPUT OUTPUTS

Figure 6: Radial Basis Functions Neural Network.

Figure 7: Segmentation of Tesaa = 9.

Figure 8: WPS Representation of Subwords

Once the input vectorx is presented to the network,
each neuron in the layerL1 will output a value ac-
cording to how close the input vector is to its weight
vector. The more similar the input is to the neuron’s
weight vector, the closer to 1 is the neuron’s output
and vice versa. If a neuron has an output 1, then its

output weights in the second layerL2 pass their values
to the neurons ofL2 [5]. The similarity between the
input and the weights is usually measured by a basis
function in the hidden nodes. One popular such func-
tion is the Gaussian function that uses the Euclidean
norm. It measures the distance between the input vec-
tor x and the node centerch. It is defined as:

φh = exp(||x− ch||/2σ2
h). (14)

5 Digit Vector Generation
Tracking changes of the acoustic properties in a
speech sample is realized in a form of a (SVF) [23]
whose peaks are indications of subword boundaries.
The introduced system depicted finds boundaries that
do not match those identified by the manual system.
Due to the spurious peaks usually found in the (SVF),
additional measures were taken to locate time bound-
aries. These measures include smoothing the (SVF)
using spline polynomials to remove most of the false
peaks in the function [1]. Moreover, some rules are
applied to restrict the number of acoustic subwords
of the digits. These rules depend on the knowledge
of the phonetic decomposition of digits and also on
energy levels and zero-crossing rates [1]. The perfor-
mance of this part of the work was measured on the
basis of its ability to locate the boundaries accurately
and consistently. The ideal boundaries were assumed,
in all cases, to be at the edges located manually as in
Fig. 7 for the digitTess3a = 9.

5.1 End-Point Detection
The algorithm used, is a modified version of that pro-
posed in [1] which uses the signal energy to determine
the most likely locations of the signal ends by finding
Mel based energy vectors. The detection process per-
formed here follows the (WPS).

5.2 Background Noise Estimation
This step ensures the algorithm’s adaptation to the en-
vironment by estimating the noise level and set de-
cision threshold values used by the subsequent steps.
The energy levels of the first and last 160 ms of the
signal are used for the noise threshold estimation. If
the ratio between these two noise levels is outside the
range [0.2 - 5], the algorithm terminates and manual
end-point detection is requested.

5.3 Locating the First and Last Voiced
Sounds

The starting-point of the first voiced sound and end-
point of the last voiced sound are located using the
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thresholds set. These points serve as reference for the
subsequent search for the actual end-points.

5.4 Locating Low Energy Areas

The algorithm moves backward (and forward) from
the location of the previously determined points to-
wards the ends of the signal to find the edges of low-
energy sounds, The final endpoints are assumed to be
located within these areas.

5.5 Final Endpoint Detection

The exact location of the endpoints is decided by lo-
cating the points where the slope of energy-time func-
tion has the highest value inside the low energy areas.

5.6 Frames and Windows

This stage is the front-end of most speech recognition
systems where a speech signal is analyzed to obtain
the speech mode1 employed by the system. The sam-
pled speech signal is divided into fames ofTf sec.
duration. The duration is chosen to be 10 ms. We
defineFs as the sampling frequency andTs as the
sampling rate. Fs = 20000 KHz or Ts = l

Fs
=

1
20000 = 0.05 m.s Therefore, the size of each frame

Nf is: Nf =
Tf

Ts
= 200 samples. To smooth the

change of parameters between frames, each frame is
multiplied by the Hamming analysis windoww() of
durationTn. The window duration is chosen to be
larger than the frame’s (20ms) to provide an overlap
of 50% between adjacent frames [19].Nw = Tw

Ts

which is 400 samples. To extract energy parameters
each windowed frame is analyzed with the DWTS.
The speech frequency range 0-5 khz is then divided
into 20 bands according to the (WPS). The last step is
to compute the logarithm of the average absolute val-
ues of the coefficients over each of the 20 bands to get
the energy value in that band encoded in decibel scale.
The energy computed in each band is then scaled to a
decibel scale of 0-60dB. Finally, the speech sample
is a time sequence of these frame vectors. A speech
sample has the form[F1, F2, ..., F20]. The recogni-
tion part of the system was performed by a Radial
Basis Function (RBF) neural network as specified by
the manual system. The network was trained first by
reference digit patterns in the form of parameter vec-
tors. The vectors were created by partitioning the sig-
nal along the boundaries to isolate the acoustic sub-
words. Energy parameters from the (WPS) were ex-
tracted in each subword then concatenated to produce
fixed-sized vectors thus relaxing the need for time-
alignment. In recognition mode, the network was used

Arabic Digit Phonemes
0 SE-F-R
1 WA-HA-D
2 E-TH-NA-NN
3 TH-A-LA-THA
4 A-RR-BA-A
5 KHA-MM-SA
6 SI-TT-A
7 SA-BA-AA
8 TH-A-MA-NI-YA
9 TE-SS-AA

Table 3: Phonetic of Arabic Digits.

to identify an unknown digit vectors. The fully au-
tomated system was tested using 10 speakers (with
1000 digits) from where signals are chosen from the
Arabic digit speech data base. The digits were spo-
ken by different speakers and recorded in the studio
at the Lebanese American University, Byblos. The
small size studio is designed to minimize noise and
equipped with a multi directional microphone made
by Neumann to collect the speech signal with the best
quality. The signals are then recorded and transformed
into wave sounds (.wav). The tool used is the PRO-
Tools Control 24 Dig-Design Device which is a com-
puterized digital mixer.

5.7 Design Considerations

Speech is considered non-stationary, however, the
properties in the signal can remain constant for peri-
ods between 5 and l0 msc. The frequency content may
range up to 15 kHz or higher, but speech is sufficiently
intelligible when bandlimited to frequencies bellow
3500Hz. A sampling rate of 20kHz or higher is re-
quired to accurately represent al1 speech sounds how-
ever, for commercial telephone applications, a sam-
pling rate of 8kHz is sufficient [22][23].

5.8 Digit Vectors

Frame vectors are grouped into 5 subword vectors be-
tween the selected boundaries as depicted in Figure 8.
Each subword unit consists of a variable number of
frame vectors. Finally, a digit vector is generated by
concatenating all sub-word vectors in the speech sam-
ple. Zero vectors are added in digit vectors that have
less than the maximum number five of subword units
to create fixed length vectors of 20 parameters.
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5.9 Constructing the Feature Vectors
To extract energy parameters of the (WPS), we apply
the wavelet analysis to each subword of speech Ara-
bic digits selected for the testing phase. In this phase
of the analysis, the constructed waveletbior3.9 was
used. The frequency bands are chosen according to
the (WPS) that is similar to the Mel scale with fre-
quency bands. The next step is to compute the aver-
age absolute values of the wavelets coefficients over
the corresponding bands of the scale to obtain the en-
ergy values. These values are then scaled to a decibel
scale of 0-60 dB.

Emax = max(E(p)) 0 ≤ p ≤ P − 1 (15)

ES(p) = 20 ∗ log10(E(p)/Emax) 0 ≤ p ≤ P − 1
(16)

ES′(p) = ES(p) − Emax 0 ≤ p ≤ P − 1 (17)

ES′′(p) = max(ES′(p),−60dB)+60dB 0 ≤ p ≤ P−1
(18)

There are20 bands in the (WPS) corresponding to
P = 20 of the Mel scale bands. Once the feature
vectors were constructed, a Radial Basis Functions
Neural Network is employed for recognition. Table 4
displays the recognition rates of the experiments con-
ducted. The second step after selecting the speakers
in the training set is to train the RBF network with the
word vectors constructed.

6 Word Recognition
Next we present a description of the RBF ANN for
the Arabic digits modeled using the (WPS) and a de-
scription of the RBF ANN are also included. The net-
work contains two procedures, a training phase and a
test phase, which are discussed in the next two sub-
sections.

6.1 Network Training Phase
The RBF network implemented in this paper is trained
initially with the Matlab [5] Neural Network tootbox
function newrb() which takes two input matrices, a
goal matrix and a spread matrix, and returns a trained
radial basis network. It is displayed in Figure 9. The
first input matrixP is a 100 ∗ Q matrix that con-
tains a training set ofQ digit vectors. The 100 cor-
respond to 20 coefficients per subword multiplied by
Six subwords per trained signal. If the network is be-
ing trained with 2 speakers thenQ = 40 since each
speaker is repeating each of the digits twice. The sec-
ond input is aQ ∗ 10 matrix of targetsT . The rows of
this matrix are targets vectorsTi that contain ‘1’ in the
targeted digit position and ‘0’ otherwise. The output

of the training functionnewrb() consists of the cen-
ters and the weightsCh andWq,h for the hidden and
output layers respectively.

P = [v1, v2, ..., vQ] (19)

Ti = [t1, t2, ..., t10] (20)

T = [T1, T2, ..., TQ]T (21)

P T

Wq,hCh

Training matrix Target matrix

Training Phase
newrb ( )

Figure 9: Training phase of the RBF network.

7 Experiments and Results

Ten speakers were chosen to test and evaluate all
the intermediate ideas, concepts, and implementations
that compose the final state of the algorithm. More-
over, digits in this set were used to measure the algo-
rithm’s accuracy in detecting the boundaries. This set
has the following properties:

(1) All speakers belong to the database.

(2) Speakers represent both genders, 8 males, and 2
females.

The ABD’S accuracy evaluation was made by com-
paring the boundary locations generated by the pro-
posed algorithm and those located manually by the
visual inspection of the signal waveform and its spec-
trogram. For the purpose of this evaluation, it was
assumed that the boundaries should ideally lie at the
edges between phonemes in each digit. The bound-
ary is decided to be accurately located if it lies within
three frames (30ms) from the actual phoneme edge.
Other possible States are shifted boundary, or missed
boundary.
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Scale Recognition Rate
Mel-Fourier 87%
WPS(bior 3.9) 93%
WPS(bior 3.5) 89%
WPS(bior 6.8) 89%
WPS(db6) 92%

Table 4: Overall Recognition Average of
Experiments.

7.1 Results of the Recognition Phase

The endpoint detection algorithm rejects any signal
with a noise level higher than an experimentally
determined threshold to prevent miss-allocation of
endpoints. A manual Setting of the endpoints is
required for the rejected signal before the subsequent
processing can take place 15% of the digits processed
by the algorithm were rejected. 64the allowed limit
in addition to 1The algorithm detects an ”extra”
boundary. This boundary always precedes the back
endpoint of the digit and creates an extra subword.
The boundary is considered an extra because it
has not been classified manually. A successful
recognition rate of 69.7% to 95.7% was achieved
depending on the number of’ speakers used to train
the RBF network. This result is lower than what was
accomplished by the manual system due to the 20%
error in locating some boundaries and the change of
boundaries definition in both systems.

The Matlab [5] Neural Network toolbox function
sim() is used to perform the recognition phase which
is displayed in Figure 10. This function accepts a ma-
trix R (similar to P of the training phase) of unknown
digit vectors as an input along with the weights and
bias vectors generated by the training phase. Its out-
put is a a unit diagonal matrix where ‘1’ is placed in
the recognized digit index.

Wq,hCh

Recognition Phase
R T i

Digit vector Target vectorsim ( )

Figure 10: Recognition phase of the RBF network.

8 Conclusion
In this paper we construct Biorthogonal wavelets via
the two channel perfect reconstruction filter bank.
A detailed description of the implementations of the
recognition system for the Arabic digits are exam-
ined and discussed. The speech signals parameteri-
zation using the Wavelet-based scales is also exam-
ined. The approach considered, decomposes spo-
ken Arabic digits based on the acoustical informa-
tion contained within each speech signal. The pro-
cedure locates the boundaries between subwords by
finding the peaks in the function representing the
spectral changes between consecutive speech frames.
The Frame-based energy parameters derived from a
Wavelet Packet Scale (WPS) are used in deriving the
Spectral Variation Function (SVF). Three Biorthogo-
nal wavelets are used as analyzing functions and their
performances are compared with that of the orthogo-
nal mother wavelet
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